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Abstract. G. Darbo [Rend. Sem. Math. Univ. Padova, 24 (1955) 84–
92] used the measure of noncompactness to investigate operators whose
properties can be characterized as being intermediate between those of

contraction and compact operators. In this paper, we apply the Darbo’s
fixed point theorem for solving infinite system of linear equations in some
sequence spaces.
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1. Introduction

Measure of noncompactness are very useful tools widely used in fixed point
theory, differential equations, functional equations, integral and integro-differen-
tial equations, and optimization etc. In recent years measures of noncompact-
ness have also been used in defining geometric properties of Banach spaces as
well as in characterizing compact operators between sequence spaces. Darbo
formulated his celebrated fixed point theorem in 1955 which involves the notion
of measure of noncompactness. Darbo’s fixed point theorem is useful in estab-
lishing the existence of solutions of various classes of differential equations,
especially for implicit differential equations, integral equations and integro-
differential equations. In this paper, we use measures of noncompactness for
solving infinite system of linear equations in some classical sequence spaces by
applying the Darbo’s fixed point theorem. That is, we obtain the conditions
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for the existence of the solution of the infinite system of linear equations

yn =
∞∑
k=1

ankxk + bn (n = 1, 2, ....)

in sequence spaces ℓ1 and ℓ∞.

2. Preliminaries

We shall write w for the set of all complex sequences x = (xk)
∞
k=0. Let

φ, ℓ∞, c and c0 denote the sets of all finite, bounded, convergent and null se-
quences, respectively. We write ℓp = {x ∈ ω :

∑∞
k=0 |xk|p < ∞} for 1 ≤ p < ∞.

By e and e(n) (n ∈ N), we denote the sequences such that ek = 1 for k = 0, 1, ...,

and e
(n)
n = 1 and e

(n)
k = 0 (k ̸= n). For any sequence x = (xk)

∞
k=0, let

x[n] =
∑n

k=0 xke
(k) be its n–section.

A sequence (b(n))∞n=0 in a linear metric space X is called Schauder basis
if for every x ∈ X, there is a unique sequence (λn)

∞
n=0 of scalars such that

x =
∑∞

n=0 λnb
(n). A sequence space X with a linear topology is called a K–

space if each of the maps pi : X → C defined by pi(x) = xi is continuous for
all i ∈ N. A K-space is called an FK–space if X is a complete linear metric
space; a BK–space is a normed FK–space. An FK–space X ⊃ φ is said
to have AK if every sequence x = (xk)

∞
k=0 ∈ X has a unique representation

x =
∑∞

k=0 xke
(k), that is, x[n] → x as n → ∞ (cf. [28]).

The classical sequence spaces c0, c and ℓp (1 ≤ p < ∞) all have Schauder
bases but ℓ∞ has no Schauder basis; the spaces c0 and ℓp (1 ≤ p < ∞) have
AK.

Let (X, ∥ . ∥) be a normed space. Then the unit sphere and closed unit ball
in X are denoted by SX := {x ∈ X :∥ x ∥= 1} and B̄X := {x ∈ X :∥ x ∥≤ 1}.If
X ⊃ φ is a BK-space and a = (ak) ∈ w, then we define

(2.1) ∥a∥∗X = sup
x∈SX

∣∣∣∣∣
∞∑
k=0

akxk

∣∣∣∣∣
provided the expression on the right hand side exists and is finite.

Let A = (ank)
∞
n,k=0 be an infinite matrix with complex entries ank (n, k ∈ N).

We write An for the sequence in the nth row of A, i.e., An = (ank)
∞
k=0 for every

n ∈ N. The A-transform of the sequence x = (xk)
∞
k=0 is defined as the sequence

Ax = (An(x))
∞
n=0, where

(2.2) An(x) =
∞∑
k=0

ankxk; (n ∈ N)

provided the series on the right converges for each n ∈ N.
Let X and Y be subsets of w and A = (ank) an infinite matrix. Then, we say

that A defines a matrix mapping from X into Y , and we denote it by writing
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A : X → Y , if Ax exists and is in Y for all x ∈ X. By (X,Y ), we denote the
class of all infinite matrices that map X into Y . If X and Y are normed spaces
then we write B(X,Y ) for the space of all bounded linear operators L : X → Y
normed by ∥L∥ = sup{∥L(x)∥ : x ∈ SX}.
Lemma 2.1 ( [18,19]). (a) We have (ℓ1, ℓ1) = B(ℓ1, ℓ1) and A ∈ (ℓ1, ℓ1) if and
only if

(2.3) ∥ A ∥(ℓ1,ℓ1)= sup
k

∞∑
n=0

| ank |< ∞.

If A is in any of the classes above then ∥ LA ∥=∥ A ∥(ℓ1,ℓ1) .
(b) We have A ∈ (ℓ∞, ℓ∞) = B(ℓ∞, ℓ∞) if and only if

(2.4) ∥ A ∥(ℓ∞,ℓ∞)= sup
n

∞∑
k=0

| ank |< ∞.

If A is in any of the above classes, then ∥ LA ∥=∥ A ∥(ℓ∞,ℓ∞) .

3. Hausdorff measures of noncompactness

The concept of measure of noncompactness has played a basic role in nonlin-
ear functional analysis, especially in metric and topological fixed point theory.
Up to now, several papers have been published on the existence and behav-
ior of solutions of nonlinear differential and integral equations, using the tech-
nique of measure of noncompactness. The first measure of noncompactness, the
function α, was defined and studied by Kuratowski [15] in 1930. Darbo [11]
used this measure to generalize both the classical Schauder fixed point prin-
ciple and (a special variant of) Banach’s contraction mapping principle for so
called condensing operators. The Hausdorff MNC χ was introduced by Gold-
enstein, Gohberg and Markus [12] in 1957 (and later studied by Goldenstein
and Markus [13]).
By MX , we denote the collection of all bounded subsets of a metric space
(X, d) and by NX the subfamily consisting of all relatively compact subsets of
X.

Definition 3.1. Let (X, d) be a metric space and Q ∈ MX . Then the Kura-
towski measure of noncompactness (α-measure or set measure of noncompact-
ness) of Q, denoted by α(Q), is the infimum of the set of all numbers ϵ > 0
such that Q can be covered by a finite number of sets with diameters ϵ that is

α(Q) := inf

{
ϵ > 0 : Q ⊂

n∪
i=1

, Si ⊂ X, diam(Si) < ϵ (i = 1, ..., n); n ∈ N

}
.
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Definition 3.2. If Q ∈ MX , then the Hausdorff measure of noncompactness
of the set Q, denoted by χ(Q), is defined by

χ(Q) := inf {ϵ > 0 : Q ⊂ ∪n
i=1B(xi, ri), xi ∈ X, ri < ϵ(i = 1, 2, ...), n ∈ N}.

The function χ : MX → [0,∞) is called the Hausdorff measure of noncompact-
ness.
The basic properties of the Hausdorff measure of noncompactness can be found
in [1, 4, 18,27] and [19].

Lemma 3.1. Let Q,Q1 and Q2 be bounded subsets of the metric space (X, d).
Then
(i) χ(Q) = 0 if and only if Q is totally bounded,
(ii) χ(Q) = χ(Q̄),
(iii) Q1 ⊂ Q2 implies χ(Q1) ≤ χ(Q2),
(iv) χ(Q1 ∪Q2) = max{χ(Q1), χ(Q2)},
Lemma 3.2. Let Q,Q1 and Q2 be bounded subsets of the normed space
(X, ∥ . ∥). Then
(i) χ(Q1 +Q2) ≤ χ(Q1) + χ(Q2),
(ii) χ(Q+ x) = χ(Q) for all x ∈ X,
(iii) χ(λQ) = |λ|χ(Q) for all λ ∈ C,
(iv) χ(Q) = χ(co(Q)).

Let X and Y be Banach spaces and χ1 and χ2 be the Hausdorff measures
of noncompactness on X and Y , respectively. An operator L : X → Y is
said to be (χ1, χ2)-bounded if L(Q) ∈ MY for all Q ∈ MX and there exist a
constant C ≥ 0 such that χ2(L(Q)) ≤ Cχ1(Q) for all Q ∈ MX . If an operator
L is (χ1,χ2)-bounded then the number ∥ L ∥(χ1,χ2):= inf{C ≥ 0 : χ2(L(Q)) ≤
Cχ1(Q) for all Q ∈ MX} is called the (χ1,χ2)–measure of noncompactness
of L. If χ1 = χ2 = χ, then we write ∥ L ∥(χ1,χ2)=∥ L ∥χ .
The most effective way in the characterization of compact operators between
the Banach spaces is by applying the Hausdorff measure of noncompactness.
This can be achieved as follows: Let X and Y be Banach spaces and L ∈
B(X,Y ). Then, the Hausdorff measure of noncompactness of L, denoted by
∥ L ∥χ, can be determined by

(3.1) ∥ L ∥χ= χ(L(SX)),

and we have that L is compact if and only if

(3.2) ∥ L ∥χ= 0.

This technique has recently been used by several authors in many research
papers (see for instance [8–10,14,16,17,20–26]).
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The following result shows how to compute the Hausdorff measure of noncom-
pactness in the spaces c0 and ℓp (1 ≤ p < ∞).

Theorem 3.3 [19]. Let Q be a bounded subset of the normed space X, where
X is ℓp for 1 ≤ p < ∞ or c0. If Pn : X → X (n ∈ N) is the operator defined by

Pn(x) = x[n] = (x0, x1, . . . , xn, 0, 0, . . .) for all x = (xk)
∞
k=0 ∈ X, then we have

χ(Q) = lim
n→∞

(
sup
x∈Q

∥(I − Pn)(x)∥
)
.

G. Darbo [11] used the measure of noncompactness to investigate operators
whose properties can be characterized as being intermediate between those of
contraction and compact operators. Darbo’s fixed point theorem is a general-
ization of the well-known Schauder fixed point theorem.

Theorem 3.4 [11]. If C is a non-empty bounded closed convex subset of a
Banach space X and T : C → C is a continuous mapping such that for any set
E ⊂ C,

α(T (E)) ≤ kα(E),

where k is a constant, 0 ≤ k < 1, then T has a fixed point.
The theorem is also true for the Hausdorff measure χ.

Darbo’s fixed-point theorem is useful in establishing the existence of solutions
of various classes of differential equations, especially for implicit differential
equations, integral equations and integro-differential equations, see [4]. Re-
cently, measures of noncompactness have been used in solving infinite system
of differential equations and integral equations in sequence spaces (cf. [2,3,5,6],
and [23]). In this paper, we use measures of noncompactness for solving infinite
system of linear equations by applying the Darbo’s fixed point theorem.

4. Main results

Consider the infinite system of linear equations

(4.1) yn =

∞∑
k=1

ankxk + bn (n = 1, 2, ....).

Let us define T : ℓ1 → ℓ1 by

(4.2) y = Tx = Ax+B,

which is an equivalent form of (3.1), where B = (bn)
∞
n=1 is a sequence of scalars.

We have to find a condition so that system (3.2) will have a unique solution.

Theorem 4.1. System (3.2) has a unique solution x = (xk) ∈ ℓ1 if
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(i) A ∈ (ℓ1, ℓ1), and (ii) B = (bn) ∈ ℓ∞, and (iii) there exists a constant k < 1
such that

∞∑
n=1

| anj |≤ k, j = 1, 2, ...

Proof. We know by Lemma 2.1 (a) that the necessary and the sufficient con-
dition for A ∈ (ℓ1, ℓ1) is

sup
j

∞∑
n=1

| anj |< ∞.

Now, let S = Sℓ1 . Then, T (S) = AS ∈ Mℓ1 . Thus, we have by Theorem 3.3
that

χ(T (S)) = lim
r→∞

(
sup
x∈S

∥(I − Pr)(Tx)∥ℓ1
)

= lim
r→∞

(
sup
x∈S

∥(I − Pr)(Ax+B)∥ℓ1
)

= lim
r→∞

(
sup
x∈S

∥(I − Pr)(Ax)∥ℓ1
)

where Pr : ℓ1 → ℓ1 (r ∈ N) is defined by Pr(x) = (x0, x1, . . . , xr, 0, 0, . . .) for
all x = (xk) ∈ ℓ1. This yields that

χ(T (S)) = lim
r→∞

(
sup
x∈S

( ∞∑
n=r+1

|An(x)|
))

= lim
r→∞

sup
x∈S

 ∞∑
n=r+1

|
∞∑
j=0

anjxj |


(4.3) ≤ lim

r→∞
sup
x∈S

∞∑
n=r+1

∞∑
j=0

| anj || xj | .

and hence we obtain

(4.4) χ(T (S)) ≤

(
lim
r→∞

sup
j

∞∑
n=r+1

| anj |

)
χ(S).

Therefore, if
∑∞

n=1 | anj |≤ k < 1 for every j, then

(4.5) χ(T (S)) ≤ kχ(S).

Now applying Theorem 3.4, we have that T has a fixed point.
Thus, if B = (bn) ∈ ℓ∞ and if there exists a constant k < 1

∞∑
n=1

| anj |≤ k, j = 1, 2, ...
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then there exists a unique sequence x = (xk) ∈ ℓ1 which is a solution of system
(4.2).
This completes the proof. □

Similarly, we have the following result when in (4.2) T ∈ B(ℓ∞, ℓ∞).
Theorem 4.2. The system (4.2) has a unique solution x = (xk) ∈ ℓ∞ if
(i) A ∈ (ℓ∞, ℓ∞), and (ii) B = (bn) ∈ ℓ∞, and (iii) there exists a constant α < 1
such that

∞∑
j=1

| anj |≤ α, n = 1, 2, ...

Proof. Using Lemma 2.1 (b) then condition (2.4) for A ∈ (ℓ∞, ℓ∞), and the
associated operator T ∈ B(ℓ∞, ℓ∞) together yield

χ(T (S)) ≤

 lim
r→∞

sup
n

∞∑
j=r+1

| anj |

χ(S).

Therefore, if
∑∞

j=1 | anj |≤ k < 1 for every n, then

(4.5) χ(T (S)) ≤ kχ(S).

Now applying Darbo’s fixed point theorem, we have that T has a fixed point.
Thus, if B = (bn) ∈ ℓ∞ and if there exists a constant k < 1

∞∑
n=1

| anj |≤ k, j = 1, 2, ...

then there exists a unique sequence x = (xk) ∈ ℓ∞ which is a solution of system
(4.2).
This completes the proof. □
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