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1. Introduction

The Drazin inverse plays an important role in Markov chains, singular differ-
ential and difference equations, iterative methods in numerical linear algebra,
etc. Representations for the Drazin inverse of block matrices under certain
conditions where given in the literature [2–4,10–12,14,16,19]. Deng [7] investi-
gated necessary and sufficient conditions for a partitioned operator matrix on
a Hilbert space to have the Drazin inverse with the generalized Banachiewicz–
Schur form. In [8], a representation for the Drazin inverse of an anti-triangular
block matrix under some conditions was obtained, generalizing in different ways
results from [6, 14]. Block anti-triangular matrices arise in many applications,
ranging from constrained optimization problems to solution of differential equa-
tions, etc. Deng [9] presented some formulas for the generalized Drazin inverse

of an anti-triangular operator matrix M =

[
A B
C 0

]
, acting on a Banach

space, with the assumption that CAdB is invertible.
In this paper, we study the generalized Drazin inverse of anti-triangular

matrices in a Banach space, getting as particular cases recent results from [7–9].
Let A be a complex unital Banach algebra with unit 1. For a ∈ A, we

use σ(a), r(a) and ρ(a), respectively, to denote the spectrum, the spectral
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radius and the resolvent set of a. The sets of all invertible, nilpotent and
quasinilpotent elements (σ(a) = {0}) of A will be denoted by A−1, Anil and
Aqnil, respectively.

The generalized Drazin inverse of a ∈ A (or Koliha–Drazin inverse of a) is
the element b ∈ A which satisfies

bab = b, ab = ba, a− a2b ∈ Aqnil.

If the generalized Drazin inverse of a exists, it is unique and is denoted by
ad, and a is generalized Drazin invertible. The set of all generalized Drazin
invertible elements of A is denoted by Ad. The Drazin inverse is a special
case of the generalized Drazin inverse for which a − a2b ∈ Anil insteed of
a − a2b ∈ Aqnil, i.e., the Drazin inverse of a is the element b (denoted by aD)
which satisfies bab = b, ab = ba and ak+1b = ak, for some nonnegative integer
k. The least such k is called the Drazin index of a, and is denoted by i(a).
Obviously, if a is Drazin invertible, then it is generalized Drazin invertible. The
group inverse is the Drazin inverse for which the conditon a − a2b ∈ Anil is
replaced with a = aba. We use a# to denote the group inverse of a, and we
use A# and AD to denote the sets of all group invertible and Drazin invertible
elements of A, respectively.

Recall that a ∈ A is generalized Drazin invertible if and only if there exists
an idempotent p = p2 ∈ A such that

ap = pa ∈ Aqnil, a+ p ∈ A−1.

Then p = 1 − aad is the spectral idempotent of a corresponding to the set
{0}, and it will be denoted by aπ. The generalized Drazin inverse ad double
commutes with a, that is, ax = xa implies adx = xad.

Let p = p2 ∈ A be an idempotent. Then we can represent element a ∈ A as

a =

[
a11 a12
a21 a22

]
,

where a11 = pap, a12 = pa(1− p), a21 = (1− p)ap, a22 = (1− p)a(1− p).
We use the following lemmas.

Lemma 1.1. [5, Lemma 2.4] Let b, q ∈ Aqnil and let qb = 0. Then q + b ∈
Aqnil.

Lemma 1.2. Let b ∈ Ad and a ∈ Aqnil.

(i) [5, Corollary 3.4] If ab = 0, then a+b ∈ Ad and (a+b)d =
∞∑

n=0
(bd)n+1an.

(ii) If ba = 0, then a+ b ∈ Ad and (a+ b)d =
∞∑

n=0
an(bd)n+1.

Specializing [5, Corollary 3.4] (with multiplication reversed) to bounded lin-
ear operators N. Castro González and J. J. Koliha [5] recovered [13, Theorem
2.2] which is a spacial case of Lemma 1.2(ii).
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Lemma 1.3. Let A be a complex unital Banach algebra with unit 1, and let p
be an idempotent of A. If x ∈ pAp, then σpAp(x) ∪ {0} = σA(x), where σA(x)
denotes the spectrum of x in the algebra A, and σpAp(x) denotes the spectrum
of x in the algebra pAp.

Let x =

[
a b
c d

]
∈ A relative to the idempotent p ∈ A. It is well known

that if a ∈ (pAp)−1 and the Schur complement s = d− ca−1b ∈ ((1− p)A(1−
p))−1, then the inverse of x has Banachiewicz–Schur form

x−1 =

[
a−1 + a−1bs−1ca−1 −a−1bs−1

−s−1ca−1 s−1

]
.

We investigate equivalent conditions under which xd has the generalized
Banachiewicz–Schur form in a Banach algebra. Also, we obtain several rep-
resentations for the generalized Drazin inverse of an anti-triangular matrix

x =

[
a b
c 0

]
under different conditions. As particular cases, we get the corre-

sponding results for the Drazin inverse in a Banach algebra. Thus, we extend
some results from [7–9] to more general settings.

2. Results

In the following lemma, we present necessary and sufficient conditions for

an element x =

[
a b
c d

]
of Banach algebra to have the generalized Drazin

inverse with the generalized Banachiewicz–Schur form. We recover a new result
concerning the Drazin inverse of Hilbert space operators (see [7, Corollary 3]).

Lemma 2.1. Let x =

[
a b
c d

]
∈ A relative to the idempotent p ∈ A, a ∈

(pAp)#, and let s = d − ca#b ∈ ((1 − p)A(1 − p))# be the generalized Schur
complement of a in x. Then the following statements are equivalent:

(i) x ∈ Ad and

(2.1) xd =

[
a# + a#bs#ca# −a#bs#

−s#ca# s#

]
;

(ii) aπbs# = a#bsπ, sπca# = s#caπ and z =

[
0 bsπ

caπ 0

]
∈ Aqnil;

(iii) aπb = bsπ, sπc = caπ and z =

[
0 aπb
sπc 0

]
∈ Aqnil.

Proof. (i) ⇔ (ii): If the right hand side of (2.1) is denoted by y, then we obtain

xy =

[
aa# − aπbs#ca# aπbs#

sπca# ss#

]
,
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yx =

[
a#a− a#bs#caπ a#bsπ

s#caπ s#s

]
.

So, xy = yx if and only if aπbs# = a#bsπ and sπca# = s#caπ, because these
equalities imply (aπbs#)ca# = a#b(sπca#) = a#bs#caπ. Further, we can
verify that yxy = y. Using s = d− ca#b, aπbs# = a#bsπ and sπca# = s#caπ,
we have

x− x2y =

[
−bs#caπ bsπ

caπ 0

]
.

From a#bsπ = aπbs# = (p − aa#)bs# = bs# − aa#bs#, we obtain bs# =
a#bsπ + aa#bs# which gives caπbs# = 0 = bs#caπbs# and

x− x2y =

[
p −bs#

0 1− p

]
z

[
p bs#

0 1− p

]
.

Since r(x − x2y) = r(

[
p bs#

0 1− p

] [
p −bs#

0 1− p

]
z) = r(z), we deduce that

x− x2y ∈ Aqnil is equivalent to z ∈ Aqnil.
(ii) ⇔ (iii): We prove that aπbs# = a#bsπ is equivalent to aπb = bsπ.

Indeed, multiplying aπbs# = a#bsπ from the right by s and from the left by
a, respectively, we obtain aπbs#s = 0 and aa#bsπ = 0. Therefore, bs#s =
aa#bs#s = aa#b and

aπb = b− aa#b = b− bs#s = bsπ.

On the other hand, if aπb = bsπ, then (aπb)s# = bsπs# = 0 and a#(bsπ) =
a#aπb = 0, i.e. aπbs# = a#bsπ.

Similarly, we can verify that sπca# = s#caπ is equivalent to sπc = caπ.
Hence, the equivalence (ii) ⇔ (iii) holds. □

Since the Drazin inverse is a particular but very important case of the gen-
eralized Drazin inverse, we give the next result which can be verified similar to
Lemma 2.1.

Corollary 2.2. Let x =

[
a b
c d

]
∈ A relative to the idempotent p ∈ A,

a ∈ (pAp)#, and let s = d−ca#b ∈ ((1−p)A(1−p))# be the generalized Schur
complement of a in x. Then the following statements are equivalent:

(i) x ∈ AD and

xD =

[
a# + a#bs#ca# −a#bs#

−s#ca# s#

]
;

(ii) aπbs# = a#bsπ, sπca# = s#caπ and z =

[
0 bsπ

caπ 0

]
∈ Anil;

(iii) aπb = bsπ, sπc = caπ and z =

[
0 aπb
sπc 0

]
∈ Anil.
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By Lemma 2.1, the following corollary recovers [1, Theorem 2].

Corollary 2.3. Let x =

[
a b
c d

]
∈ A relative to the idempotent p ∈ A,

a ∈ (pAp)#, and let s = d−ca#b ∈ ((1−p)A(1−p))# be the generalized Schur
complement of a in x. Then x ∈ A# and

x# =

[
a# + a#bs#ca# −a#bs#

−s#ca# s#

]
if and only if

aπb = 0 = bsπ, sπc = 0 = caπ.

Now, we extend the well known result concerning the Drazin inverse of
complex matrices to the generalized Drazin inverse of elements of a Banach
algebra, see [8, Theorem 3.5].

Theorem 2.4. Let

(2.2) x =

[
a b
c 0

]
∈ A

relative to the idempotent p ∈ A, a ∈ (pAp)d and let s = −cadb ∈ ((1−p)A(1−
p))d. If

(2.3) ssdcaπb = 0, ssdcaπa = 0, aadbsπc = 0, bsπcaπ = 0,

then x ∈ Ad and

xd =

(
r +

∞∑
n=0

[
aaπ aπbsπ

sπcaπ 0

]n [
0 aπbssd

sπcaad 0

]
rn+2

)

×
(
1 + r

[
0 aadbsπ

ssdcaπ 0

])
,(2.4)

where

(2.5) r =

[
ad + adbsdcad −adbsd

−sdcad sd

]
.

Proof. Applying aad + aπ = p and ssd + sπ = 1− p, we have

x =

[
a2ad aadb
ssdc 0

]
+

[
aaπ aπb
sπc 0

]
:= u+ v.

The equalities adaπ = 0 and (2.3) give uv = 0.
First, we show that u ∈ Ad. If we write

u =

[
a2ad aadbssd

ssdcaad 0

]
+

[
0 aadbsπ

ssdcaπ 0

]
:= u1 + u2,

we can get u2u1 = 0 and u2
2 = 0. Let Au1 ≡ a2ad, Bu1 ≡ aadbssd, Cu1 ≡

ssdcaad and Du1 ≡ 0. Then u1 =

[
Au1 Bu1

Cu1
Du1

]
and, by (a2ad)# = ad,
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Au1 ∈ (pAp)#. Also, from s = −cadb, Su1 ≡ Du1 −Cu1A
#
u1
Bu1 = s2sd ∈ ((1−

p)A(1− p))# and (s2sd)# = sd. Consequently, Aπ
u1
Bu1S

#
u1

= 0 = A#
u1
Bu1S

π
u1
,

Sπ
u1
Cu1A

#
u1

= 0 = S#
u1
Cu1A

π
u1

and

[
0 Bu1S

π
u1

Cu1A
π
u1

0

]
= 0 ∈ Aqnil. By

Lemma 2.1, notice that u1 ∈ Ad and

ud
1 =

[
A#

u1
+A#

u1
Bu1S

#
u1
Cu1A

#
u1

−A#
u1
Bu1S

#
u1

−S#
u1
Cu1A

#
u1

S#
u1

]
= r.

Using Lemma 1.2(i), u ∈ Ad and ud = ud
1 + (ud

1)
2u2 = r + r2u2.

To prove that v ∈ Aqnil, observe that

v =

[
aaπ aπbsπ

0 0

]
+

[
0 0

sπcaπ 0

]
+

[
0 aπbssd

sπcaad 0

]
:= v1 + v2 + v3.

If z =

[
m t
0 n

]
, then λ1− z =

[
λp−m −t

0 λ(1− p)− n

]
. Therefore,

λ ∈ ρpAp(m) ∩ ρ(1−p)A(1−p)(n) ⇒ λ ∈ ρ(z),

i.e.,

σ(z) ⊆ σpAp(m) ∪ σ(1−p)A(1−p)(n).

Notice that, by aaπ ∈ (pAp)qnil, v1 ∈ Aqnil. It can be verified that v1v2 = 0
and v22 = 0, i.e., v2 ∈ Anil. Now, by Lemma 1.1, v1+v2 ∈ Aqnil. Using Lemma
1.1 again, from v23 = 0 and v3(v1 + v2) = 0, we conclude that v ∈ Aqnil.

Applying Lemma 1.2(ii), we deduce that x ∈ Ad and

xd =

(
1 +

∞∑
n=0

vn+1(ud)n+2

)
ud =

(
1 +

∞∑
n=0

vn+1(ud)n+2

)
r(1 + ru2).

Since u2r = u2u
d
1 = (u2u1)(u

d
1)

2 = 0, then (ud)n+2 = (r + r2u2)
n+2 =

rn+2(1 + ru2). From r =

[
aad 0
0 ssd

]
r, we obtain vr = v

[
aad 0
0 ssd

]
r =[

0 aπbssd

sπcaad 0

]
.

By vn+1 = (v1+v2)
nv, we have vn+1(ud)n+2 = (v1+v2)

n

[
0 aπbssd

sπcaad 0

]
rn+1(1+

ru2). Applying u2r = 0 again, we get (2.4). □

From Theorem 2.4, we get the following consequence.

Corollary 2.5. Let x be defined as in (2.2), a ∈ (pAp)d and let r be defined
as in (2.5).
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(1) If caπ = 0 and generalized Schur complement s = −cadb is invertible,
then x ∈ Ad and

xd = r +

∞∑
n=0

[
aaπ 0
0 0

]n [
0 aπb
0 0

]
rn+2.

(2) If caπ = 0, aπb = 0 and the generalized Schur complement s = −cadb
is invertible, then x ∈ Ad and

xd =

[
ad + adbs−1cad −adbs−1

−s−1cad s−1

]
.

(3) If caπb = 0, caπa = 0 and the generalized Schur complement s = −cadb
is invertible, then x ∈ Ad and

xd =

(
r +

∞∑
n=0

[
0 anaπb
0 0

]
rn+2

)(
1 + r

[
0 0

caπ 0

])
.

The next result is a special case of Theorem 2.4.

Corollary 2.6. Let x be defined as in (2.2), a ∈ (pAp)D, i(a) = m, and let
s = −caDb ∈ ((1− p)A(1− p))D. If ssDcaπb = 0, ssDcaπa = 0, aaDbsπc = 0
and bsπcaπ = 0, then x ∈ AD and

xD =

(
r1 +

m+1∑
n=0

[
aaπ aπbsπ

sπcaπ 0

]n [
0 aπbssD

sπcaaD 0

]
rn+2
1

)

×
(
1 + r1

[
0 aaDbsπ

ssDcaπ 0

])
,

where r1 =

[
aD + aDbsDcaD −aDbsD

−sDcaD sD

]
.

Proof. Using the same notation as in the proof of Theorem 2.4, from i(a) = m,
we have vm+1

1 = 0, (v1 + v2)
m+2 = 0 and vm+3 = (v1 + v2)

m+2v = 0. Since v
is nilpotent and u is Drazin invertible, we conclude that x ∈ AD (see [15,18]).

By vn+1(uD)n+2 = (v1+v2)
n

[
0 aπbssD

sπcaaD 0

]
rn+1
1 (1+r1u2), we obtain

the representation for xD. □

In the following theorems, we assume that s = −cadb is the generalized
Drazin invertible, and we prove representations of the generalized Drazin in-
verse of anti-triangular block matrices. Several results from [9] are extended.

Theorem 2.7. Let x be defined as in (2.2), a ∈ (pAp)d and let s = −cadb ∈
((1− p)A(1− p))d. If bcaπ = 0 and aadbsπ = 0, then x ∈ Ad and

(2.6) xd =
∞∑

n=0

[
aaπ aπb
caπ 0

]n(
1 +

[
0 0
sπc 0

]
r

)
rn+1,
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where r is defined as in (2.5).

Proof. We can write

x =

[
a2ad aadb
caad 0

]
+

[
aaπ aπb
caπ 0

]
:= y + q.

Now, we get yq = 0, by the assumption bcaπ = 0.
In order to prove that y ∈ Ad, note that

y =

[
a2ad aadbssd

ssdcaad 0

]
+

[
0 aadbsπ

sπcaad 0

]
=

[
a2ad aadbssd

ssdcaad 0

]
+

[
0 0

sπcaad 0

]
:= y1 + y2,

y1y2 = 0 and y22 = 0. Using Lemma 2.1, we have y1 ∈ Ad and yd1 = r. By
Lemma 1.2(ii), y ∈ Ad and yd = yd1 + y2(y

d
1)

2 = r + y2r
2.

Further, we verify that q ∈ Aqnil. Let

q =

[
aaπ aπb
0 0

]
+

[
0 0

caπ 0

]
:= q1 + q2.

Thus, we deduce that q1 ∈ Aqnil and q2 ∈ Anil, because aaπ ∈ (pAp)qnil and
q22 = 0. Since q1q2 = 0, by Lemma 1.1, q ∈ Aqnil.

By Lemma 1.2(ii), x ∈ Ad and

xd =
∞∑

n=0

qn(yd)n+1 =
∞∑

n=0

qn(1 + y2r)r
n+1.

The equality r =

[
aad 0
0 ssd

]
r gives y2r =

[
0 0
sπc 0

]
r, implying (2.6). □

Replacing the hypothesis aadbsπ = 0 with sπcaad = 0 in Theorem 2.7, we
get the following theorem.

Theorem 2.8. Let x be defined as in (2.2), a ∈ (pAp)d and let s = −cadb ∈
((1− p)A(1− p))d. If bcaπ = 0 and sπcaad = 0, then x ∈ Ad and

(2.7) xd =
∞∑

n=0

[
aaπ aπb
caπ 0

]n
rn+1

(
1 + r

[
0 bsπ

0 0

])
,

where r is defined in the same way as in (2.5).

Proof. Similar to the proof of Theorem 2.7, by using

y =

[
a2ad aadbssd

ssdcaad 0

]
+

[
0 aadbsπ

0 0

]
:= y1 + y2

and y2y1 = 0, we check this theorem. □
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If s = −cadb ∈ ((1− p)A(1− p))−1 and s′ = −s, then sπ = 0 and (s′)−1 =
−s−1. As a special case of Theorem 2.7 (or Theorem 2.8), we obtain the
following result which recovers [9, Theorem 3.1] for bounded linear operators
on a Banach space.

Corollary 2.9. Let x be defined as in (2.2), a ∈ (pAp)d and let s′ = cadb ∈
((1− p)A(1− p))−1. If bcaπ = 0, then x ∈ Ad and

xd =

∞∑
n=0

[
aaπ aπb
caπ 0

]n
tn+1,

where t =

[
ad − adb(s′)−1cad adb(s′)−1

(s′)−1cad −(s′)−1

]
.

Sufficient conditions under which the generalized Drazin inverse xd is repre-
sented by (2.6) or (2.7) are investigated in the following result.

Theorem 2.10. Let x be defined as in (2.2), a ∈ (pAp)d and let s = −cadb ∈
((1− p)A(1− p))d. Suppose that aadbcaπ = 0 and caπb = 0.

(1) If aadbsπ = 0 and (aaπb = 0 or caaπ = 0), then x ∈ Ad and (2.6) is
satisfied.

(2) If sπcaad = 0 and (aaπb = 0 or caaπ = 0), then x ∈ Ad and (2.7) is
satisfied.

Proof. This result can be proved similarly as Theorem 2.7 and Theorem 2.8,
applying q2q1 = 0 when caaπ = 0, and the decomposition

q =

[
aaπ 0
caπ 0

]
+

[
0 aπb
0 0

]
when aaπb = 0. □
Remark 2.11. In the preceding theorem, if cadb ∈ ((1 − p)A(1 − p))−1, then
we obtain as a particular case [9, Theorem 3.2] for Banach space operator.

We can easily show the next special cases of Theorems 2.7-2.10 for the Drazin
inverse of x.

Corollary 2.12. Let x be defined as in (2.2), a ∈ (pAp)D, i(a) = m, s =
−caDb ∈ ((1− p)A(1− p))D, and let r1 be defined as in Corollary 2.6.

(i) If bcaπ = 0 and aaDbsπ = 0, then x ∈ AD and

(2.8) xD =
m+1∑
n=0

[
aaπ aπb
caπ 0

]n(
1 +

[
0 0
sπc 0

]
r1

)
rn+1
1 ,

(ii) If bcaπ = 0 and sπcaaD = 0, then x ∈ AD and

(2.9) xD =

m+1∑
n=0

[
aaπ aπb
caπ 0

]n
rn+1
1

(
1 + r1

[
0 bsπ

0 0

])
,
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(iii) If aaDbcaπ = 0, caπb = 0, aaDbsπ = 0 and (aaπb = 0 or caaπ = 0),
then x ∈ AD and (2.8) is satisfied.

(iv) If aaDbcaπ = 0, caπb = 0, sπcaaD = 0 and (aaπb = 0 or caaπ = 0),
then x ∈ AD and (2.9) is satisfied.

The following result is well-known for complex matrices (see [17]).

Lemma 2.13. Let x =

[
a b
c d

]
∈ A relative to the idempotent p ∈ A,

a ∈ (pAp)d and let ω = aad + adbcad be such that aω ∈ (pAp)d. If caπ = 0,
aπb = 0 and the generalized Schur complement s = d− cadb is equal to 0, then

(2.10) xd =

[
p 0
cad 0

] [
[(aω)d]2a 0

0 0

] [
p adb
0 0

]
.

Proof. Denote by y the right hand side of (2.10). Then we obtain

xy =

[
(a+ bcad)[(aω)d]2a (a+ bcad)[(aω)d]2b
(c+ dcad)[(aω)d]2a (c+ dcad)[(aω)d]2b

]
,

yx =

[
[(aω)d]2(a2 + bc) [(aω)d]2(ab+ bd)

cad[(aω)d]2(a2 + bc) cad[(aω)d]2(ab+ bd)

]
.

By caπ = 0 and aπb = 0, we can conclude that a + bcad commutes with aω.
Indeed,

(a+ bcad)(aω)= (a2 + bcada)(aad + adbcad) = (a2 + aadbc)ad(a+ bcad)

= (aω)(a+ bcad).

Since a+ bcad commutes with aω, it also commutes with (aω)d and we have

(a+ bcad)[(aω)d]2a = [(aω)d]2(a+ bcad)a = [(aω)d]2(a2 + bc).

From s = 0, we get c+ dcad = cada+ cadbcad = cad(a+ bcad). Thus,

(c+ dcad)[(aω)d]2a = cad(a+ bcad)[(aω)d]2a = cad[(aω)d]2(a2 + bc).

Also, ab+ bd = ab+ bcadb = (a+ bcad)b and we obtain

(a+ bcad)[(aω)d]2b = [(aω)d]2(ab+ bd)

(c+ dcad)[(aω)d]2b = cad[(aω)d]2(ab+ bd).

So, we proved that

xy = yx =

[
[(aω)d]2(a+ bcad)a [(aω)d]2(a+ bcad)b

cad[(aω)d]2(a+ bcad)a cad[(aω)d]2(a+ bcad)b

]
.
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Further, we can verify that yxy = y. Indeed, we have

yxy =

[
[(aω)d]2a [(aω)d]2b

cad[(aω)d]2a cad[(aω)d]2b

]
×

[
[(aω)d]2(a+ bcad)a [(aω)d]2(a+ bcad)b

cad[(aω)d]2(a+ bcad)a cad[(aω)d]2(a+ bcad)b

]
=

[
[(aω)d]4(a+ bcad)2a [(aω)d]4(a+ bcad)2b

cad[(aω)d]4(a+ bcad)2a cad[(aω)d]4(a+ bcad)2b

]
.

The equalities a+bcad = a−a2ad+a2ad+bcad = aaπ+aω and aπω = 0 = ωaπ

give (a+ bcad)2 = a2aπ + (aω)2. Therefore,

(aω)d(a+ bcad)2 = (aω)d(a2aπ + (aω)2)

= [(aω)d]2(aω)aπa2 + (aω)d(aω)2 = (aω)d(aω)2

and [(aω)d]4(a+ bcad)2 = [(aω)d]4(aω)2 = [(aω)d]2 implying

yxy =

[
[(aω)d]2a [(aω)d]2b

cad[(aω)d]2a cad[(aω)d]2b

]
= y.

We now obtain

x− x2y =

[
(aω)πa (aω)πb

cad(aω)πa cad(aω)πb

]
=

[
p 0
cad 0

] [
(aω)πa (aω)πb

0 0

]
.

Notice that, by a+ bcad = aaπ+aω, (aω)π(a+ bcad) = aaπ+(aω)(aω)π. Since
aaπ, (aω)(aω)π ∈ (pAp)qnil and aaπ(aω)(aω)π = 0, by Lemma 1.1, we have
that aaπ + (aω)(aω)π ∈ (pAp)qnil and rpAp((aω)

π(a+ bcad)) = 0. From

r(x− x2y) =r

([
(aω)πa (aω)πb

0 0

] [
p 0
cad 0

])
=r

([
(aω)π(a+ bcad) 0

0 0

])
= rpAp((aω)

π(a+ bcad)) = 0,

we deduce that x− x2y ∈ Aqnil which proves that xd = y. □

The following result is a special case of Lemma 2.13 holding for Drazin
inverse.

Corollary 2.14. Let x =

[
a b
c d

]
∈ A relative to the idempotent p ∈ A,

a ∈ (pAp)D and let ω = aaD + aDbcaD be such that aω ∈ (pAp)D. If caπ = 0,
aπb = 0 and the generalized Schur complement s = d− caDb is equal to 0, then

(2.11) xD =

[
p 0

caD 0

] [
[(aω)D]2a 0

0 0

] [
p aDb
0 0

]
.
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Proof. Using the notations as in the proof of Lemma 2.13, we prove in the same
way the equations xy = yx and yxy = y. The proof of nilpotency of x − x2y
follows.

Let z = x− x2y. It holds

z2 =

[
p 0

caD 0

] [
(aω)πa (aω)πb

0 0

] [
p 0

caD 0

] [
(aω)πa (aω)πb

0 0

]
=

[
p 0

caD 0

] [
(aω)π(a+ bcaD) 0

0 0

] [
(aω)πa (aω)πb

0 0

]
.

By induction, we have

zn =

[
p 0

caD 0

] [
(aω)π(a+ bcaD) 0

0 0

]n−1 [
(aω)πa (aω)πb

0 0

]
=

[
p 0

caD 0

] [ (
(aω)π(a+ bcaD)

)n−1
0

0 0

] [
(aω)πa (aω)πb

0 0

]
.

Since a + bcaD = aaπ + aω, we get (aω)π(a + bcaD) = aaπ + (aω)(aω)π.
Also, aaπ and (aω)(aω)π commute and aaπ(aω)(aω)π = (aω)(aω)πaaπ = 0.

So, we have
(
(aω)π(a+ bcaD)

)n
= (aaπ)

n
+ ((aω)(aω)π)

n
, for all n ∈ N. Let

k = max{i(a), i(aω)}+1. Since a and (aω) are Drazin invertible, it holds that

(aaπ)
k−1

= ((aω)(aω)π)
k−1

= 0. Now, it follows that

zk =

[
p 0

caD 0

] [
(aaπ)

k−1
+ ((aω)(aω)π)

k−1
0

0 0

] [
(aω)πa (aω)πb

0 0

]
=

[
0 0
0 0

]
,

which proves z = x − x2y ∈ Anil. Therefore, x ∈ AD and xD is equal to the
right hand side of f (2.11). □

In the following theorem, we extend [9, Theorem 3.3 and Theorem 3.4] for
Banach space operators to elements of a Banach algebra.

Theorem 2.15. Let x be defined as in (2.2), a ∈ (pAp)d and let k = a2ad +
aadbcad ∈ (pAp)d. If cadb = 0 and if one of the following conditions holds:

(1) bcaπ = 0;
(2) aadbcaπ = 0, aaπb = 0 and caπb = 0;
(3) aadbcaπ = 0, caaπ = 0 and caπb = 0;

then x ∈ Ad and

(2.12) xd =

∞∑
n=0

[
aaπ aπb
caπ 0

]n [
(kd)2a (kd)2b

cad(kd)2a cad(kd)2b

]n+1

.

Proof. To prove (1) suppose that x = y+q, where s and y are defined as in the
proof of Theorem 2.7. It follows that yq = 0 and q ∈ Aqnil. Applying Lemma
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2.13, we conclude that y ∈ Ad and

yd =

[
p 0
cad 0

] [
(kd)2a2ad 0

0 0

] [
p adb
0 0

]
.

Since kaad = k, then kdaad = kd and

yd =

[
(kd)2a (kd)2b

cad(kd)2a cad(kd)2b

]
.

Using Lemma 1.2(ii), we conclude that x ∈ Ad and xd =
∞∑

n=0
qn(yd)n+1. Thus,

(2.12) holds.
Parts (2) and (3) can be checked similar to part (1) and the proof of Theorem

2.10. □
If c = 0 or b = 0 in Theorem 2.15, we have k = a2ad ∈ (pAp)d and kd = ad.

As a consequence of Theorem 2.15, we obtain the following result.

Corollary 2.16. Let x be defined as in (2.2) and let a ∈ (pAp)d.

(1) If c = 0, then x ∈ Ad and

xd =

[
ad (ad)2b
0 0

]
.

(2) If b = 0, then x ∈ Ad and

xd =

[
ad 0

c(ad)2 0

]
.

The next corollary can be proved similar to Theorem 2.15.

Corollary 2.17. Let x be defined as in (2.2), a ∈ (pAp)D, i(a) = m, and
let k = a2aD + aaDbcaD ∈ (pAp)D. If caDb = 0 and if one of the following
conditions holds:

(1) bcaπ = 0;
(2) aaDbcaπ = 0, aaπb = 0 and caπb = 0;
(3) aaDbcaπ = 0, caaπ = 0 and caπb = 0;

then x ∈ AD and

(2.13) xD =
m+1∑
n=0

[
aaπ aπb
caπ 0

]n [
(kD)2a (kD)2b

caD(kD)2a caD(kD)2b

]n+1

.
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