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ABSTRACT. Based on some stationary periodic solutions and stationary
soliton solutions, one studies the general solution for the relative lax sys-
tem, and a number of exact solutions to the Korteweg-de Vries (KdV)
equation are first constructed by the known Darboux transformation,
these solutions include double and triple singular periodic solutions as
well as singular soliton solutions whose amplitude depend on some ratio-
nal functions.
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1. Introduction

The KdV equation
(1.1) Uy + 60Uy + Ugry = 0

is a classical soliton equation, it and its various generalized versions with time-
dependent coefficients have been studied by many authors, one of the main
interesting and most widely studies aspects is the soliton structure, some exact
solitary wave solutions together with periodic wave solutions are obtained [1-7,
10-17,19]. However, the results associated with exact multi-periodic solutions
and multi-soliton solutions are few, the famous two-soliton and three-soliton
solutions are stemmed from [1].

The Darboux transformation method is one of the powerful and direct meth-
ods to construct exact multiple waves solution for the nonlinear evolution equa-
tion [9, 18,20, 21], but it should be noted that the Lax system is an over-
determined linear partial differential equations, when its coefficients depend
on the independent variable x and ¢, finding the exact solutions of the system
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Explicit multiple singular periodic solutions 492

may be difficult or even impossible. The research has usually relied on some
nontrivial methods, which restrict the range of applications, but enable one to
solve the more sophisticated multiple waves solution.

2. Solution for the Lax system

According to [8], one knows that Equation (1.1) is the compatibility condi-
tion of the following Lax system

0 1
(2.1a) o, = P,
A—u 0

Uy —(4X\ + 2u) o
< —(4X + 2u) (N — ) + Ugy —uy ) ’

where A is the spectral parameter, when ® = ®(x,t,A) = (7}) is the general
solution to the system (2.1), the form

(2.2) u' =2\ —u— 207

is called Darboux transformation, where v’ is a new solution generated from
the seed solution u, o1 = %L\:,\l. In particular,

- —0 1
(2.3) (2,1, ) = ( ' ) O(x,t, N),

)\7)\14’0’% —01

is the general solution to the system (2.1) based on v, and
(2.4) u =2\y —u' — 203

is a new solution generated from u’, where oy = %| A=

The first step for constructing new solutions from some stationary solutions
is to find the solutions of the system (2.1) associated with the stationary solu-
tions.

Without any loss of generality it is assumed that u = u(z) is the stationary
formal solution to (1.1), thus, 6uu, + uz., = 0, integrating this gives

(2.5) Upy = a — 3u?,
multiplying (2.5) by u and integrating it, further gives
(2.6) u? = b+ 2au — 2u®,

where a, b are arbitrary constants. One can assert that every solution to (2.5)
is a stationary solution to (1.1), so is each solution to (2.6). At the same time,
(2.1b) is written as

(2 7) Y1t = UgP1 — (4)\ + 2’“)90%
’ war = [(4AX + 2u)(u — A) + Uuga|p1 — Uz pa.
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As u = u(x), the above system and

(2.8a) V186 = {uZ — [(4AN +2u)?(u — A) + (4\ + 2u)ugs] o1,
(2.50) oo = Lepien

possess the same solution, substituting (2.5) and (2.6) into (2.8a) leads to the
simpler system
{ 1t = (16/\3 —4la + b)(pl,

— Uz P1—Pit
Y2 = “(axt2u) -

when b = 4\a — 163, the general solution to the above system is given by

t 1 C1
tug,—1 [ c '
A2u 4 +2u 2
Obviously

[ o) (00)
(2.9) St N= . . .
D2y Thtzu ca()

is a solution of (2.1b), where ¢; (), ca(z) are arbitrary functions. If (2.9) is also
solution of (2.1a), then substituting it into the system (2.1a) yields

{ ci(r) = s (@),
ch(z) = —mcl(x) + 4)\+2u02(x)

solving ¢;(x), ca(x) from (2.10) and substituting them into (2.9) gives the gen-
eral solution to the Lax system (2.1)

D(x,t,\) =
VIAN+ 2ul(t — [ 5350) V4N + 2u] ey
V42 +2u] (tu, wz/|4A+2u] ’

t2u — [ 55 Dioa) Dt2u
where k1, 11 are arbitrary constants.

(2.10)

(2.11)
M1

3. Explicit singular solutions to the KdV equation
From (2.11), one gets

d k
(3.1) S oz kit =k [ 58550 + ) — oo s
kit — ky 4,\Gf2u + '

inserting oy into (2.2) gives the new formal solution
(3.2) u =2\ —u
o (it =k =Tt A it ve=i
(kat — k1 [ ﬁ + p1)?

A=A, -
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Substituting (2.11) into (2.3) gives the general solution to the Lax system
associated with o’

Dz, t,\) = |4\ + 2u| x

" d 1 .
( (oimm — ot — | onysa) — oo niza 01 ) K
- da z ’
(A =X +o0f— Hrs)t— ) oyme) t o A Mt of — IxFou
ko
with K = , ko, o arbitrary constants, which leads to
M2

(3.3) 09 = —0
(A = A1) (kat — ko [ 535- + o)
(mximm — o) (kat — ko [ 5 + p2) — s
Substituting (2.2) into (2.4) yields
(3.4) u =u+2N — M\ + 0% —03),

A=Ap-

then substituting (3.3) into (3.4) gives the new solution
(35) ' =u+ 2(Ag — )\1) X

= A+ ()% — 0202 — 2k, T

o T @z’

P (s — 01 — g A=

where I' = kot — ko f ﬁ + /,[/2‘)\:)\2.

When b = 4)\a — 163, (2.6) reduces to
(3.6) u? = 4da — 16)* + 2au — 2u.
In view of the case for a in (3.6), there are four cases to be considered in
the rest section. For simplicity, first setting « = =3\ , 8 = @, v =
V3A , W= _26>\7 Q; = a(Ai)a Bz = 6(/\1)7 Yi = 7(A1)7 Wi = (A1)7 51 =
ki 48kt + 80, mi = 4kiBit —kiBix+4pi 57, G = ki — 8kt —8uiv?,
0; = 4k;wit + kjw;x + 4pw?, where i = 1,2.

Case 1. Taking a = %o/1 in (3.6) gives the stationary periodic solutions to
(1.1)
2, 2 4 9
(3.7) u; = —2a” tan” ax — 3%
and
2 .12 4 5
(3.8) ug = —2a cot® axr — goz .

Substituting the seed solution (3.7) into (3.1) gives

2k
(3.9) 01 = a1 tanoqx + 11 cosan®

61 seca1x + ]ﬁ sin a1x '
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From (3.2), the double singular periodic solution is given by

8k1a (k1 + & tanagx)

/ 2 2
uy = —u1 + 2\ — 2a7 tan® oy — -
! ! ! ! ! (&1 secaqx + ky sinagx)

3

Substituting (3.7), (3.9) into (3.5) and collecting, one can obtain the triple
singular periodic solution
uf =up +2(Ma — A1) X
(A1 — X2 + a3 tan? apr — a2 tan? ayw) A2 A3 — B1 A3 + By A?
[(OLQ tan asxr — a1 tan O[l.I)AlAQ - 2/410&1142 cos 1T + 2]€2&2A1 [¢0)] 0521‘]2 ’

where A7 = §;seca;x + k;sinayx, B; = 4kia§§i tan o;x + 4k§a?, i = 1,2.

Similarly, substituting (3.8) into (3.2) and (3.5), respectively, one gets
8kia3(ky — & cot agx)

(&1 cscayx — ky cos ayx)?

uhy = —ug 4+ 2\, — 203 cot? ax —

and
uy =ug +2(Aa — A1) X
(A1 — X2 + a3 cot? apr — a2 cot? ay 1) C3C35 + D1C3 — DoC3
[(Oq cot 1T — Q9 cot CYQZE)ClOQ — 2]43104102 sin a1r + 2/45204201 sin 0421‘]2 ’

respectively, where C; = &; csc a;xz—k; cos ax, D; = 4kia%§i cot aix—4ki2a?,i =
1,2.
Case 2. Taking a = 3% in (3.6) yields another set of the seed solutions

2
(3.10) ug = —2%sec? Bz — 562
and
2 .2 2 9
(3.11) uy = —25% csc” fr — §B :

Substituting (3.10) into (3.2) and (3.5), respectively, one can obtain

(1 sec? B — ky tan Byx)?
(7]1 tanﬂlx — k1)2 ’

uhy = —ug + 2\ — 2067

and
(O — M)EZE} — BFPE} + BFRE}
(B1F1Ey — BoFoEy)? 7

respectively, where E; = n; tan 8;x —k;, F; = n;sec? B;x—k; tan 8;z. Repeating
the same procedure gives

ug = usz + 2()\2 — )\1)

(11 cse? Bia + ky cot Bix)?

uly = —uy + 2\ — 267
4 4 1 ﬁl (771C0t51$+k1)2

)
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and
(M1 — X\2)GIGE — BTHPGE + B HIGY
(B1H1Go — B2 H2G1)? ’
respectively, where G; = n; cot B;x + k;, H; = n; csc? Bz + k; cot Bz, i = 1,2.
Case 3. Taking a = %74 in (3.6) leads to the stationary soliton solutions

uﬁf = Ug + 2()\2 — )\1)

4
us = —27? tanh? v + 572
and

4
ug = —2v% coth? vz + §72.

At the same time, one constructs multiple singular soliton solutions
8]€1’712(k1 — Cl tanh 7113)

L= — 2\ — 292 tanh® vz —
s us +2AL — 271 tanht (¢1sechyix + ky sinhyyz)2’

8k171 (k1 — (1 cothyi )
(¢reschyix — ky coshypz)2”

uf = —ug + 2\ — 273 coth? vz +

ug = us 4+ 2(A2 — A1) X
(A — Ay + 72 tanh? oz — 42 tanh?® yy2) 1213 + 113 — JoI?
[(2 tanh yoz — v tanh vy 2) I1 Is + 2k1v1 I cosh y1@ — 2koya 1 cosh yox]2”

and
ug = ug +2(Aa — A1) X
(AL — Az + 72 coth® oz — 42 coth? y ) MEMZ — N\ M3 + Ny M}

[(1 cothy1z — v coth yax) My My + 2k1v1 Ms sinh v @ — 2kgys M sinh yoz]2’
where I; = (;sechvy;x+k; sinhv;x, J; = 4/%%2@' tanh %x—4ki2'yi2, M; = (;cschy;x
— ki coshy;m, N; = 4k;y2¢; cothy,x — 4k2v2 i =1,2.

Case 4. Taking a = %w‘l in (3.6) gives another group of stationary soliton
solutions

2
wr = 2w? tanh? wr — §w2

and

2
ug = —2w? coth? wr — ng.

Similarly, one obtains

(01sech2w1x — ky tanhw; x)?
(61 tanwyx — kq)?

)

uh = —up + 2\ — 2w?

(Olcscthlx — ki cothw;r)?
(01 cothwyz — k)2 ’

UIS = —ug + 2\ — 2(,«.}%
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ul =ur +2(Xa — A1) (1 = Ao) PPy — wiQIPS + w3 Q5PY
! (W1Q1 P2 — waQ2 Py)?
along with

(M = Ao) RYRS — ST RS + wiSTRY

1 = 2 )\ - )\ ’
Uug = ug + ( 2 1) (w1S1 Ry — waSaRy)?

where PZ = 91 tanh Wi — ]{31;, Qz = Hisecthiz + kz tanh w; T, Rz = 01' coth Wi —
ki, S; = Gicscthix — k;cothw;z,i =1, 2.
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