Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 2, pp. 453-462

Title:
On constant products of elements in skew polynomial rings
Author(s):
W. Chen

Published by Iranian Mathematical Society

ON CONSTANT PRODUCTS OF ELEMENTS IN SKEW POLYNOMIAL RINGS

W. CHEN
(Communicated by Fariborz Azarpanah)

Abstract

Let R be a reversible ring which is α-compatible for an endomorphism α of R and $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ be a nonzero skew polynomial in $R[X ; \alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_{0}+b_{1} X+\cdots+b_{m} X^{m}$ in $R[X ; \alpha]$ such that $g(X) f(X)=c$ is a constant in R, then $b_{0} a_{0}=c$ and there exist nonzero elements a and r in R such that $r f(X)=a c$. In particular, $r=a b_{p}$ for some $p, 0 \leq p \leq m$, and a is either one or a product of at most m coefficients from $f(X)$. Furthermore, if b_{0} is a unit in R, then $a_{1}, a_{2}, \cdots, a_{n}$ are all nilpotent. As an application of the above result, it is proved that if R is a weakly 2 -primal ring which is α-compatible for an endomorphism α of R, then a skew polynomial $f(X)$ in $R[X ; \alpha]$ is a unit if and only if its constant term is a unit in R and other coefficients are all nilpotent. Keywords: Constant products, skew polynomial rings, reversible rings, weakly 2 -primal rings. MSC(2010): Primary: 16S36; Secondary: 16U60, 16N40.

1. Introduction

Throughout this note each ring R is associative with identity and a ring homomorphism preserves the identity. For a ring R, we use the symbol $N(R)$ to denote the set of nilpotent elements in $R, U(R)$ its unit group, $M_{n}(R)$ the ring of $n \times n$ matrices over R, and E_{n} the $n \times n$ identical matrix over R. The symbol $N_{*}(R)$ denotes the prime radical of a ring $R, N^{*}(R)$ its upper nil-radical, L $\operatorname{rad}(R)$ its Levitzki radical, and $J(R)$ its Jacobson radical, respectively.

Recall that a ring R is reduced if it has no nonzero nilpotent elements. A ring R is reversible if $a b=0$ implies $b a=0$ for $a, b \in R$. A ring R is semicommutative if $a b=0$ implies $a R b=0$ for $a, b \in R$. Obviously, a ring R is semicommutative if and only if its oppositive ring $R^{o p}$ is semicommutative. A

[^0]ring R is 2-primal if $N(R)=N_{*}(R)$. A ring R is weakly 2-primal if $N(R)=L$ $\operatorname{rad}(R)$. And a ring R is NI if $N(R)=N^{*}(R)$. It is known that reduced \Rightarrow reversible \Rightarrow semicommutative $\Rightarrow 2$-primal \Rightarrow weakly 2 -primal \Rightarrow NI, but the converse does not hold (see [3, 8]). Let R be a ring and α be an endomorphism of R. The ring R is called α-compatible provided $a b=0 \Leftrightarrow a \alpha(b)=0$, and R is called weak α-compatible in case $a b \in N(R) \Leftrightarrow a \alpha(b) \in N(R)$ where $a, b \in R$. A ring R to be α-compatible is also said to satisfy α-condition in some literatures (see [3]). According to Krempa [6], an endomorphism α of a ring R is called rigid if $a \alpha(a)=0$ implies $a=0$ for $a \in R$. It is proved in [6, Lemma 3.2] that if R is a reduced ring and α is an endomorphism of R, then α is rigid if and only if α is monomorphism persevering every minimal prime ideal of R if and only if $\alpha^{-1}(P) \subseteq P$ for any minimal prime P of R.

It is well known that a polynomial over a commutative ring R is a unit if and only if its constant term is a unit in R and other coefficients are nilpotent. This result in [2] has been extended to a 2-primal ring. However the conclusion is not true for a noncommutative ring in general (see [2, Example 2.8]). The aim of this note is to extend the main results in [2] to more general cases. We generalize the constant-product theorem for a commutative polynomial ring [4] to a skew polynomial ring $R[X ; \alpha]$ where R is a reversible ring which is α-compatible for an endomorphism α of R. It follows that if R is a weakly 2-primal ring which is α-compatible for an endomorphism α of R, then a skew polynomial $f(X)$ in $R[X ; \alpha]$ is a unit if and only if its constant term is a unit in R and other coefficients are nilpotent. For an NI-ring R, it is proved that if R is weak α-compatible then $f(X)$ in $R[X ; \alpha]$ is a unit only if its constant term is a unit in R and the other coefficients are nilpotent, and that the stable range of $R[X ; \alpha]$ is not equal to one. Moreover we define a ring R to be a UN-ring in case any $f(X)$ in $R[X]$ is a unit if and only if its constant term is a unit in R and other coefficients are nilpotent, and conclude that any NI-ring is a UN-ring if and only if Koethe's Conjecture has a positive solution.

2. Constant products in skew polynomial rings

We start this section with the following lemmas.
Lemma 2.1. ([3, Lemma 3.1]) Let R be a ring and α be an endomorphism of R. If R is α-compatible, then for any $n \geq 2, a_{1} a_{2} \cdots a_{n}=0 \Leftrightarrow \alpha^{k_{1}}\left(a_{1}\right) \alpha^{k_{2}}\left(a_{2}\right) \cdots$ $\alpha^{k_{n}}\left(a_{n}\right)=0$ where $a_{1}, a_{2}, \cdots, a_{n} \in R$ and $k_{1}, k_{2}, \cdots, k_{n}$ are any nonnegative integers. In particular, $a_{1} a_{2} \in N(R) \Leftrightarrow a_{1} \alpha^{k}\left(a_{2}\right) \in N(R)$ for any nonnegative integer k.

Lemma 2.1 implies that if a ring R is α-compatible then it is weak α compatible, and that if R is reversible and α-compatible then $\operatorname{rf}(X)=0$ if and only if $f(X) r=0$ for $f(X)$ in $R[X ; \alpha]$ and r in R.

Lemma 2.2. ([3, Theorem 3.1]) Let R be a weakly 2-primal ring and α be an endomorphism of R. If R is α-compatible, then the skew polynomial ring $R[X ; \alpha]$ is also a weakly 2-primal ring. More specifically, $N(R)[X ; \alpha]=$ $N(R[X ; \alpha])=L-\operatorname{rad}(R[X ; \alpha])$.
Lemma 2.3. Let R be 2-primal ring which is α-compatible for an endomorphism α of R. If P is any minimal prime ideal of R, then both $\alpha(P)$ and $\alpha^{-1}(P)$ are contained in P.

Proof. Since R is a 2-primal ring, $N(R)=N_{*}(R)$, and $\bar{R}=R / N_{*}(R)$ is reduced. By Lemma 2.1, α induces an endomorphism $\bar{\alpha}$ of \bar{R} via $\bar{\alpha}(\bar{a})=\overline{\alpha(a)}$ where $\bar{a}=a+N_{*}(R)$ for any $a \in R$. Now if $\bar{a} \bar{\alpha}(\bar{a})=\overline{0}$ for $a \in R$, then $a \alpha(a) \in N_{*}(R)$. This gives $a^{2} \in N_{*}(R)$ by Lemma 2.1, and so $a \in N_{*}(R)$. Hence $\bar{a}=\overline{0}$ and $\bar{\alpha}$ is a rigid endomorphism of \bar{R}. Note that $P / N_{*}(R)$ is a minimal prime ideal of \bar{R}. Using [6, Lemma 3.2], one has $\bar{\alpha}\left(P / N_{*}(R)\right) \subseteq P / N_{*}(R)$ and $\bar{\alpha}^{-1}\left(P / N_{*}(R)\right) \subseteq P / N_{*}(R)$. It yields that both $\alpha(P)$ and $\alpha^{-1}(P)$ are contained in P.

By Lemma 2.3, α may induce an endomorphism of R / P naturally.
Recall that a prime ideal of a ring R is completely prime if R / P is a domain. It is known by [9, Proposition 1.11] that a ring R is 2-primal if and only if each minimal prime ideal is completely prime. Also note that for any ring R, the prime radical $N_{*}(R)$ is equal to the intersection of all minimal prime ideals of R (cf. [7, p. 180]).

The next two theorems are the counterparts of the main theorem of [4].
Theorem 2.4. Let R be a reversible ring which is α-compatible for an endomorphism α of R and $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ be a nonzero skew polynomial in $R[X ; \alpha]$. If there is nonzero skew polynomial $g(X)=b_{0}+b_{1} X+$ $\cdots+b_{m} X^{m}$ in $R[X ; \alpha]$ such that $g(X) f(X)=c$ is a constant, then $b_{0} a_{0}=c$ and there exist nonzero elements a and r in R such that $r f(X)=a c$. In particular, $r=a b_{p}$ for some $p, 0 \leq p \leq m$, and a is either one or a product of at most m coefficients from $f(X)$. Furthermore, if b_{0} is a unit in R, then $a_{1}, a_{2}, \cdots, a_{n}$ are all nilpotent.

Proof. First we prove that the conclusion is true for any skew polynomial $f(X)$ of degree 0 . By the assumption $f(X)=a_{0} \neq 0$, and $g(X) a_{0}=c$. This means $b_{0} a_{0}=c$. If $b_{0} \neq 0$, then $r=b_{0}$ and $a=1$ are desired nonzero elements. If $b_{0}=0$, then $c=b_{0} a_{0}=0$. Assume that b_{q} is the least nonzero coefficient of $g(X)$. Then one has $g(X) a_{0}=\left(b_{q} X^{q}+\cdots+b_{m} X^{m}\right) a_{0}=0$. This gives $b_{q} \alpha^{q}\left(a_{0}\right)=0$, and so $b_{q} a_{0}=0$ by Lemma 2.1. Thus $r=b_{q}$ and $a=1$ are desired nonzero elements.

Next we may assume that $f(X)$ is of degree $n \geq 1$. We proceed by induction on the degree of $g(X)$. If $m=0$, then $g(X)=b_{0} \neq 0$. From $g(X) f(X)=$ $b_{0}\left(a_{0}+a_{1} X+\cdots+a_{n} X^{n}\right)=c$, one has $c=b_{0} a_{0}$ and so $r=b_{0}, a=1$ are
desired. Assume that the conclusion is true for all skew polynomials of degree less then m. Let $g(X) f(X)=c$ for $g(X)$ of degree m, we show that $g(X)$ can be replaced by a skew polynomial of lower degree. If $b_{0}=0$, then $c=b_{0} a_{0}=0$, and $g(X)=b_{q} X^{q}+\cdots+b_{m} X^{m}$ where b_{q} is the least nonzero coefficient of $g(X)$. If $a_{k} g(X)=0$ for all $1 \leq k \leq n$, then $a_{k} b_{q}=0$, and so $b_{q} a_{k}=0$ for such k. In this case, $b_{q} f(X)=0=c$, and one may take $r=b_{q}, a=1$ as desired. Thus we may assume that k is the largest positive integer such that $a_{k} g(X) \neq 0$. In the case of $k=n$, then from $g(X) f(X)=0=c$ one has $b_{m} \alpha^{m}\left(a_{n}\right)=0$, which implies $b_{m} a_{n}=a_{n} b_{m}=0$ and so $a_{n} g(X)$ is of degree less than m satisfying $a_{n} g(X) f(X)=a_{n} c=0$. In the case of $k<n$, then $a_{s} g(X)=0=g(X) a_{s}$ for $k+1 \leq s \leq n$. This means $g(X)\left(a_{0}+a_{1} X+\cdots+a_{k} X^{k}\right)=g(X) f(X)=$ $c=0$. It yields that $b_{m} \alpha^{m}\left(a_{k}\right)=0=b_{m} a_{k}=a_{k} b_{m}$. This implies that $a_{k} g(X)$ is of degree less than m, and $a_{k} g(X) f(X)=a_{k} c=0$. Thus induction hypothesis applied to $a_{k} g(X)$ and $a_{k} c$ yields the desired conclusion. If $b_{0} \neq 0$, and $a_{k} g(X)=0$ for all $1 \leq k \leq n$, then $a_{k} b_{0}=0=b_{0} a_{k}$ for such k. It follows that $b_{0} f(X)=c$, and so $b_{0} a_{0}=c$. Clearly, $r=b_{0}$ and $a=1$ satisfy the desired condition. Thus we assume that k is the largest positive integer such that $a_{k} g(X) \neq 0$. In the case of $k=n$, from $g(X) f(X)=c$ one has that $b_{m} \alpha^{m}\left(a_{n}\right)=0$, which implies $b_{m} a_{n}=a_{n} b_{m}=0=$ and so $a_{n} g(X)$ is of degree less than m satisfying $a_{n} g(X) f(X)=a_{n} c$. In the case of $k<n$, then $a_{s} g(X)=0=g(X) a_{s}$ for $k+1 \leq s \leq n$. This means $g(X)\left(a_{0}+a_{1} X+\cdots+\right.$ $\left.a_{k} X^{k}\right)=g(X) f(X)=c$. It yields that $b_{m} \alpha^{m}\left(a_{k}\right)=0=b_{m} a_{k}=a_{k} b_{m}$, and thus $a_{k} g(X)$ is of degree less than m, and $a_{k} g(X) f(X)=a_{k} c$. Now induction hypothesis applied to $a_{k} g(X)$ and $a_{k} c$ yields the desired conclusion.

Now we prove the nilpotency of $a_{1}, a_{2}, \cdots, a_{n}$. Assume that $g(X) f(X)=c$ and b_{0} is a unit in R. Let P be any minimal prime ideal of R. By Lemma 2.3, one can define an endomorphism $\bar{\alpha}$ of $\bar{R}=R / P$ via $\bar{\alpha}(\bar{a})=\overline{\alpha(a)}$ where $\bar{a}=a+P$ for any $a \in R$. Thus $\bar{R}[X ; \bar{\alpha}]$ is a skew polynomial ring. Since R is a 2 -primal ring, P is a completely prime ideal of R and so \bar{R} is a domain. Clearly, \bar{R} is a reversible ring. We prove that \bar{R} is $\bar{\alpha}$-compatible. By Lemma 2.3, $\alpha(P) \subseteq P$ and $\alpha^{-1}(P) \subseteq P$ hold. If $\bar{a} \bar{b}=\overline{0}$ for $a, b \in R$, then $a b \in P$. This implies $a \in P$ or $b \in P$ since P is a completely prime ideal of R. It follows that $a \alpha(b) \in P$ by Lemma 2.3, that is, $\bar{a} \bar{\alpha}(\bar{b})=\overline{0}$. Conversely, if $\bar{a} \bar{\alpha}(\bar{b})=\overline{0}$ for $a, b \in R$, then $a \alpha(b) \in P$. This means $a \in P$ or $\alpha(b) \in P$. Again by Lemma $2.3, a \in P$ or $b \in P$, this gives $a b \in P$ and so $\bar{a} \bar{b}=\overline{0}$. It is easy to check that there exists a natural ring epimorphism from $R[X ; \alpha]$ onto $\bar{R}[X ; \bar{\alpha}]$. It follows that $\bar{g}(X) \bar{f}(X)=\bar{c}$ in $\bar{R}[X ; \bar{\alpha}]$. If $\bar{f}(X)=\overline{0}$, then clearly $a_{i} \in P$ for all $i \geq 1$. Since b_{0} is a unit, $\bar{g}(X) \neq \overline{0}$. If $\bar{f}(X) \neq \overline{0}$, then $\bar{g}(X) \bar{f}(X)=\bar{c}$ implies that there exist $\bar{r}, \bar{a} \neq \overline{0}$ such that $\bar{r} \bar{f}(X)=\bar{a} \bar{c}$. This means $\bar{r} \overline{a_{i}}=\overline{0}$ for each $i \geq 1$. Noticing that R / P is a domain, one has $\overline{a_{i}}=\overline{0}$, and so $a_{i} \in P$. Therefore $a_{i} \in N_{*}(R)$ for all $i \geq 1$, since $N_{*}(R)$ is the intersection of all minimal prime ideals of R.

Theorem 2.5. Let R be a reversible ring which is α-compatible for an endomorphism α of R and $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ in $R[X ; \alpha]$ be a nonzero skew polynomial. If there is nonzero skew polynomial $g(X)=b_{0}+b_{1} X+\cdots+$ $b_{m} X^{m}$ in $R[X ; \alpha]$ such that $f(X) g(X)=c$ is a constant, then $a_{0} b_{0}=c$ and there exist nonzero elements a and r in R such that $f(X) r=c a$. In particular, $r=b_{p} a$ for some $p, 0 \leq p \leq m$, and a is either one or a product of at most m elements from $\left\{\alpha^{k}\left(a_{i}\right) \mid 0 \leq k \leq m, 0 \leq i \leq n\right\}$. Furthermore, if b_{0} is a unit in R, then $a_{1}, a_{2}, \cdots, a_{n}$ are all nilpotent.

Proof. Similar to the proof of Theorem 2.4, it is easy for one to prove the conclusion for $f(X)$ of degree 0 . Next we may assume that $f(X)$ is of degree $n \geq 1$. We proceed by induction on the degree of $g(X)$. If $m=0$, then $g(X)=$ $b_{0} \neq 0$ and $f(X) b_{0}=\left(a_{0}+a_{1} X+\cdots+a_{n} X^{n}\right) b_{0}=c$. Clearly, $a_{0} b_{0}=c$ and one may take $r=b_{0}$ and $a=1$ as desired. Assume that the conclusion is true for all skew polynomials of degree less than m. Let $f(X) g(X)=c$ for $g(X)$ of degree m, we show that $g(X)$ can be replaced by a skew polynomial of lower degree. If $b_{0}=0$, then $c=a_{0} b_{0}=0$. From $f(X) g(X)=f(X) g^{*}(X) X^{q}=c=0$, one has $f(X) g^{*}(X)=0=c$ where $g^{*}(X)=b_{q}+b_{q+1} X+\cdots+b_{m} X^{m-q}$ and b_{q} is the least nonzero coefficient of $g(X)$. One may get desired nonzero elements a and r by the inductive assumption. If $b_{0} \neq 0$, and $g(X) a_{k}=0$ for all $1 \leq k \leq n$, then $b_{0} a_{k}=0$ for such k. This means that $a_{k} b_{0}=a_{k} \alpha^{k}\left(b_{0}\right)=0$ for all $1 \leq k \leq n$, since R is reversible and α-compatible. It follows that $f(X) b_{0}=c$ and $c=a_{0} b_{0}$, hence $r=b_{0}$ and $a=1$ satisfy the desired condition. Thus we assume that k is the largest positive integer such that $g(X) a_{k} \neq 0$. In the case of $k=n$, from $f(X) g(X)=c$ one has that $a_{n} \alpha^{n}\left(b_{m}\right)=0$, which implies $a_{n} b_{m}=0=b_{m} a_{n}$ and so $b_{m} \alpha^{m}\left(a_{n}\right)=0$. That is, $g(X) a_{n}$ is of degree less than m satisfying $f(X)\left(g(X) a_{n}\right)=c a_{n}$. In the case of $k<n$, then $g(X) a_{s}=0$ for $k+1 \leq s \leq n$. This means $a_{s} g(X)=0$ by Lemma 2.1, and so $a_{s} b_{0}=a_{s} b_{1}=\cdots=a_{s} b_{m}=0$. It yields that $a_{s} X^{s} g(X)=0$ by Lemma 2.1. Thus one may get $\left(a_{0}+a_{1} X+\cdots+a_{k} X^{k}\right) g(X)=f(X) g(X)=c$. It follows that $a_{k} \alpha^{k}\left(b_{m}\right)=0=a_{k} b_{m}=b_{m} a_{k}$, and thus $b_{m} \alpha^{m}\left(a_{k}\right)=0$. This implies that $g(X) a_{k}$ is of degree less than m, and $f(X)\left(g(X) a_{k}\right)=c a_{k}$. Now induction hypothesis applied to $g(X) a_{k}$ and $c a_{k}$ yields the desired conclusion.

The proof regarding the nilpotency of $a_{1}, a_{2}, \cdots, a_{n}$ is very similar to that of Theorem 2.4, so we omit the detail.

The next corollary is a direct result of Theorem 2.4 or Theorem 2.5.
Corollary 2.6. Let R be a reversible ring which is α-compatible for an endomorphism α of R. A skew polynomial $f(X)$ in $R[X ; \alpha]$ is a divisor of zero if and only if there exists a nonzero constant $r \in R$ such that $r f(X)=f(X) r=0$.

A ring R is called right McCoy if for two nonzero polynomials $f(X)$ and $g(X)$ in $R[X]$ whenever $f(X) g(X)=0$, then there exists nonzero element r in
R such that $f(X) r=0$. A left McCoy ring can be defined similarly. If a ring R is left and right McCoy, then it is called McCoy (see [8]).
Corollary 2.7. ([8, Theorem 2]) If R is a reversible ring, then R is a McCoy ring.
Remark 2.8. Nielsen [8] proved that there exists a semicommutative ring R which is not right McCoy. This means that one could not expect to extend Theorem 2.4 or 2.5 to a semicommutative ring since the oppositive ring of a semicommutative ring is semicommutative. On the other hand, let S be a reduced ring, then it is easy to check that the ring

$$
R=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a, b \in S\right\}
$$

is reversible. Define α : $\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right) \mapsto\left(\begin{array}{ll}a & -b \\ 0 & a\end{array}\right)$, then α is an endomorphism of R, and R is α-compatible. In this way, one can get noncommutative reversible rings being α-compatible.

Corollary 2.9. Let R be a reversible ring which is α-compatible for an endomorphism α of R. A skew polynomial $f(X)$ in $R[X ; \alpha]$ is a unit if and only if its constant term is a unit and other coefficients are nilpotent.
Proof. If $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ in $R[X ; \alpha]$ is a unit, then there exists $g(X)=b_{0}+b_{1} X+\cdots+b_{m} X^{m}$ in $R[X ; \alpha]$ such that $f(X) g(X)=g(X) f(X)=$ 1. this means that b_{0} is a unit, and so all a_{k} are nilpotent for $k \geq 1$ by Theorem 2.4. Conversely, if a_{0} is a unit and each a_{k} is nilpotent for $k \geq 1$, then $a_{1} X+\cdots+a_{n} X^{n} \in N(R)[X ; \alpha]=\operatorname{L-rad}(R[X ; \alpha]) \subseteq J(R[X ; \alpha])$ by Lemma 2.2, concluding that $f(X)$ is a unit in $R[X ; \alpha]$.

The next two corollaries are the counterparts of the last corollary in [4].
Corollary 2.10. Let R be a reversible ring which is α-compatible for an endomorphism α of $R, f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ and $g(X)=b_{0}+b_{1} X+\cdots+$ $b_{m} X^{m}$ be nonzero skew polynomials in $R[X ; \alpha]$ such that a_{1} is a unit in R. If $f(g(X))=0$ and either b_{0} or $a_{2}, a_{3}, \cdots, a_{n}$ are all nilpotent, then $b_{1}, b_{2}, \cdots, b_{m}$ are also nilpotent.

Proof. Note that the condition $f(g(X))=0$ implies that $a_{0}+a_{1} g+\cdots+a_{n} g^{n}=$ 0 . This means that $\left(a_{1}+a_{2} g+\cdots+a_{n} g^{n-1}\right) g=-a_{0}$. However the constant term of $a_{1}+a_{2} g+\cdots+a_{n} g^{n-1}$ is $a_{1}+a_{2} b_{0}+a_{3} b_{0}^{2}+\cdots+a_{n} b_{0}^{n-1}$ which is a unit since it is a sum of a unit and a nilpotent element contained in $N_{*}(R)$. By Theorem $2.5, b_{1}, b_{2}, \cdots, b_{m}$ are all nilpotent.

Corollary 2.11. Let R be a reversible ring which is α-compatible for an endomorphism α of $R, f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ and $g(X)=b_{0}+b_{1} X+$ $\cdots+b_{m} X^{m}$ be nonzero skew polynomials in $R[X ; \alpha]$ such that b_{1} is a unit
in R. If $g(f(X))=0$ and either a_{0} or $b_{2}, b_{3}, \cdots, b_{m}$ are all nilpotent, then $a_{1}, a_{2}, \cdots, a_{n}$ are also nilpotent.

Proof. It is similar to the proof of Corollary 2.10.
Corollary 2.12. Let R be a reduced ring and α be an endomorphism of R. If R is α-compatible, then $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ in $R[X ; \alpha]$ is a unit if and only if a_{0} is a unit in R and a_{i} is zero for each $i \geq 1$.
Corollary 2.13. Let R be an NI ring and α be an endomorphism of R. If R is weak α-compatible, then $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ in $R[X ; \alpha]$ is a unit only if a_{0} is a unit and a_{i} is nilpotent for each $i \geq 1$.
Proof. Since R is NI, $N(R)$ is an ideal of R and $\bar{R}=R / N(R)$ is reduced. It is easy to check that α induces an endomorphism $\bar{\alpha}$ of \bar{R} via $\bar{\alpha}(\bar{a})=\alpha(a)+N(R)$ since $\alpha(N(R)) \subseteq N(R)$ where $\bar{a}=a+N(R)$ for $a \in R$. Noticing that R is weak α-compatible, one has $\bar{a} \bar{\alpha}(\bar{b})=\overline{0} \Leftrightarrow a \alpha(b) \in N(R) \Leftrightarrow a b \in N(R) \Leftrightarrow \bar{a} \bar{b}=\overline{0}$ for $a, b \in R$, that is, \bar{R} is $\bar{\alpha}$-compatible. Since there exists a ring epimorphism from $R[X ; \alpha]$ onto $\bar{R}[X ; \bar{\alpha}]$, which sends $f(X)$ to $\bar{f}(X)=\bar{a}_{0}+\bar{a}_{1} X+\cdots+\bar{a}_{n} X^{n}$, $\bar{f}(X)$ is a unit in $\bar{R}[X ; \bar{\alpha}]$. Hence \bar{a}_{0} is a unit in $R / N(R)$ and \bar{a}_{i} is zero for each $i \geq 1$ by Corollary 2.12. Now it is easy to see that a_{0} is a unit in R and a_{i} is nilpotent for each $i \geq 1$.

Corollary 2.14. Let R be a weakly 2-primal ring and α be an endomorphism of R. If R is α-compatible, then $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ in $R[X ; \alpha]$ is a unit if and only if a_{0} is a unit in R and a_{i} is nilpotent for each $i \geq 1$.
Proof. Since a weakly 2-primal ring is NI and R being α-compatible implies being weak α-compatible, the only if part follows from Corollary 2.13. Conversely, let $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ in $R[X ; \alpha]$ be such that a_{0} is a unit in R and a_{i} is nilpotent for each $i \geq 1$. Then one has $a_{1} X+\cdots+a_{n} X^{n} \in L$ $\operatorname{rad}(R[x ; \alpha]) \subseteq J(R[X ; \alpha])$ by Lemma 2.2, this implies that $f(X)$ is a unit in $R[X ; \alpha]$.

Corollary 2.15. ([2, Theorem 2.5]) Let R be a 2-primal. Then $f(X)=$ $a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ in $R[x]$ is a unit if and only if a_{0} is a unit in R and a_{i} is nilpotent for each $i \geq 1$.

According to [5], a ring R is called unit-central if the units of R lies in its center. As an application of the above result, we show that a ring R is unit-central if and only if $R[X]$ is unit-central.
Proposition 2.16. A ring R is unit-central if and only if $R[X]$ is unit-central.
Proof. First we show that a unit-central ring R is 2-primal. Since the prime radical of R is the set of all strongly nilpotent elements in R, it is sufficient to show that every nilpotent element of R is strongly nilpotent. Assume that $a \in$ $N(R)$ satisfies $a^{n}=0$ for some positive integer n. We consider the m-sequence
beginning with a, that is, $a_{0}=a, a_{i+1}=a_{i} r_{i} a_{i}$ where $r_{i} \in R(i=0,1, \cdots)$. Note that R is unit-central implies that a is central. One has $a_{1}=a^{2} r_{0}, a_{2}=$ $a^{2^{2}} r_{0} r_{1} r_{0}$, inductively, $a_{n}=a^{2^{n}} s$ for some $s \in R$. This means $a_{n}=0$ and so a is strongly nilpotent. Now assume that $R[X]$ is unit-central. Then R is unitcentral as a subring of $R[X]$. Conversely, assume that R is unit-central. Then R is 2-primal by the above argument. For any $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ in $U(R[X])$, then a_{0} is a unit in R and $a_{i} \in N(R)$ for each $i \geq 1$ by Corollary 2.15. Since R is unit-central, a_{i} is central for all $i \geq 0$. It follows that $f(X)$ is also central in $R[X]$.

Recall that a ring R is said to have stable range one, denoted by $S_{r}(R)=1$, if for $a, b \in R$ satisfying $a R+b R=R$, there exists $y \in R$ such that $a+b y$ is a unit in R. This notion is very important in the study of algebraic K-theory. It is well known that for a commutative ring $R, S_{r}(R[X])>1$. Now we prove the conclusion is true for the skew polynomial ring $R[X ; \alpha]$ over an NI-ring R which is weak α-compatible.

Proposition 2.17. If R is an NI ring which is weak α-compatible for an endomorphism α of R, then $S_{r}(R[X ; \alpha])>1$.
Proof. Assume the contrary, then $X(-X)+1+X^{2}=1$ implies that there exists $f(X) \in R[X ; \alpha]$ such that $X+\left(1+X^{2}\right) f(X)$ is a unit in $R[X ; \alpha]$. Write $f(X)=$ $a_{0}+a_{1} X+\cdots+a_{n} X^{n}$. In the case of $n=0$, then $a_{0}+X+\alpha^{2}\left(a_{0}\right) X^{2}$ is a unit in $R[X ; \alpha]$. This implies that 1 is nilpotent in R by Corollary 2.13 , a contradiction. When $n=1$, then $X+\left(1+X^{2}\right) f(X)=a_{0}+\left(1+a_{1}\right) X+\alpha^{2}\left(a_{0}\right) X^{2}+\alpha^{2}\left(a_{1}\right) X^{3}$ is a unit. Hence $\alpha^{2}\left(a_{1}\right) \in N(R)$, and so does a_{1} by Lemma 2.1. It follows that $1+a_{1}$ is nilpotent, this is impossible since $1+a_{1}$ is a unit. When $n=$ $2 k, k \geq 1$, then $X+\left(1+X^{2}\right) f(X)=a_{0}+\left(1+a_{1}\right) X+\left(a_{2}+\alpha^{2}\left(a_{0}\right)\right) X^{2}+$ $\left(a_{3}+\alpha^{2}\left(a_{1}\right)\right) X^{3}+\cdots+\alpha^{2}\left(a_{2 k-1}\right) X^{2 k+1}+\alpha^{2}\left(a_{2 k}\right) X^{2 k+2}$ is a unit. This implies $\alpha^{2}\left(a_{2 k-1}\right), \alpha^{2}\left(a_{2 k}\right) \in N(R)$, and so $a_{2 k-1}, a_{2 k} \in N(R)$. Inductively, we have $a_{2 k}, a_{2 k-1}, \cdots, a_{4}, a_{3} \in N(R)$. Hence $a_{3}+\alpha^{2}\left(a_{1}\right) \in N(R)$, and so does $\alpha^{2}\left(a_{1}\right)$. It follows that $a_{1} \in N(R)$ and $1+a_{1} \in N(R)$, a contradiction. In the case of $n=2 k+1, k \geq 1$, similar to the case of $n=2 k$, we can get a desired contradiction. The proof is complete.
Corollary 2.18. ([2, Proposition 2.7]) If R is a 2-primal ring, then $S_{r}(R[X])>$ 1.

In view of Corollary 2.13, it is natural to study the sufficient and necessary condition under which $f(X)$ in $R[X]$ is a unit. This problem is closely related to the famous Koethe's Conjecture whether a nil one sided ideal of any ring R is contained in its upper nil radical. It is known that Koethe's Conjecture has a positive solution if and only if for each nil algebra S over any countable field, the polynomial algebra $S[X]$ is Jacobson radical (see [10]). This is equivalent to saying that for any ring $R, J(R[X])=N i l^{*}(R)[X]$ holds (cf. [7, p.181]).

Let R be a ring. Consider the following condition: $f(X)=\sum_{i=0}^{n} a_{i} X^{i}$ $\in U(R[X]) \Leftrightarrow a_{0} \in U(R)$ and $a_{i} \in N(R)$ for each $i \geq 1$.

Call a ring R to be a UN ring if R satisfies the above condition.
Theorem 2.19. Koethe's Conjecture has a positive solution if and only if any NI ring R is a $U N$ ring.

Proof. Assume that Koethe's Conjecture has a positive solution. Then we have $J(R[X])=N^{*}(R)[X]$ for any ring R (see [7, p.181]). We prove that any NI ring R is a UN ring. Let $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in R[X]$. If $f(X) \in U(R[X])$, then $a_{0} \in U(R)$ and $a_{i} \in N(R)$ for each $i \geq 1$ by Corollary 2.13. Conversely, let $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in R[X]$ be such that $a_{0} \in U(R)$ and $a_{i} \in N(R)$ for each $i \geq 1$. Write $g(X)=a_{1} X+\cdots+a_{n} X^{n}$. Then $g(X) \in N(R)[X]=N^{*}(R)[X]=J(R[X])$ since R is an NI ring. This means $f(X)=a_{0}+g(X)$ is a unit in $R[X]$. It follows that R is a UN ring. Now assume that any NI-ring R is a UN-ring. We prove that for each nil algebra S over any countable $F, J(S[X])=S[X]$. Let $R=F+S$ (the sum of algebras). Then R is an NI ring with $N(R)=S$. Since S is an ideal of $R, S[X]$ is an ideal of $R[X]$. Hence $J(S[X])=J(R[X]) \bigcap S[X] \subseteq J(R[X])$. On the other hand, $J(R[X])=I[X]$ for some nil ideal of R by [1, Theorem 1]. This means that $J(R[X]) \subseteq S[X] \bigcap J(R[X])=J(S[X])$ and so $J(R[X])=J(S[X])$. Now for any $h(X) \in S[X]=N(R)[X], 1+h(X)$ is a unit since R is a UN ring. Hence $S[X]$ is a quasi-regular ideal of $R[X]$. It follows that $S[X] \subseteq J(R[X])=$ $J(S[X])$, and so $S[X]=J(S[X])$.

We conclude this note with the following proposition.
Proposition 2.20. For any ring R and $n \geq 2, M_{n}(R)$ is not a UN-ring.
Proof. We may canonically identify $M_{n}(R)[X]$ with $M_{n}(R[X])$. When $n=2$, let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, and $B=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$. Clearly, A is a unit and B is a nonzero idempotent. However $f(X)=A+B X=\left(\begin{array}{ll}1 & 1 \\ X & 1+X\end{array}\right)$ is a unit in $M_{2}(R)[X]$ with the inverse $\left(\begin{array}{cc}1+X & -1 \\ -X & 1\end{array}\right)$. When $n>2$, then $f_{1}(X)=\left(\begin{array}{ll}E_{n-2} & O \\ O & A\end{array}\right)+\left(\begin{array}{ll}O_{n-2} & O \\ O & B\end{array}\right) X=\left(\begin{array}{ll}E_{n-2} & O \\ O & A+B X\end{array}\right)$ is a unit in $M_{n}(R)[X]$ by the above argument, but the coefficient of X is a nonzero idempotent. Moreover, let $g(X)=E_{2}+E_{12} X+E_{21} X^{2}=\left(\begin{array}{cc}1 & X \\ X^{2} & 1\end{array}\right)$ where E_{12}, E_{21} are 2×2 matrix units. Then $g(X)$ is not a unit, since $\left(\begin{array}{ll}1 & 0 \\ -X^{2} & 1\end{array}\right)\left(\begin{array}{ll}1 & X \\ X^{2} & 1\end{array}\right)\left(\begin{array}{ll}1 & -X \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1-X^{3}\end{array}\right)$ is not a unit in
$M_{2}(R)[X]$. But the constant term of $g(X)$ is a unit and the other coefficients are nilpotent. In the case of $n>2$, then $g_{1}(X)=\left(\begin{array}{ll}E_{2} & O \\ O & E_{n-2}\end{array}\right)+$ $\left(\begin{array}{ll}E_{12} & O \\ O & O\end{array}\right) X+\left(\begin{array}{ll}E_{21} & O \\ O & O\end{array}\right) X^{2}=\left(\begin{array}{ll}g(X) & O \\ O & E_{n-2}\end{array}\right)$ is not a unit in $M_{n}(R)[X]$, however its constant term is a unit and othercoefficients are nilpotent.

Acknowledgments

The author would like to express his gratitude to the anonymous referee for his/her valuable suggestions which improve the presentation of this paper. This research is supported by the Natural Foundation of Shandong Province in China (ZR2013AL013 and ZR2014AL001).

References

[1] S. A. Amitsur, Radicals of polynomials rings, Canad. J. Math. 8 (1956) 355-361.
[2] W. X. Chen, Units in polynomial rings over 2-primal rings, Southeast Asian Bull. Math. 30 (2006), no. 6, 1049-1053.
[3] W. X. Chen and S. Y. Cui, On weakly semicommutative rings, Commun. Math. Res. 27 (2011), no. 2, 179-192.
[4] O. A. S. Karamzadeh, On constant products of polynomials, Int. J. Math. Edu. Technol. 18 (1987) 627-629.
[5] D. Khurana, G. Marks and A. K. Srivastava, On unit-central rings, Advances in Ring Theory, 205-212, Birkhäuser-Springer, Basel, 2010.
[6] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
[7] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
[8] P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-1411.
[9] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973) 43-60.
[10] A. Smoktunowicz, Polynomial ring over nil rings need not be nil, J. Algebra 233 (2003), no. 2, 427-436.
(Weixing Chen) School of Mathematics and Information Science, Shandong Institute of Business and Technology, 264005, Yantai, China

E-mail address: wxchen5888@163.com

[^0]: Article electronically published on April 29, 2015.
 Received: 13 February 2012, Accepted: 13 March 2014.

