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Abstract. Let R be a reversible ring which is α-compatible for an en-
domorphism α of R and f(X) = a0 + a1X + · · · + anXn be a nonzero

skew polynomial in R[X;α]. It is proved that if there exists a nonzero
skew polynomial g(X) = b0 + b1X + · · · + bmXm in R[X;α] such that
g(X)f(X) = c is a constant in R, then b0a0 = c and there exist nonzero
elements a and r in R such that rf(X) = ac. In particular, r = abp for

some p, 0 ≤ p ≤ m, and a is either one or a product of at most m coef-
ficients from f(X). Furthermore, if b0 is a unit in R, then a1, a2, · · · , an
are all nilpotent. As an application of the above result, it is proved that if
R is a weakly 2-primal ring which is α-compatible for an endomorphism

α of R, then a skew polynomial f(X) in R[X;α] is a unit if and only if
its constant term is a unit in R and other coefficients are all nilpotent.
Keywords: Constant products, skew polynomial rings, reversible rings,
weakly 2-primal rings.
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1. Introduction

Throughout this note each ring R is associative with identity and a ring
homomorphism preserves the identity. For a ring R, we use the symbol N(R) to
denote the set of nilpotent elements in R, U(R) its unit group, Mn(R) the ring
of n×n matrices over R, and En the n×n identical matrix over R. The symbol
N∗(R) denotes the prime radical of a ring R, N∗(R) its upper nil-radical, L-
rad(R) its Levitzki radical, and J(R) its Jacobson radical, respectively.

Recall that a ring R is reduced if it has no nonzero nilpotent elements.
A ring R is reversible if ab = 0 implies ba = 0 for a, b ∈ R. A ring R is
semicommutative if ab = 0 implies aRb = 0 for a, b ∈ R. Obviously, a ring R is
semicommutative if and only if its oppositive ring Rop is semicommutative. A
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Constant products in skew polynomial rings 454

ring R is 2-primal if N(R) = N∗(R). A ring R is weakly 2-primal if N(R) = L-
rad(R). And a ring R is NI if N(R) = N∗(R). It is known that reduced ⇒
reversible ⇒ semicommutative ⇒ 2-primal ⇒ weakly 2-primal ⇒ NI, but the
converse does not hold (see [3,8]). Let R be a ring and α be an endomorphism
of R. The ring R is called α-compatible provided ab = 0 ⇔ aα(b) = 0, and
R is called weak α-compatible in case ab ∈ N(R) ⇔ aα(b) ∈ N(R) where
a, b ∈ R. A ring R to be α-compatible is also said to satisfy α-condition in
some literatures (see [3]). According to Krempa [6], an endomorphism α of
a ring R is called rigid if aα(a) = 0 implies a = 0 for a ∈ R. It is proved
in [6, Lemma 3.2] that if R is a reduced ring and α is an endomorphism of R,
then α is rigid if and only if α is monomorphism persevering every minimal
prime ideal of R if and only if α−1(P ) ⊆ P for any minimal prime P of R.

It is well known that a polynomial over a commutative ring R is a unit if
and only if its constant term is a unit in R and other coefficients are nilpotent.
This result in [2] has been extended to a 2-primal ring. However the conclusion
is not true for a noncommutative ring in general (see [2, Example 2.8]). The
aim of this note is to extend the main results in [2] to more general cases.
We generalize the constant-product theorem for a commutative polynomial
ring [4] to a skew polynomial ring R[X;α] where R is a reversible ring which
is α-compatible for an endomorphism α of R. It follows that if R is a weakly
2-primal ring which is α-compatible for an endomorphism α of R, then a skew
polynomial f(X) in R[X;α] is a unit if and only if its constant term is a unit
in R and other coefficients are nilpotent. For an NI-ring R, it is proved that if
R is weak α-compatible then f(X) in R[X;α] is a unit only if its constant term
is a unit in R and the other coefficients are nilpotent, and that the stable range
of R[X;α] is not equal to one. Moreover we define a ring R to be a UN-ring
in case any f(X) in R[X] is a unit if and only if its constant term is a unit
in R and other coefficients are nilpotent, and conclude that any NI-ring is a
UN-ring if and only if Koethe’s Conjecture has a positive solution.

2. Constant products in skew polynomial rings

We start this section with the following lemmas.

Lemma 2.1. ([3, Lemma 3.1]) Let R be a ring and α be an endomorphism of
R. If R is α-compatible, then for any n ≥ 2, a1a2 · · · an = 0 ⇔ αk1(a1)α

k2(a2) · · ·
αkn(an) = 0 where a1, a2, · · · , an ∈ R and k1, k2, · · · , kn are any nonnegative
integers. In particular, a1a2 ∈ N(R) ⇔ a1α

k(a2) ∈ N(R) for any nonnegative
integer k.

Lemma 2.1 implies that if a ring R is α-compatible then it is weak α-
compatible, and that if R is reversible and α-compatible then rf(X) = 0 if
and only if f(X)r = 0 for f(X) in R[X;α] and r in R.
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Lemma 2.2. ( [3, Theorem 3.1]) Let R be a weakly 2-primal ring and α
be an endomorphism of R. If R is α-compatible, then the skew polynomial
ring R[X;α] is also a weakly 2-primal ring. More specifically, N(R)[X;α] =
N(R[X;α]) = L-rad(R[X;α]).

Lemma 2.3. Let R be 2-primal ring which is α-compatible for an endomor-
phism α of R. If P is any minimal prime ideal of R, then both α(P ) and
α−1(P ) are contained in P .

Proof. Since R is a 2-primal ring, N(R) = N∗(R), and R = R/N∗(R) is re-

duced. By Lemma 2.1, α induces an endomorphism ᾱ of R via ᾱ(ā) = α(a)
where ā = a + N∗(R) for any a ∈ R. Now if āᾱ(ā) = 0̄ for a ∈ R, then
aα(a) ∈ N∗(R). This gives a2 ∈ N∗(R) by Lemma 2.1, and so a ∈ N∗(R).
Hence ā = 0̄ and ᾱ is a rigid endomorphism of R. Note that P/N∗(R) is a min-
imal prime ideal of R. Using [6, Lemma 3.2], one has ᾱ(P/N∗(R)) ⊆ P/N∗(R)
and ᾱ−1(P/N∗(R)) ⊆ P/N∗(R) . It yields that both α(P ) and α−1(P ) are
contained in P . □

By Lemma 2.3, α may induce an endomorphism of R/P naturally.
Recall that a prime ideal of a ring R is completely prime if R/P is a domain.

It is known by [9, Proposition 1.11] that a ring R is 2-primal if and only if each
minimal prime ideal is completely prime. Also note that for any ring R, the
prime radical N∗(R) is equal to the intersection of all minimal prime ideals of
R (cf. [7, p. 180]).

The next two theorems are the counterparts of the main theorem of [4].

Theorem 2.4. Let R be a reversible ring which is α-compatible for an en-
domorphism α of R and f(X) = a0 + a1X + · · · + anX

n be a nonzero skew
polynomial in R[X;α]. If there is nonzero skew polynomial g(X) = b0 + b1X +
· · · + bmXm in R[X;α] such that g(X)f(X) = c is a constant, then b0a0 = c
and there exist nonzero elements a and r in R such that rf(X) = ac. In par-
ticular, r = abp for some p, 0 ≤ p ≤ m, and a is either one or a product
of at most m coefficients from f(X). Furthermore, if b0 is a unit in R, then
a1, a2, · · · , an are all nilpotent.

Proof. First we prove that the conclusion is true for any skew polynomial f(X)
of degree 0. By the assumption f(X) = a0 ̸= 0, and g(X)a0 = c. This means
b0a0 = c. If b0 ̸= 0, then r = b0 and a = 1 are desired nonzero elements. If
b0 = 0, then c = b0a0 = 0. Assume that bq is the least nonzero coefficient
of g(X). Then one has g(X)a0 = (bqX

q + · · · + bmXm)a0 = 0. This gives
bqα

q(a0) = 0, and so bqa0 = 0 by Lemma 2.1. Thus r = bq and a = 1 are
desired nonzero elements.

Next we may assume that f(X) is of degree n ≥ 1. We proceed by induction
on the degree of g(X). If m = 0, then g(X) = b0 ̸= 0. From g(X)f(X) =
b0(a0 + a1X + · · · + anX

n) = c, one has c = b0a0 and so r = b0, a = 1 are
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desired. Assume that the conclusion is true for all skew polynomials of degree
less then m. Let g(X)f(X) = c for g(X) of degree m, we show that g(X) can
be replaced by a skew polynomial of lower degree. If b0 = 0, then c = b0a0 = 0,
and g(X) = bqX

q+· · ·+bmXm where bq is the least nonzero coefficient of g(X).
If akg(X) = 0 for all 1 ≤ k ≤ n, then akbq = 0, and so bqak = 0 for such k. In
this case, bqf(X) = 0 = c, and one may take r = bq, a = 1 as desired. Thus
we may assume that k is the largest positive integer such that akg(X) ̸= 0. In
the case of k = n, then from g(X)f(X) = 0 = c one has bmαm(an) = 0, which
implies bman = anbm = 0 and so ang(X) is of degree less than m satisfying
ang(X)f(X) = anc = 0. In the case of k < n, then asg(X) = 0 = g(X)as
for k + 1 ≤ s ≤ n. This means g(X)(a0 + a1X + · · · + akX

k) = g(X)f(X) =
c = 0. It yields that bmαm(ak) = 0 = bmak = akbm. This implies that
akg(X) is of degree less than m, and akg(X)f(X) = akc = 0. Thus induction
hypothesis applied to akg(X) and akc yields the desired conclusion. If b0 ̸= 0,
and akg(X) = 0 for all 1 ≤ k ≤ n, then akb0 = 0 = b0ak for such k. It
follows that b0f(X) = c, and so b0a0 = c. Clearly, r = b0 and a = 1 satisfy
the desired condition. Thus we assume that k is the largest positive integer
such that akg(X) ̸= 0. In the case of k = n, from g(X)f(X) = c one has
that bmαm(an) = 0, which implies bman = anbm = 0 = and so ang(X) is of
degree less than m satisfying ang(X)f(X) = anc. In the case of k < n, then
asg(X) = 0 = g(X)as for k + 1 ≤ s ≤ n. This means g(X)(a0 + a1X + · · · +
akX

k) = g(X)f(X) = c. It yields that bmαm(ak) = 0 = bmak = akbm, and
thus akg(X) is of degree less than m, and akg(X)f(X) = akc. Now induction
hypothesis applied to akg(X) and akc yields the desired conclusion.

Now we prove the nilpotency of a1, a2, · · · , an. Assume that g(X)f(X) = c
and b0 is a unit in R. Let P be any minimal prime ideal of R. By Lemma
2.3, one can define an endomorphism ᾱ of R = R/P via ᾱ(ā) = α(a) where
ā = a + P for any a ∈ R. Thus R[X; ᾱ] is a skew polynomial ring. Since R
is a 2-primal ring, P is a completely prime ideal of R and so R is a domain.
Clearly, R is a reversible ring. We prove that R is ᾱ-compatible. By Lemma
2.3, α(P ) ⊆ P and α−1(P ) ⊆ P hold. If āb̄ = 0̄ for a, b ∈ R, then ab ∈ P . This
implies a ∈ P or b ∈ P since P is a completely prime ideal of R. It follows
that aα(b) ∈ P by Lemma 2.3, that is, āᾱ(b̄) = 0̄. Conversely, if āᾱ(b̄) = 0̄ for
a, b ∈ R, then aα(b) ∈ P . This means a ∈ P or α(b) ∈ P . Again by Lemma
2.3, a ∈ P or b ∈ P , this gives ab ∈ P and so āb̄ = 0̄. It is easy to check that
there exists a natural ring epimorphism from R[X;α] onto R[X; ᾱ]. It follows
that ḡ(X)f̄(X) = c̄ in R[X; ᾱ]. If f̄(X) = 0̄, then clearly ai ∈ P for all i ≥ 1.
Since b0 is a unit, ḡ(X) ̸= 0̄. If f̄(X) ̸= 0̄, then ḡ(X)f̄(X) = c̄ implies that
there exist r̄, ā ̸= 0̄ such that r̄f̄(X) = āc̄. This means r̄āi = 0̄ for each i ≥ 1.
Noticing that R/P is a domain, one has āi = 0̄, and so ai ∈ P . Therefore
ai ∈ N∗(R) for all i ≥ 1, since N∗(R) is the intersection of all minimal prime
ideals of R. □
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Theorem 2.5. Let R be a reversible ring which is α-compatible for an endo-
morphism α of R and f(X) = a0 + a1X + · · ·+ anX

n in R[X;α] be a nonzero
skew polynomial. If there is nonzero skew polynomial g(X) = b0 + b1X + · · ·+
bmXm in R[X;α] such that f(X)g(X) = c is a constant, then a0b0 = c and
there exist nonzero elements a and r in R such that f(X)r = ca. In particular,
r = bpa for some p, 0 ≤ p ≤ m, and a is either one or a product of at most m
elements from {αk(ai)|0 ≤ k ≤ m, 0 ≤ i ≤ n}. Furthermore, if b0 is a unit in
R, then a1, a2, · · · , an are all nilpotent.

Proof. Similar to the proof of Theorem 2.4, it is easy for one to prove the
conclusion for f(X) of degree 0. Next we may assume that f(X) is of degree
n ≥ 1. We proceed by induction on the degree of g(X). If m = 0, then g(X) =
b0 ̸= 0 and f(X)b0 = (a0+a1X+ · · ·+anX

n)b0 = c. Clearly, a0b0 = c and one
may take r = b0 and a = 1 as desired. Assume that the conclusion is true for all
skew polynomials of degree less than m. Let f(X)g(X) = c for g(X) of degree
m, we show that g(X) can be replaced by a skew polynomial of lower degree.
If b0 = 0, then c = a0b0 = 0. From f(X)g(X) = f(X)g∗(X)Xq = c = 0,
one has f(X)g∗(X) = 0 = c where g∗(X) = bq + bq+1X + · · · + bmXm−q

and bq is the least nonzero coefficient of g(X). One may get desired nonzero
elements a and r by the inductive assumption. If b0 ̸= 0, and g(X)ak = 0 for
all 1 ≤ k ≤ n, then b0ak = 0 for such k. This means that akb0 = akα

k(b0) = 0
for all 1 ≤ k ≤ n, since R is reversible and α-compatible. It follows that
f(X)b0 = c and c = a0b0, hence r = b0 and a = 1 satisfy the desired condition.
Thus we assume that k is the largest positive integer such that g(X)ak ̸= 0.
In the case of k = n, from f(X)g(X) = c one has that anα

n(bm) = 0, which
implies anbm = 0 = bman and so bmαm(an) = 0. That is, g(X)an is of
degree less than m satisfying f(X)(g(X)an) = can. In the case of k < n, then
g(X)as = 0 for k + 1 ≤ s ≤ n. This means asg(X) = 0 by Lemma 2.1, and so
asb0 = asb1 = · · · = asbm = 0. It yields that asX

sg(X) = 0 by Lemma 2.1.
Thus one may get (a0 + a1X + · · · + akX

k)g(X) = f(X)g(X) = c. It follows
that akα

k(bm) = 0 = akbm = bmak, and thus bmαm(ak) = 0. This implies that
g(X)ak is of degree less than m, and f(X)(g(X)ak) = cak. Now induction
hypothesis applied to g(X)ak and cak yields the desired conclusion.

The proof regarding the nilpotency of a1, a2, · · · , an is very similar to that
of Theorem 2.4, so we omit the detail. □

The next corollary is a direct result of Theorem 2.4 or Theorem 2.5.

Corollary 2.6. Let R be a reversible ring which is α-compatible for an endo-
morphism α of R. A skew polynomial f(X) in R[X;α] is a divisor of zero if
and only if there exists a nonzero constant r ∈ R such that rf(X) = f(X)r = 0.

A ring R is called right McCoy if for two nonzero polynomials f(X) and
g(X) in R[X] whenever f(X)g(X) = 0, then there exists nonzero element r in
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R such that f(X)r = 0. A left McCoy ring can be defined similarly. If a ring
R is left and right McCoy, then it is called McCoy (see [8]).

Corollary 2.7. ( [8, Theorem 2]) If R is a reversible ring, then R is a McCoy
ring.

Remark 2.8. Nielsen [8] proved that there exists a semicommutative ring R
which is not right McCoy. This means that one could not expect to extend
Theorem 2.4 or 2.5 to a semicommutative ring since the oppositive ring of
a semicommutative ring is semicommutative. On the other hand, let S be a
reduced ring, then it is easy to check that the ring

R =

{(
a b
0 a

)
| a, b ∈ S

}
is reversible. Define α:

(
a b
0 a

)
7→

(
a −b
0 a

)
, then α is an endomor-

phism of R, and R is α-compatible. In this way, one can get noncommutative
reversible rings being α-compatible.

Corollary 2.9. Let R be a reversible ring which is α-compatible for an endo-
morphism α of R. A skew polynomial f(X) in R[X;α] is a unit if and only if
its constant term is a unit and other coefficients are nilpotent.

Proof. If f(X) = a0 + a1X + · · ·+ anX
n in R[X;α] is a unit, then there exists

g(X) = b0+ b1X+ · · ·+ bmXm in R[X;α] such that f(X)g(X) = g(X)f(X) =
1. this means that b0 is a unit, and so all ak are nilpotent for k ≥ 1 by
Theorem 2.4. Conversely, if a0 is a unit and each ak is nilpotent for k ≥ 1,
then a1X + · · · + anX

n ∈ N(R)[X;α] = L-rad(R[X;α]) ⊆ J(R[X;α]) by
Lemma 2.2, concluding that f(X) is a unit in R[X;α]. □

The next two corollaries are the counterparts of the last corollary in [4].

Corollary 2.10. Let R be a reversible ring which is α-compatible for an endo-
morphism α of R, f(X) = a0+a1X+ · · ·+anX

n and g(X) = b0+ b1X+ · · ·+
bmXm be nonzero skew polynomials in R[X;α] such that a1 is a unit in R. If
f(g(X)) = 0 and either b0 or a2, a3, · · · , an are all nilpotent, then b1, b2, · · · , bm
are also nilpotent.

Proof. Note that the condition f(g(X)) = 0 implies that a0+a1g+· · ·+ang
n =

0. This means that (a1 + a2g + · · · + ang
n−1)g = −a0. However the constant

term of a1 + a2g + · · · + ang
n−1 is a1 + a2b0 + a3b

2
0 + · · · + anb

n−1
0 which is a

unit since it is a sum of a unit and a nilpotent element contained in N∗(R). By
Theorem 2.5, b1, b2, · · · , bm are all nilpotent. □
Corollary 2.11. Let R be a reversible ring which is α-compatible for an en-
domorphism α of R, f(X) = a0 + a1X + · · · + anX

n and g(X) = b0 + b1X +
· · · + bmXm be nonzero skew polynomials in R[X;α] such that b1 is a unit
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in R. If g(f(X)) = 0 and either a0 or b2, b3, · · · , bm are all nilpotent, then
a1, a2, · · · , an are also nilpotent.

Proof. It is similar to the proof of Corollary 2.10. □
Corollary 2.12. Let R be a reduced ring and α be an endomorphism of R. If
R is α-compatible, then f(X) = a0 + a1X + · · ·+ anX

n in R[X;α] is a unit if
and only if a0 is a unit in R and ai is zero for each i ≥ 1.

Corollary 2.13. Let R be an NI ring and α be an endomorphism of R. If R
is weak α-compatible, then f(X) = a0 + a1X + · · ·+ anX

n in R[X;α] is a unit
only if a0 is a unit and ai is nilpotent for each i ≥ 1.

Proof. Since R is NI, N(R) is an ideal of R and R = R/N(R) is reduced. It is
easy to check that α induces an endomorphism ᾱ of R via ᾱ(ā) = α(a)+N(R)
since α(N(R)) ⊆ N(R) where ā = a+N(R) for a ∈ R. Noticing that R is weak
α-compatible, one has āᾱ(b̄) = 0̄ ⇔ aα(b) ∈ N(R) ⇔ ab ∈ N(R) ⇔ āb̄ = 0̄ for
a, b ∈ R, that is, R is ᾱ-compatible. Since there exists a ring epimorphism from
R[X;α] onto R[X; ᾱ], which sends f(X) to f̄(X) = ā0 + ā1X + · · · + ānX

n,
f̄(X) is a unit in R[X; ᾱ]. Hence ā0 is a unit in R/N(R) and āi is zero for each
i ≥ 1 by Corollary 2.12. Now it is easy to see that a0 is a unit in R and ai is
nilpotent for each i ≥ 1. □
Corollary 2.14. Let R be a weakly 2-primal ring and α be an endomorphism
of R. If R is α-compatible, then f(X) = a0 + a1X + · · ·+ anX

n in R[X;α] is
a unit if and only if a0 is a unit in R and ai is nilpotent for each i ≥ 1.

Proof. Since a weakly 2-primal ring is NI and R being α-compatible implies
being weak α-compatible, the only if part follows from Corollary 2.13. Con-
versely, let f(X) = a0 + a1X + · · ·+ anX

n in R[X;α] be such that a0 is a unit
in R and ai is nilpotent for each i ≥ 1. Then one has a1X + · · ·+ anX

n ∈ L-
rad(R[x;α]) ⊆ J(R[X;α]) by Lemma 2.2, this implies that f(X) is a unit in
R[X;α]. □
Corollary 2.15. ( [2, Theorem 2.5]) Let R be a 2-primal. Then f(X) =
a0 + a1X + · · ·+ anX

n in R[x] is a unit if and only if a0 is a unit in R and ai
is nilpotent for each i ≥ 1.

According to [5], a ring R is called unit-central if the units of R lies in
its center. As an application of the above result, we show that a ring R is
unit-central if and only if R[X] is unit-central.

Proposition 2.16. A ring R is unit-central if and only if R[X] is unit-central.

Proof. First we show that a unit-central ring R is 2-primal. Since the prime
radical of R is the set of all strongly nilpotent elements in R, it is sufficient to
show that every nilpotent element of R is strongly nilpotent. Assume that a ∈
N(R) satisfies an = 0 for some positive integer n. We consider the m-sequence
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beginning with a, that is, a0 = a, ai+1 = airiai where ri ∈ R (i = 0, 1, · · · ).
Note that R is unit-central implies that a is central. One has a1 = a2r0, a2 =

a2
2

r0r1r0, inductively, an = a2
n

s for some s ∈ R. This means an = 0 and so a
is strongly nilpotent. Now assume that R[X] is unit-central. Then R is unit-
central as a subring of R[X]. Conversely, assume that R is unit-central. Then
R is 2-primal by the above argument. For any f(X) = a0 + a1X + · · ·+ anX

n

in U(R[X]), then a0 is a unit in R and ai ∈ N(R) for each i ≥ 1 by Corollary
2.15. Since R is unit-central, ai is central for all i ≥ 0. It follows that f(X) is
also central in R[X]. □

Recall that a ring R is said to have stable range one, denoted by Sr(R) = 1,
if for a, b ∈ R satisfying aR + bR = R, there exists y ∈ R such that a + by is
a unit in R. This notion is very important in the study of algebraic K-theory.
It is well known that for a commutative ring R, Sr(R[X]) > 1. Now we prove
the conclusion is true for the skew polynomial ring R[X;α] over an NI-ring R
which is weak α-compatible.

Proposition 2.17. If R is an NI ring which is weak α-compatible for an
endomorphism α of R, then Sr(R[X;α]) > 1.

Proof. Assume the contrary, then X(−X)+1+X2 = 1 implies that there exists
f(X) ∈ R[X;α] such that X+(1+X2)f(X) is a unit in R[X;α]. Write f(X) =
a0+a1X+ · · ·+anX

n. In the case of n = 0, then a0+X+α2(a0)X
2 is a unit in

R[X;α]. This implies that 1 is nilpotent in R by Corollary 2.13, a contradiction.
When n = 1, then X+(1+X2)f(X) = a0+(1+a1)X+α2(a0)X

2+α2(a1)X
3

is a unit. Hence α2(a1) ∈ N(R), and so does a1 by Lemma 2.1. It follows
that 1 + a1 is nilpotent, this is impossible since 1 + a1 is a unit. When n =
2k, k ≥ 1, then X + (1 + X2)f(X) = a0 + (1 + a1)X + (a2 + α2(a0))X

2 +
(a3+α2(a1))X

3+ · · ·+α2(a2k−1)X
2k+1+α2(a2k)X

2k+2 is a unit. This implies
α2(a2k−1), α

2(a2k) ∈ N(R), and so a2k−1, a2k ∈ N(R). Inductively, we have
a2k, a2k−1, · · · , a4, a3 ∈ N(R). Hence a3 +α2(a1) ∈ N(R), and so does α2(a1).
It follows that a1 ∈ N(R) and 1 + a1 ∈ N(R), a contradiction. In the case
of n = 2k + 1, k ≥ 1, similar to the case of n = 2k, we can get a desired
contradiction. The proof is complete. □

Corollary 2.18. ( [2, Proposition 2.7]) If R is a 2-primal ring, then Sr(R[X]) >
1.

In view of Corollary 2.13, it is natural to study the sufficient and necessary
condition under which f(X) in R[X] is a unit. This problem is closely related
to the famous Koethe’s Conjecture whether a nil one sided ideal of any ring R
is contained in its upper nil radical. It is known that Koethe’s Conjecture has
a positive solution if and only if for each nil algebra S over any countable field,
the polynomial algebra S[X] is Jacobson radical (see [10]). This is equivalent
to saying that for any ring R, J(R[X]) = Nil∗(R)[X] holds (cf. [7, p.181]).
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Let R be a ring. Consider the following condition: f(X) =
∑n

i=0 aiX
i

∈ U(R[X]) ⇔ a0 ∈ U(R) and ai ∈ N(R) for each i ≥ 1.
Call a ring R to be a UN ring if R satisfies the above condition.

Theorem 2.19. Koethe’s Conjecture has a positive solution if and only if any
NI ring R is a UN ring.

Proof. Assume that Koethe’s Conjecture has a positive solution. Then we
have J(R[X]) = N∗(R)[X] for any ring R (see [7, p.181]). We prove that any
NI ring R is a UN ring. Let f(X) = a0 + a1X + · · · + anX

n ∈ R[X]. If
f(X) ∈ U(R[X]), then a0 ∈ U(R) and ai ∈ N(R) for each i ≥ 1 by Corollary
2.13. Conversely, let f(X) = a0 + a1X + · · · + anX

n ∈ R[X] be such that
a0 ∈ U(R) and ai ∈ N(R) for each i ≥ 1. Write g(X) = a1X + · · · + anX

n.
Then g(X) ∈ N(R)[X] = N∗(R)[X] = J(R[X]) since R is an NI ring. This
means f(X) = a0+g(X) is a unit in R[X]. It follows that R is a UN ring. Now
assume that any NI-ring R is a UN-ring. We prove that for each nil algebra S
over any countable F , J(S[X]) = S[X]. Let R = F + S (the sum of algebras).
Then R is an NI ring with N(R) = S. Since S is an ideal of R, S[X] is an
ideal of R[X]. Hence J(S[X]) = J(R[X])

∩
S[X] ⊆ J(R[X]). On the other

hand, J(R[X]) = I[X] for some nil ideal of R by [1, Theorem 1]. This means
that J(R[X]) ⊆ S[X]

∩
J(R[X]) = J(S[X]) and so J(R[X]) = J(S[X]). Now

for any h(X) ∈ S[X] = N(R)[X], 1 + h(X) is a unit since R is a UN ring.
Hence S[X] is a quasi-regular ideal of R[X]. It follows that S[X] ⊆ J(R[X]) =
J(S[X]), and so S[X] = J(S[X]). □

We conclude this note with the following proposition.

Proposition 2.20. For any ring R and n ≥ 2, Mn(R) is not a UN-ring.

Proof. We may canonically identify Mn(R)[X] with Mn(R[X]). When n = 2,

let A =

(
1 1
0 1

)
, and B =

(
0 0
1 1

)
. Clearly, A is a unit and B is

a nonzero idempotent. However f(X) = A + BX =

(
1 1
X 1 +X

)
is a

unit in M2(R)[X] with the inverse

(
1 +X −1
−X 1

)
. When n > 2, then

f1(X) =

(
En−2 O
O A

)
+

(
On−2 O
O B

)
X =

(
En−2 O
O A+BX

)
is a unit

in Mn(R)[X] by the above argument, but the coefficient of X is a nonzero

idempotent. Moreover, let g(X) = E2 + E12X + E21X
2 =

(
1 X
X2 1

)
where E12, E21 are 2 × 2 matrix units. Then g(X) is not a unit, since(

1 0
−X2 1

)(
1 X
X2 1

)(
1 −X
0 1

)
=

(
1 0
0 1−X3

)
is not a unit in
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M2(R)[X]. But the constant term of g(X) is a unit and the other coeffi-

cients are nilpotent. In the case of n > 2, then g1(X) =

(
E2 O
O En−2

)
+(

E12 O
O O

)
X+

(
E21 O
O O

)
X2 =

(
g(X) O
O En−2

)
is not a unit in Mn(R)[X],

however its constant term is a unit and othercoefficients are nilpotent. □
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