Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 3, pp. 545-550

Title:
On the bandwidth of Mobius graphs
Author(s):
I. Ahmad and P. M. Higgins

Published by Iranian Mathematical Society

ON THE BANDWIDTH OF MOBIUS GRAPHS

I. AHMAD* AND P. M. HIGGINS
(Communicated by Ebadollah S. Mahmoodian)

Abstract

Bandwidth labelling is a well known research area in graph theory. We provide a new proof that the bandwidth of Mobius ladder is 4 , if it is not a K_{4}, and investigate the bandwidth of a wider class of Mobius graphs of even strips. Keywords: Mobius graphs, Cartesian product of graphs, labelling of graphs, bandwidth of a graph. MSC(2010): Primary: 05C78; Secondary: 97K30.

1. Introduction

Graph labelling provides useful mathematical models for a wide range of applications, such as data security, mobile telecommunication systems, cryptography, various coding theory problems, communication networks, bioinformatics and x-ray crystallography [3]. Among all graph labelling problems, bandwidth numbering of graphs has perhaps attracted the most attention in the literature. The bandwidth numbering problem was proposed independently by Harper [10] and Harary [9]. Suppose that G is a finite simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. For undefined terminology we refer the readers to [7]. A labelling f is a bijection $f: V \rightarrow X_{n}$ where $|V|=n$ and $X_{n}=\{1,2, \ldots, n\}$. Let $F=\left\{f: V \rightarrow X_{n}, f\right.$ a bijection $\}$. We define the bandwidth of a labelling f of G as $B W_{f}(G)=\max _{u v \in E}|f(u)-f(v)|$. The bandwidth of G is given by $B W(G)=\min _{f \in F}\left\{\max _{u v \in E}|f(u)-f(v)|\right\}$. We say that f is a bandwidth labelling of G if $B W_{f}(G)=B W(G)$. It is known that the bandwidth of a complete graph K_{n} is $n-1$, and that the bandwidth of a non-planar graph is at least $4[2,3]$. Let P_{m}, C_{m} denote, respectively, a path and a cycle on m vertices. The Cartesian product of two graphs G_{1} and G_{2}, written as $G_{1} \times G_{2}$, is defined to be the graph whose vertex set is $V\left(G_{1}\right) \times V\left(G_{2}\right)$, and two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$

[^0]if either $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} or vice versa. It is known that $B W\left(P_{m} \times P_{n}\right)=\min \{m, n\}[1,2,5,8], B W\left(P_{m} \times C_{n}\right)=\min \{2 m, n\}[1,4]$.

2. Bandwidth calculations for Mobius graphs

Let $2 \leq m, n$ and consider $P_{m} \times P_{n}$ with $V\left(P_{m} \times P_{n}\right)=\{(i, j): 1 \leq$ $i \leq m, 1 \leq j \leq n\}$. Form a new graph $M_{m, n}=M$ by adjoining the edges $(i, 1) \leftrightarrow(m-i+1, n)(1 \leq i \leq m)$. In this way we are 'identifying' the vertical sides of the 'rectangle' with a half twist so the array corresponds to a Mobius strip. We call M a Mobius graph. We give an alternative proof of the bandwidth of the Mobius ladder (the $m=2$ case) [6] and proceed further to the hard case when $m=2 k$, i.e., Mobius graphs of even strips. However, at present we are unable to investigate the bandwidth of Mobius graphs of odd strips and this is therefore suggested as a future work.

Figure 2.1. A Mobius Ladder $M_{2, n}$

Theorem 2.1. The bandwidth of the Mobius ladder $M_{2, n}$ for $n>2$ is 4 . $B W\left(M_{2,2}\right)=3$, and the bandwidth of Mobius graphs $M_{m, n}$ satisfies $\min \{m, 2 n\}$ $\leq B W\left(M_{2 k, n}\right) \leq 2 \min \{m, n\}$, where $m=2 k$ and $n \geq 3$.

Proof. First we consider the case when $m=2$, as in Figure 2.1.
There is a Hamilton cycle: $C:(1,1),(1,2), \ldots,(1, n),(2,1),(2,2), \ldots,(2, n)$, $(1,1)$, together with additional edges: $(1,1) \rightarrow(2,1),(1,2) \rightarrow(2,2), \ldots,(1, n) \rightarrow$ $(2, n)$.
e.g. $n=4$:
N.B. The central crossing point in the Figure 2.2 is not a vertex. In general $B W\left(M_{2, n}\right), n \geq 3$, is at least 4 as $M_{2, n}$ is not planar: by deleting the edges $(1,2) \rightarrow(2,2),(1,3) \rightarrow(2,3), \ldots,(1, n-2) \rightarrow(2, n-2)$ and removing degree 2 vertices $(1,2), \ldots,(1, n-2)$ and the vertices $(2,2), \ldots,(2, n-2)$ we find a copy of $K_{3,3}=M_{2,3}$. Since $B W\left(K_{3,3}\right)=4$, we conclude that $B W\left(M_{2, n}\right) \geq 4$ for $n \geq 3$. We note that $M_{2,2}=K_{4}$, so $B W\left(M_{2,2}\right)=B W\left(K_{4}\right)=4-1=3$. We conclude that for $n \geq 3, B W\left(M_{2, n}\right) \leq 4$ by finding a labelling of bandwidth 4 .

In general, $M_{2, n}$ consists of a cycle of order $2 n$ with opposite pairs of vertices joined by a single edge.

Figure 2.2. Labelling of $M_{2,4}$

Case 1: Suppose n is even, so $2 n \equiv 0(\bmod 4)$. Put $2 n=4 k$, say. We label the cycle as follows, from an arbitrary point;

Numbers $\equiv 1(\bmod 4) 1 \rightarrow 5 \rightarrow 9 \rightarrow \ldots \rightarrow 2 n-3 \rightarrow$
Numbers $\equiv 0(\bmod 4) \rightarrow 2 n \rightarrow 2 n-4 \rightarrow \ldots \rightarrow 4 \rightarrow$
Numbers $\equiv 3(\bmod 4) \rightarrow 3 \rightarrow 7 \rightarrow \ldots \rightarrow 2 n-1 \rightarrow$
Numbers $\equiv 2(\bmod 4) \rightarrow 2 n-2 \rightarrow 2 n-6 \rightarrow \ldots \rightarrow 2 \rightarrow 1$, where each congruence class contains k vertices.

This defines a labelling f of $M_{2, n}$ in which adjacent labels in the Hamilton cycle differ by at most 4 . The opposite pairs in the cycle are then $(1,3),(5,7),(9,11)$, $\ldots,(2 n-3,2 n-1)$ with difference of 2 in labels, and $(2 n, 2 n-2),(2 n-4,2 n-$ $6), \ldots,(4,2)$ with the same difference of 2 . Hence $B W\left(M_{2, n}\right)=4$ in the case where n is even.
Case 2: Suppose n is odd, so that $2 n \equiv 2(\bmod 4)$; put $2 n \equiv 2(2 k+1)=4 k+2$
Numbers $\equiv 1(\bmod 4) 1 \rightarrow 5 \rightarrow 9 \rightarrow \ldots \rightarrow 2 n-1 \rightarrow(k+1$ vertices $)$
Numbers $\equiv 0(\bmod 4) \rightarrow 2 n-2 \rightarrow 2 n-6 \rightarrow \ldots \rightarrow 4 \rightarrow$ (k vertices)
Numbers $\equiv 3(\bmod 4) \rightarrow 3 \rightarrow 7 \rightarrow \ldots \rightarrow 2 n-3 \rightarrow$, (k vertices)
Numbers $\equiv 2(\bmod 4) \rightarrow 2 n \rightarrow 2 n-4 \rightarrow \ldots \rightarrow 2 \rightarrow 1(k+1$ vertices $)$
The opposite pairs in the cycle are then $(1,3),(5,7), \ldots,(2 n-5,2 n-3),(2 n-$ $1,2 n),(2 n-2,2 n-4),(2 n-6,2 n-8), \ldots,(4,2)$; with all differences in labels of 2. Hence in both cases $B W_{f}\left(M_{2, n}\right)=4$. Therefore $B W\left(M_{2, n}\right)=4$, as claimed.

Next we consider the general case $m=2 k, k \geq 2$. The vertex set is partitioned into k disjoint cycles, each of $2 n$ vertices, these being:
$C_{i}:(i, 1),(i, 2), \ldots,(i, n),(m-i+1,1),(m-i+1,2), \ldots,(m-i+1, n) ;$ $i=1,2, \ldots, k$. The other edges of the graph are: $(i, j) \rightarrow(i+1, j), 1 \leq i \leq$ $k, 1 \leq j \leq n$.
Edge Count: We count the edges in two ways;
(i) As the graph $M_{2 k, n}$ contains $m=2 k$ rows and n columns of the graph $P_{m} \times P_{n}$ thus we have $n-1$ edges in each of the m rows and $m-1$ edges in each of the $n-1$ columns in addition to the m edges that arises with the Mobius condition while connecting one end of each of the m rows to another row. Hence we have

$$
\begin{aligned}
E\left(M_{2 k, n}\right) & =m(n-1)+n(m-1)+m \\
& =2 m n-m-n+m=2 m n-n
\end{aligned}
$$

(ii) Since the graph $M_{2 k, n}$ contains k cycles of length $2 n$, it thus has $k(2 n)$ edges, furthermore each vertex of C_{i} is adjacent to a vertex of C_{i+1} for $(1 \leq i \leq k-1)$, this gives $(k-1) 2 n$ edges. In addition C_{k} contains n more internal edges. Hence

$$
\begin{aligned}
E\left(M_{2 k, n}\right) & =k(2 n)+(k-1) 2 n+n \\
& =2 k n+2 k n-2 n+n=4 k n-n=2 m n-n .
\end{aligned}
$$

So $M_{2 k, n}$ contains a copy of the cylinder graph $P_{k} \times C_{2 n}$; one end cycle arises from C_{1}. However the end cycle C_{k} contains more edges and is a copy of $M_{2, n}$. Thus

$$
\begin{aligned}
B W\left(M_{2 k, n}\right) & \geq B W\left(P_{k} \times C_{2 n}\right) \\
& =\min \{2 k, 2 n\} \\
& =\min \{m, 2 n\} .
\end{aligned}
$$

Figure 2.3. Bandwidth labelling of $M_{2 k, n} ; k=2, n=4$

Labelling: We label the graph $M_{2 k, n}$ to show under what condition $B W\left(M_{2 k, n}\right)$ $\leq \min \{2 m, 2 n\}$. First, as in Figure 2.3 if we label C_{i} as $(i, j) \rightarrow 2 n(i-1)+j$
, for $(1 \leq i \leq k),(m-i+1, j) \mapsto 2 n(i-1)+2 k+j$, for $(1 \leq j \leq n)$ the adjacent vertices in $M_{2 k, n}$ differ by at most $2 n$. As $(i, j) \leftrightarrow(i+1, j)$ has label difference $2 n(i+1)+j-(2 n i+j)=2 n i+2 n+j-2 n i-j=2 n$, the edges $(i, j) \leftrightarrow(i, j+1)$ have label differences $2 n(i-1)+j-(2 n(i-1)+j+1)=1$, and so on. Hence $B W\left(M_{2 k, n}\right) \leq 2 n$.

On the other hand we can label $M_{2 k, n}$ row wise as follows; number one row (as starting point) of the cylinder from left to right as $1,2, \ldots, 2 k$; number the remaining adjacent rows clockwise as $2 k+1,2 k+2, \ldots, 4 k ; 6 k+1,6 k+$ $2, \ldots, 8 k ; \ldots, 2(n-2) k+1,2(n-2) k+2, \ldots, 2(n-1) k$ if n is odd, otherwise label up to the $\left(\frac{n}{2}+1\right)$ th row as $2(n-1) k+1,2(n-1) k+2, \ldots, 2 n k=m n$ if n is even as in the following figure.

Figure 2.4. Alternative bandwidth labelling of $M_{2 k, n} ; k=$ $2, n=4$

The remaining rows are numbered clockwise starting from the adjacent row to the first numbered row as $4 k+1,4 k+2, \ldots, 6 k ; 8 k+1,8 k+2, \ldots, 10 k$; ...; until all the rows are numbered. The order in which the rows are chosen according to the 4-labelling of $M_{2, n}$ as described earlier. This defines a labelling f of $M_{2 k, n}$ in which the adjacent cells in the cycles have at most difference $4 k=2 m$ and the adjacent cells in rows have at most difference 1. Hence $B W\left(M_{2 k, n}\right) \leq \min \{2 m, 2 n\}=2 \min \{m, n\}$. Therefore

$$
\begin{equation*}
\min \{m, 2 n\} \leq B W\left(M_{2 k, n}\right) \leq 2 \min \{m, n\}, \text { where } m=2 k \tag{2.1}
\end{equation*}
$$

Note that all terms in (2.1) are equal unless $m<2 n$, i.e $2 k<2 n \Leftrightarrow k<n$.

Acknowledgments

The authors are thankful to the anonymous referee for his expert and valuable comments to improve this article.

References

[1] I. Ahmad and P. M. Higgins, Bandwidth of direct products of paths and cycles, Int. Math. Forum 7 (2012), no. 22-28, 1321-1331.
[2] I. Ahmad, Bandwidth labelling of graphs and their associated semigroups, PhD Thesis, University of Essex, United Kingdom, 2011.
[3] G. S. Bloom and S. W. Golomb, Numbered complete graphs, unusual rulers, and assorted applications, 53-65, Theory and Applications of Graphs, Lecture Notes in Math., 642 Berlin, 1978.
[4] J. Chvatalova, On the bandwidth problem for graphs, PhD Thesis, University of Waterloo, Canada, 1980.
[5] J. Chvatalova, Optimal labelling of a product of two paths, Discrete Math. 11 (1975) 249-253.
[6] P. Z. Chinn, The Bandwidth and Other Invariants of the Mobius Ladder, Technical Report, Department of Mathematics, Humboldt State University, 1980.
[7] R. Diestel, Graph Theory, Third Edition, Springer-Verlag Heidelberg, New York, 2005.
[8] P. C. Fishburn, P. Winkler and P. Tetali, Optimal linear arrangement of a rectangular grid, Discrete Math. 213 (2000), no. 1-3, 123-139.
[9] F. Harary, Theory of Graphs and Its Applications, M. Fiedler. Ed., Czech. Acad. Sci. Prague, 1967.
[10] L. H. Harper, Optimal assignments of numbers to vertices, J. Soc. Indust. Appl. Math. 12 (1964) 131-135.
(Imtiaz Ahmad) Department of Mathematics, University of Malakand, Chakdara, Dir(L), Pakistan

E-mail address: iahmaad@hotmail.com; iahmad1@uom.edu.pk
(Peter M. Higgins) Department of Mathematical Sciences, University of Essex, P.O. Box CO4 3SQ, Colchester, United Kingdom

E-mail address: peteh@essex.ac.uk

[^0]: Article electronically published on June 15, 2015.
 Received: 21 July 2012, Accepted: 22 March 2014.
 *Corresponding author.

