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Abstract. In this paper, we first define spaces of single difference se-
quences defined by a sequence of Orlicz functions without convexity and
investigate their properties. Then we extend this idea to spaces of double

sequences and present a new matrix theoretic approach for construction
of such double sequence spaces.
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1. Introduction and preliminaries

In [22], Orlicz introduced functions nowadays called Orlicz functions and
constructed the sequence space (LM ). Krasnosel’skij and Rutickij further in-
vestigated the Orlicz space in [13]. For finding Banach spaces with symmet-
ric Schauder bases having complementary subspaces isomorphic to c0 or ℓp

(1 ≤ p < ∞), Lindberg [14] initiated the study of Orlicz sequence spaces.
Subsequently, Lindenstrauss and Tzafriri [15–17] studied the Orlicz sequence
spaces in more detail with an aim to solve many important and interesting
structural problems in Banach spaces.

Throughout the paper we use the standard notation w, ℓ∞, c and c0 to
denote the set of all, bounded, convergent and null sequences of real numbers,
respectively. By N we denote the set of natural numbers, and by R the set of
real numbers. A sequence x will be denoted by x = (xk).

A function M : [0,∞) → [0,∞), which is continuous, non-decreasing and
convex with M(0) = 0, M(x) > 0 , for x > 0 and M(x) → ∞, as x → ∞ is
called an Orlicz function (see [13,22]).
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Lindenstrauss and Tzafriri [15] used the Orlicz function and introduced the
sequence space ℓM ,

ℓM =

{
(xk) ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
< ∞, for some ρ > 0

}
and proved that this space is a Banach space with the norm

||(xk)||M = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

Every space ℓM contains a subspace isomorphic to the classical sequence space
ℓp for some p ≥ 1. The space ℓp, p ≥ 1, is itself an Orlicz sequence space for
M(x) = xp.

In [16,17], Lindenstrauss and Tzafriri pointed out a possible generalization of
the space ℓM to the case when M is an Orlicz function that does not satisfy the
convexity condition. Later, Kalton [10] picked up the problem and succeeded in
finding many interesting features distinguishing these two theories of sequence
spaces. For more details, one can refer to Kamthan and Gupta [12].

A K-function is an Orlicz function M which is not convex.
A K-function M is said to satisfy ∆2-condition if for each α > 0, we have

KM,α = sup
0<x<∞

M(αx)

M(x)
< ∞.

(This condition is usually called the ∆2-condition on R satisfied by M .)
The notion of difference sequence spaces was introduced by Kizmaz [11], who

studied the difference sequence spaces ℓ∞(∆), c(∆) and c0(∆). The notion was
further generalized by Et and Çolak [7] by introducing the spaces ℓ∞(∆s), c(∆s)
and c0(∆

s), (s ∈ N). Another type of generalization of the difference sequence
spaces is due to Tripathy and Esi [26], who studied the spaces ℓ∞(∆m), c(∆m)
and c0(∆m), (m ∈ N).

Let m and n be non-negative integers. Then for Z a given sequence space
Dutta [3] introduced

Z(∆n
(m)) =

{
x = (xk) ∈ w : (∆n

(m)xk) ∈ Z
}
,

where

∆0
(m)xk = (xk), ∆n

(m)x = (∆n
(m)xk) = (∆n−1

(m) xk −∆n−1
(m) xk−m) (k ∈ N),

and which is equivalent to the binomial representation

∆n
(m)xk =

n∑
i=0

(−1)i
(
n

i

)
xk−mi;

we take here xk−mi = 0 whenever k −mi ≤ 0.
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recently, several authors combined the concepts of difference sequences and
Orlicz functions to define new classes of sequences and investigated different
relevant algebraic and topological properties (see for instance [2, 4–6,18,19]).

Now we recall some basic definitions and results which will be useful in
understanding the results of the next section. We consider only real vector
spaces.

A vector space X equipped with a topology τ is called a topological vector
space (TVS) if the operations (x, y) 7→ x+y from X×X → X and (α, x) 7→ αx
from R×X → X are continuous, whereX×X and R×X are equipped with their
usual product topologies, and R with the usual metric topology. A topology
τ on X such that (X, τ) becomes a TVS is referred to as a linear or vector
topology on X. For more information about TVS see [25].

Recall that a subset U of a vector space X is absorbing if for each x ∈ X
there is λ > 0 such that x ∈ αU for all α ∈ R with |α| > λ. U is balanced if
αU ⊂ U for each α with |α| ≤ 1.

Lemma 1.1. [25] A vector space X equipped with a topology τ is a TVS if
and only if there exists a local base β at the zero element 0 of X consisting of
subsets of X such that:

(a) Each U in β is absorbing and balanced;
(b) For each U ∈ β there is a V ∈ β with V + V ⊂ U .

A TVS X is Hausdorff if and only if ∩{U : U ∈ β} = {0}; a Hausdorff TVS
is metrizable if and only if it is first countable, or equivalently, if and only if
there is a countable local base at 0.

A TVS (X, τ) with τ ≡ τq, the topology generated by a norm q on X,
is called an F ∗-space, and if in addition (X, τq) is complete, X is called an
F -space.

A sequence space X with a linear topology is called a K-space provided each
of the maps πi : X → R, πi(x) = xi is continuous, i ≥ 1. It is known that
a sequence space X equipped with a linear topology is a K-space if and only
if the identity map I : X → w is continuous, where w is endowed with the
topology of pointwise convergence.

A K-space X is called a Fréchet K-space provided X is an F -space.
For every absorbing and balanced set U of a vector space X, the function

p ≡ pU : X → R+ defined by pU (x) = inf{α : α > 0, x ∈ αU}, is called
a Minkowski functional or the gauge associated with U . The function pU
associated with an absorbing and a balanced set U is also called a pseudonorm
on X.

Lemma 1.2. Every pseudonorm function p on X gives rise to a unique linear
topology τp on X. Conversely, to every linear topology τ on X there corresponds
a pseudonorm function p on X such that τ is equivalent to τp.
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2. Spaces of single difference sequences

In this section, we define the space ℓM(∆n
(m)) and investigate its structural

properties.
Let M = (Mk) be a sequence of K-functions and m, n be non-negative

integers. Then we introduce the following sequence spaces:

ℓM(∆n
(m)) =

{
(xk) ∈ w :

∞∑
k=1

Mk

(
|∆n

(m)xk|
ρ

)
< ∞, for someρ > 0

}
.

Taking n = 0 and Mk = M for all k ≥ 1, we get the famous space ℓM [10].

Proposition 2.1. ℓM(∆n
(m)) is a linear space.

Proof. Let x = (xk) and y = (yk) be arbitrary sequences in ℓM (∆n
(m)). Then

for some ρ1, ρ2 > 0, we have

∞∑
k=1

Mk

(
|∆n

(m)xk|
ρ1

)
< ∞ and

∞∑
k=1

Mk

(
|∆n

(m)yk|
ρ2

)
< ∞.

Let ρ = 2max{ρ1, ρ2}. One can suppose that there is a partition of N into two
(disjoint) sets N1 and N2, at least one of which is infinite, such that

|∆n
(m)xk| ≤ |∆n

(m)yk| ∀k ∈ N1 and |∆n
(m)xk| ≥ |∆n

(m)yk| ∀k ∈ N2.

Since the operator ∆n
(m) is linear, and each Mk is non-decreasing, we have

∑
k∈N1

Mk

(
|∆n

(m)(xk + yk)|
ρ

)
≤

∑
k∈N1

Mk

(
2|∆n

(m)yk|
ρ

)

≤
∞∑
k=1

Mk

(
2|∆n

(m)yk|
ρ

)
and ∑

k∈N2

Mk

(
|∆n

(m)(xk + yk)|
ρ

)
≤

∑
k∈N2

Mk

(
2|∆n

(m)xk)|
ρ

)

≤
∞∑
k=1

Mk

(
2|∆n

(m)xk|
ρ

)
.

Therefore, we have from here

∞∑
k=1

Mk

(
|∆n

(m)(xk + yk)|
ρ

)
≤

∞∑
k=1

Mk

(
2|∆n

(m)(k|
ρ

)

+
∞∑
k=1

Mk

(
2|∆n

(m)yk|
ρ

)
< ∞,



481 Dutta and Kočinac

which gives x+ y ∈ ℓM(∆n
(m)).

Next, let α be any scalar and x as above. Then we can find j ∈ N so that
|α|
2j < 1

ρ1
. Since Mk, k ∈ N, are non-decreasing functions, we have

∞∑
k=1

Mk

(
|∆n

(m)(αxk)|
2j

)
=

∞∑
k=1

Mk

(
|α||∆n

(m)(xk)|
2j

)

≤
∞∑
k=1

Mk

(
|α||∆n

(m)(xk)|
ρ1

)
< ∞,

which means that αx ∈ ℓM(∆n
(m)). This completes the proof. □

Proposition 2.2. ℓM(∆i
(m)) ⊂ ℓM(∆n

(m)), i = 0, 1, 2, · · · , n− 1.

Proof. Proof is easy and is omitted. □

Our next aim is to define a linear topology on ℓM(∆n
(m)). Before defining it

we prove some other results.
Let M = (Mk) be a sequence of K-functions and ϵ > 0. Define

BM(ϵ) :=

{
(xk) ∈ w :

∞∑
k=1

Mk

(
|∆n

(m)xk|
)
≤ ϵ

}
,

and

βM := {ρBM(ϵ) : ρ, ϵ > 0}.
Clearly, each element in βM contains the zero sequence 0 – the origin of
ℓM(∆n

(m)).

Proposition 2.3. The family βM satisfies the following properties:

(1) If x ∈ ℓM(∆n
(m)), then for each member ρBM(ϵ) of β we have x ∈

λ0ρBM(ϵ), for some λ0 > 0, and thus for all λ ∈ R with λ ≥ λ0;
(2) For each element U = ρBM(ϵ) in β and each λ ∈ (0, 1], λU ⊂ U ;
(3) ρ

2BM( ϵ2 ) +
ρ
2BM( ϵ2 ) ⊂ ρBM(ϵ);

(4) ∩{U : U ∈ βM} = {0}.

Proof. (1) Let x ∈ ℓM(∆n
(m)). Then we can find γ > 0 with

∞∑
k=1

Mk

(
|∆n

(m)xk|
γρ

)
< ∞.

Hence there is j ∈ N such that

∞∑
k=j+1

Mk

(
|∆n

(m)xk|
γρ

)
<

ϵ

2
.



On difference sequence spaces 482

There are also positive numbers γ1, γ2, · · · , γj such that

M1

(
|∆n

(m)x1|
γ1γρ

)
<

ϵ

22
,M2

(
|∆n

(m)x2|
γ2γρ

)

<
ϵ

23
, . . . ,Mj

(
|∆n

(m)xj |
γjγρ

)
<

ϵ

2j+1
.

If λ0 = max{γ, γ1γ, · · · , γjγ}, then for all λ with λ ≥ λ0 we have

∞∑
k=1

Mk

(
|∆n

(m)xk|
λρ

)
≤

j∑
k=1

Mk

(
|∆n

(m)xk|
γkγρ

)

+

∞∑
k=j+1

Mk

(
|∆n

(m)xk|
γρ

)
<

ϵ

2
+

ϵ

2
= ϵ.

Hence x ∈ λρBM(ϵ).

(2) Let λ ∈ (0, 1] and (xk) ∈ λU , i.e. let
∞∑
k=1

Mk

( |∆n
(m)xk|
λρ

)
< ϵ be satisfied.

Then because of |λ|ρ ≤ ρ we have

∞∑
k=1

Mk

(
|∆n

(m)xk|
ρ

)
≤

∞∑
k=1

Mk

(
|∆n

(m)xk|
λρ

)
< ϵ,

i.e., (xk) ∈ ρBM(ϵ) = U .
(3) Let x,y ∈ ρ

2BM( ϵ2 ). Then

∞∑
k=1

Mk

(
|∆n

(m)(xk + yk)|
ρ

)
≤

∞∑
k=1

Mk

(
2|∆n

(m)xk|
ρ

)

+
∞∑
k=1

Mk

(
2|∆n

(m)yk|
ρ

)
≤ ϵ

2
+

ϵ

2
= ϵ.

Therefore, x+ y ∈ ρBM(ϵ).

(4) It is evident. □

From the preceding proposition and Lemma 1.1 one obtains the following

Corollary 2.4. (ℓM(∆n
(m)), τM) is a Hausdroff topological vector space, where

the linear topology τM on ℓM(∆n
(m)) is generated by βM.

In fact, we have

Proposition 2.5. (ℓM(∆n
(m)), τM) is a metrizable topological vector space.
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Proof. Consider the family

β′ = {ρB(ϵ) : ρ, ϵ > 0 and ρ, ϵ are rational numbers } ⊂ β.

This family of neighbourhoods of 0 is countable and generates the same topol-
ogy τM on ℓM(∆n

(m)). Therefore, τM is a metrizable topology. □

From the monotonicity and continuity of K-functions Mk, k ∈ N, it directly
follows the K-character of τM, that is (ℓM(∆n

(m)), τM) is a K-space which in

turn yields the completeness of (ℓM(∆n
(m)), τM). Hence we get the following

proposition.

Proposition 2.6. (ℓM(∆n
(m)), τM) is a Fréchet K-space.

Now by imposing on each K-function Mk, the ∆2-condition (on R), we show
that the Fréchet space ℓM(∆n

(m)) becomes an AK-space (see, for instance, [19]).

In this connection we define

hE(∆n
(m)) = {x ∈ w :

∞∑
k=1

Mk

(
|∆n

(m)xk|
ρ

)
< ∞, for all ρ > 0}.

Clearly hM(∆n
(m)) is a subspace of ℓM(∆n

(m)).

Proposition 2.7. hM(∆n
(m)) is an AK-space.

Proof. Let x = (xk) ∈ hM(∆n
(m)) and ϵ > 0 be arbitrarily chosen. Then

∞∑
k=1

Mk

(
|∆n

(m)xk|
ρ

)
< ∞, for every ρ > 0.

Hence we can find an integer s0 such that

∞∑
k=s+1

Mk

(
|∆n

(m)xk|
ρ

)
≤ ϵ, for all s ≥ s0.

It implies that x[s]−x ∈ ρBM(ϵ) for all s ≥ s0. (Here x[s] denotes the s-section

of x, i.e. x[s] =
∑s

k=1 xke
(k), e

(k)
k = 1, e

(k)
t = 0 for t ̸= k.) Since ρ and ϵ > 0

were arbitrary, it follows that x(s) → x in the topology τM. □

Proposition 2.8. If each K-function Mk of the sequence M = (Mk) satisfies
the ∆2-condition (on R), then hM(∆n

(m)) = ℓM(∆n
(m)).

Proof. Let x = (xk) ∈ ℓM(∆n
(m)). Then

∞∑
k=1

Mk

( |∆n
(m)xk|
ρ

)
< ∞, for some

ρ > 0. Let us choose an arbitrary r > 0. Then

∞∑
k=1

Mk

(
|∆n

(m)xk|
r

)
=

∞∑
k=1

Mk

(
|∆n

(m)xk|
ρ

)
Mk

(
ρyk

r

)
Mk(yk)

,
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where

yk =
|∆n

(m)xk|
ρ

.

Since each Mk satisfies the ∆2-condition we have

∞∑
k=1

Mk

(
|∆n

(m)xk|
r

)
≤

∞∑
k=1

KMk,
ρ
r
Mk

(
|∆n

(m)xk|
ρ

)
.

Let L = sup
k

{
KMk,

ρ
r

}
. Hence we have

∞∑
k=1

Mk

(
|∆n

(m)xk|
r

)
≤ L

∞∑
k=1

Mk

(
|∆n

(m)xk|
ρ

)
< ∞, for every r > 0.

Thus x ∈ hM(∆n
(m)) and so ℓM(∆n

(m)) = hM(∆n
(m)). □

Combining Propositions 2.6, 2.7 and 2.8 we get the most expected result in
the following proposition.

Proposition 2.9. If each K-function Mk of the sequence M = (Mk) satisfies
the ∆2-condition on R, then ℓM(∆n

(m)) is an AK-space.

Definition of pseudonorm and Lemma 1.2 of previous section encourage us
to talk about τM in terms of pseudonorms which generate this topology. For
each ρ and ϵ > 0, let us define

pρ,ϵ(x) = inf{α > 0,x ∈ αρBM(ϵ)}.

Clearly, pρ,ϵ(λx) = |λ|pρ,ϵ(x) and pρ,ϵ(x + y) ≤ p ρ
2 ,

ϵ
2
(x) + p ρ

2 ,
ϵ
2
(y) for all

x,y ∈ ℓM(∆n
(m)) and λ ∈ R.

Hence we have the following proposition.

Proposition 2.10. The family {pρ,ϵ(x) : ρ, ϵ > 0} of pseudonorms on ℓM(∆n
(m))

generates the topology τM.

Next suppose each K-function Mk of the sequence M = (Mk) satisfies the
∆2-condition and let us define the function pϵ on ℓM(∆n

(m)) as follows:

pϵ(x) = inf

{
α > 0 :

∞∑
k=1

Mk

(
|∆n

(m)xk|
α

)
≤ ϵ

}
.

Then pϵ is a pseudonorm on ℓM(∆n
(m)).

For the next results we shall assume that eachK-functionMk of the sequence
M = (Mk) satisfies the ∆2-condition.

Proposition 2.11. The family {pϵ : ϵ > 0} of pseudonorms on ℓM(∆n
(m))

generates a topology σM on ℓM(∆n
(m)).
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Proposition 2.12. For each x ∈ ℓM(∆n
(m)), pρ,ϵ(x) =

1
ρpϵ(x), for each ρ > 0

and ϵ > 0.

Proof. Let x = (xk) ∈ ℓM(∆n
(m)). Then

pρ,ϵ(x) = inf{α > 0 : x ∈ αρBM(ϵ)}

=
1

ρ
inf

{
αρ > 0 :

∞∑
k=1

Mk

(
|∆n

(m)xk|
αρ

)
≤ ϵ

}

=
1

ρ
inf

{
r > 0 :

∞∑
k=1

Mk

(
|∆n

(m)xk|
r

)
≤ ϵ

}
=

1

ρ
pϵ(x).

Thus pρ,ϵ(x) =
1
ρpϵ(x) for each x ∈ ℓM(∆n

(m)). □

Hence we have the following proposition.

Proposition 2.13. The topologies τM and σM are equivalent.

3. Spaces of double difference sequences

A double real sequence x : N×N → R is usually denoted by x = (xmn) and
expressed as an infinite matrix.

In 1900, Pringsheim [23] introduced the concept of convergence of real double
sequences: a double sequence x = (xmn) converges to L ∈ R, denoted by P-
limx = L or P-limxmn = L, if for every ϵ > 0 there is n0 ∈ N such that
|xmn − a| < ϵ for all m,n > n0. The limit L is called the Pringsheim limit of
x. Some initial results on double sequences can be found in the monumental
Hobson’s book [9] and the papers [8,24], as well as in [1]. For other useful results
on double sequences, one may refer to Moricz [20] and Moricz and Rhoades [21].

The notion of regular convergence of double sequence was introduced by
Hardy [8] as follows. A double sequence x = (xmn) is said to converge regularly
if it converges in the Pringsheim’s sense and the following limits exist:

lim
m→∞

xmn = Ln, for each n ∈ N and lim
n→∞

xmn = Tm, for each m ∈ N.
We denote by 2w, the set of all real double sequences. Let M be a K-

function. Then we introduce the notion of OK-space of double sequences as
follows:

2ℓ
M =

{
(xmn) ∈ 2w :

∞∑
m=1

∞∑
n=1

M

(
|xmn|
ρ

)
< ∞, for some ρ > 0

}
.

It is easy to see that 2ℓ
M is a linear space. Now we present an idea how to

use the difference operator to double sequences in order to introduce the spaces
of double difference sequences extended by K-functions.
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The first order difference operator ∆ can be expressed as an infinite trian-
gular matrix

∆ =


1 − 1 0 0 0 . . .
0 1 − 1 0 0 . . .
0 0 1 − 1 0 . . .
...................................
...................................

 ;

let ∆(1) denote the additive inverse of ∆, i.e. ∆ + ∆(1) = 0, the zero infinite
matrix.

Define inductively

∆2 = ∆ ·∆, ∆2
(1) = −∆2; · · · ; ∆n = ∆ ·∆n−1, ∆n

(1) = −∆n.

Next, ∆2 can be considered as

∆2 =


1 0 − 1 0 0 . . .
0 1 0 − 1 0 . . .
0 0 1 0 − 1 . . .
......................................
......................................

 ,

and ∆(2) as the additive inverse of ∆2. similarly, we can have ∆r and ∆(r) for
each r ≥ 2. Hence we can define ∆s

( r) as

∆s
( r) = ∆(r) ·∆s−1

( r) .

Now we can give an alternative definition of the spaces Z
(
∆s

( r)

)
of difference

sequences as follows:

Z
(
∆s

( r)

)
= {(xk) : (AiX) ∈ Z} ,

where

X = [x1 x2 · · · xn · · · ]T , ∆s
( r) = A = (aik) ,

and

AiX =
∞∑
k=1

aikxk, for each i ≥ 1.

This approach to construction of difference sequence spaces is useful to study
structural properties of such spaces. In particular, this approach is very useful
for construction of difference double sequences.

Let a double sequence a = (amn) be expressed as an infinite matrix

(amn) =


a11 a12 a13 ... a1n ...
a21 a22 a23 ... a2n ...
a31 a32 a33 . . . a3n ...
....................................
....................................

 .
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Now we define the set 2Z (∆) of double difference sequences as follows:

2Z (∆) = {a = (amn) : (∆a) ∈ 2Z} ,

where

∆a =


1 − 1 0 0 0 . . .
0 1 − 1 0 0 . . .
0 0 1 − 1 0 . . .
...................................
...................................




a11 a12 a13 ... a1n ...
a21 a22 a23 ... a2n ...
a31 a32 a33 . . . a3n ...
....................................
....................................



=


a11 − a21 a12 − a22 ... a1n − a2n ...
a21 − a31 a22 − a32 ... a2n − a3n ...
a31 − a41 a32 − a42 ... a3n − a4n ...
...............................................................
...............................................................

 .

We can define

2Z
(
∆s

(r)

)
= {a = (amn) : Ba ∈ 2Z} = {a = (amn) : (ckn) ∈ 2Z} ,

where

B = (bnk) = ∆s
(r) and Ba = C = (ckn)

with

ckn =
∞∑

m=1

bkmamn, for each k, n ∈ N.

In view of the above observations, for a K-function M we define the OK-
spaces of double difference sequences as follows:

2ℓ
M
(
∆s

(r)

)
=
{
a = (amn) ∈ 2w : (∆s

(r)amn) ∈ 2ℓ
M
}
={

(xmn) ∈ 2w :
∞∑

m=1

∞∑
n=1

M

(
|∆s

(r)amn|
ρ

)
< ∞, for some ρ > 0

}
={

(ckn) ∈ 2w :
∞∑
k=1

∞∑
n=1

M

(
|ckn|
ρ

)
< ∞, for some ρ > 0

}
.

These observations indicate that topologies of 2ℓ
M and 2ℓ

M
(
∆s

(r)

)
are

equivalent, for each r, s ∈ N . In a next paper we shall investigate a linear

topology on 2ℓ
M and establish that the spaces 2ℓ

M and 2ℓ
M
(
∆s

(r)

)
are topo-

logically equivalent.
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