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Abstract. The prime graph Γ(G) of a group G is a graph with vertex
set π(G), the set of primes dividing the order of G, and two distinct

vertices p and q are adjacent by an edge written p ∼ q if there is an
element in G of order pq. Let π(G) = {p1, p2, ..., pk}. For p ∈ π(G),
set deg(p) := |{q ∈ π(G)|p ∼ q}|, which is called the degree of p. We
also set D(G) := (deg(p1), deg(p2), ..., deg(pk)), where p1 < p2 < ... <

pk, which is called degree pattern of G. The group G is called k-fold
OD-characterizable if there exists exactly k non-isomorphic groups M
satisfying conditions |G| = |M | and D(G) = D(M). In particular, a

1-fold OD-characterizable group is simply called OD-characterizable. In
this paper, as the main result, we prove that projective special linear
group L3(2n) where n ∈ {4, 5, 6, 7, 8, 10, 12} is OD-characterizable.
Keywords: Prime graph, degree pattern, OD-characterizable.

MSC(2010): Primary: 20D05; Secondary: 20D06.

1. Introduction

For a finite group G, we denote by π(G) the set of all prime divisors of
G and the spectrum ω(G) of G is the set of element orders of G. Evidently
ω(G) is partially ordered by the divisibility relation, hence, it is completely
determined by the subset µ(G), of the maximal elements under the divisibility
relation. The prime graph Γ(G) of G is the graph with vertex set π(G) where
two distinct vertices p and q are adjacent by an edge if pq ∈ ω(G), in which
case, we write p ∼ q.
The degree deg(p) of a vertex p ∈ π(G) is the number of edges incident
with p. If π(G) = {p1, p2, ..., pk} with p1 < p2 < ... < pk, then we de-
fine D(G):=(deg(p1),deg(p2),...,deg(pk)), which is called the degree pattern
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of G. A finite group G is called k-fold OD-characterizable if there exist ex-
actly k non-isomorphic groups M satisfying conditions |G| = |M | and D(G) =
D(M). In particular,a 1-fold OD-characterizable group is simply called OD-
characterizable.
The interest in characterizing finite groups by degree pattern started in [4] by

M.R. Darafsheh et al, in which the authors proved that if |π( q
2+q+1

d )| = 1 where
d = (3, q − 1) and q > 5, then the simple group L3(q) is OD-characterizable.
In [10] it is proved that all finite simple groups whose orders are less than 108

except for A10 and U4(2) are OD-characterizable. In [11] and [14], the charac-
terization by order and degree pattern of L2(q), where q ≥ 4 is an odd prime
power is proved. Finite groups with the same order and degree pattern as U3(5)
and U6(2) are obtained in [12, 13]. Also in [7] proved that the automorphism
groups of orthogonal groups O+

10(2) and O−
10(2) are OD-characterizable. The

authors in [8] proved that the automorphism groups of simpleK3-groups except
A6 and U4(2) are OD-characterizable (we recall that a finite group possessing
exactly n prime divisors is called Kn-group). In this paper our main aim is

to show the recognizability of the group L3(2
n) where |π( q

2+q+1
d )| ≠ 1 and

d = (3, q − 1) for certain n, by degree pattern in the prime graph and order of
the group. In fact, we will prove the following Main Theorem.

Theorem 1.1 (Main Theorem). The simple group L3(2
n) where n ∈ {4, 5, 6, 7,

8, 10, 12} is OD-characterizable.

In this paper, all groups are finite and by simple groups we mean non-abelian
simple groups. We denote the socle of G by Soc(G), which is the subgroup
generated by the set of all minimal normal subgroups of G. For p ∈ π(G), we
denote by Gp and Sylp(G) a Sylow p-subgroup of G and the set of all Sylow
p-subgroups of G respectively. All further unexplained notations are standard
and can be found in [5].

2. Preliminary results

Let p ≥ 5 be a prime. We denote by Sp the set of all simple groups with
prime divisors at most p. It is clear that Sq ⊆ Sp where q ≤ p. In this paper
all simple groups in Sp for 17 ≤ p ≤ 337 are given in Table 1.

Lemma 2.1. Let P be a simple group belonging to S997, then π(Out(P )) ⊆
{2, 3, 5, 7, 11}.

Proof. All finite simple groups in S997, are collected in [9]. So by computing
the order of outer automorphism groups of them, we see that π(Out(P )) ⊆
{2, 3, 5, 7, 11} for every P ∈ S997. In fact 11 divides only the order of outer
automorphism group of L2(2

11). □
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To prove the propositions in the next section, we need degree patterns of
the special linear groups under study. Since we obtain these degree patterns
by a subset µ of these groups, we give following lemma.

Lemma 2.2 ( [1]). Let L = L3(q). Then µ(L) = {q − 1, p(q−1)
(3,q−1) ,

q2−1
(3,q−1) ,

q2+q+1
(3,q−1) }.

Lemma 2.3 ( [3]). Let G be a Frobenius group with kernel K and complement
H. Then:

(a) K is a nilpotent group.
(b) |K| ≡ 1(mod|H|).

Definition 2.1. A group G is called completely reducible if it is a direct product
of simple group. A completely reducible group is simply called CR-group.

Definition 2.2. A CR-group is called centerless, that is, has trivial center, if
and only if it is a direct product of non-abelian simple groups.

The following Lemma determines the structure of the automorphism group
of a centerless CR-group.

Lemma 2.4 ( [5]). Let R be a finite centerless CR-group and write R =
R1 × R2 × ... × Rk, where Ri is a direct product of ni isomorphic copies of a
simple group Hi, and Hi and Hj are not isomorphic if i ̸= j. Then Aut(R) =
Aut(R1) × Aut(R2) × ... × Aut(Rk) and Aut(Ri) ∼= Aut(Hi) ≀ Sni , where in
this wreath product Aut(Hi) appears in its right regular representation and the
symmetric group Sni in its natural permutation representation. Moreover, these
isomorphisms induce the isomorphisms Out(R) ∼= Out(R1) × Out(R2) × ...×
Out(Rk) and Out(Ri) ∼= Out(Hi) ≀ Sni .

3. Proof of the main theorem

This section is devoted to prove our main theorem. We break the proof into
a number of separate propositions.

Proposition 3.1. If G is a finite group such that D(G) = D(L3(2
4)) and

|G| = |L3(2
4)|, then G ∼= L3(2

4).

Proof. By using Lemma 2.2, it follows that D(L3(2
4)) = (1, 1, 3, 1, 1, 1). As

|G| = |L3(2
4)| = 212.32.52.7.13.17 and D(G) = D(L3(2

4)), we conclude that
the prime graph of G has the following form:

• •

•

• • •
p1 p2

5

p3 p4 p5

Figure 3-1
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where {p1, p2, p3, p4, p5} = {2, 3, 7, 13, 17}.
To simplify, we break the proof into several steps in every proposition.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a {13, 17}′-group. In particular, G is non-solvable.
For proving Step 1, we consider two cases separately:
Case 1. 13.17 /∈ ω(G).
In this case, we show that K is a {13, 17}′-group. To prove this, assume
first that {13, 17} ⊆ π(K). Then K has a Hall {13, 17}-subgroup H. It is
easy to see that H is an abelian subgroup of order 13.17, which implies that
13.17 ∈ ω(K) ⊆ ω(G), a contradiction. Next, we assume 13 ∈ π(K) and
17 /∈ π(K). Then K is a {2, 3, 5, 7, 13}-group. Let K13 ∈ Syl13(K). By
Frattini argument, we deduce that G = KNG(K13). Therefore the normalizer
NG(K13) contains an element of order 17, say x. Now ⟨x⟩K13 is a subgroup of G
of order 13.17, which is abelian. Hence, 13.17 ∈ ω(G), a contradiction. Finally,
we assume 17 ∈ π(K) and 13 /∈ π(K). In this case, K is a {2, 3, 5, 7, 17}-
group and we consider a Sylow 17-subgroup K17 of K. As before, we see that
G = KNG(K17) and by similar argument, we get 13.17 ∈ ω(G), which is a

contradiction. Therefore K is {13, 17}′
-group. In addition since G ̸= K, G is

non-solvable.
Case 2. 13.17 ∈ ω(G).
In this case according to deg(13) and deg(17), we conclude that that 13.7 /∈
ω(G) and 17.7 /∈ ω(G). Now, we show that K is a p

′
-group where p ∈ {13, 17}.

Assume to the contrary and let p ∈ π(K). Then 7 does not divide the order
of K. Otherwise, we may suppose that T is a Hall {p, 7}-subgroup of K. It
is seen that T is an abelian subgroup of order p.7 and so p.7 ∈ ω(K) ⊆ ω(G),
a contradiction. Therefore p ∈ π(K) ⊆ π(G) − {7}. Let Kp ∈ Sylp(K). By
Frattini argument, G = KNG(Kp). Therefore, NG(Kp) contains an element
x of order 7. Since G has no element of order p.7, ⟨x⟩ should act fixed point
freely on Kp, that is implying ⟨x⟩Kp is a Frobenius group. By using Lemma
2.3(b), we conclude that |⟨x⟩||(|Kp| − 1), which is a contradiction. Therefore

K is {13, 17}′
-group. In addition since G ̸= K, G is non-solvable and this

completes the proof of Step 1.
Step 2. The quotient G

K is an almost simple group. In fact, we have

S ⊴ G
K ≲ Aut(S), where S is a finite non-abelian simple group isomorphic to

L3(2
4).

Let G = G
K . Then S := Soc(G) = P1 × P2 × ... × Pm, where Pi

,s are finite

non-abelian simple groups and S ⊴ G
K ≲ Aut(S). We show that m = 1 and

S = P1
∼= L3(2

4). Suppose that m ≥ 2, we get a contradiction by considering
two Cases 1 and 2.
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Case 1. 2.17 /∈ ω(G).
In this case, we claim that 17 does not divide |S|. Assume the contrary and
let 17 | |S|, on the other hand, 2 ∈ π(Pi) for every i, hence 2 ∼ 17 which is a
contradiction. Now, by Step 1, we observe that 17 ∈ π(G) ⊆ π(Aut(S)). But
Aut(S) = Aut(S1) × Aut(S2) × ... × Aut(Sr), where the groups Sj are direct
products of isomorphic Pi

,s such that S = S1×S2×...×Sr. Therefore, for some
j, 17 divides the order of an automorphism group of a direct product Sj of t
isomorphic simple groups Pi. Since Pi ∈ S17, Lemma 2.1 implies that |Out(Pi)|
is not divisible by 17, so 17 does not divide the order of Aut(Pi). Now, by using
Lemma 2.4 we obtain |Aut(Sj)| = |Aut(Pi)|t.t! . Therefore, t ≥ 17 and so 234

must divide the order of G, which is a contradiction. Therefore m = 1 and so
S = P1.
Case 2. 2.17 ∈ ω(G).
In this case, we claim that 13 does not divide |S|, assume the contrary and let
13 | |S|. Since 2 ∈ π(Pi) for every i, then we implies that 2 ∼ 13 which is a
contradiction because deg(2) = 1 in Γ(G). Now, by using a similar argument,
as in Case 1, we can verify that t ≥ 13 and so 226 must divide the order of G,
which is a contradiction. Therefore m = 1 and S = P1.
As S ∈ S17, 13 and 17 do not divide |Out(S)| (by Lemma 2.1), so by Step 1
we conclude that

|S| = 2α1 .3α2 .5α3 .7α4 .13.17

where 2 ≤ α1 ≤ 12, 0 ≤ α2 ≤ 2, 0 ≤ α3 ≤ 2 and 0 ≤ α4 ≤ 1. Now by using
Table 1, it follows that S ∼= L3(2

4) and this completes the proof of Step 2.
Step 3. G is isomorphic to L3(2

4).
By Step 2, L3(2

4) ⊴ G
K ≲ Aut(L3(2

4)). As |G| = |L3(2
4)|, we deduce K = 1

and G ∼= L3(2
4). □

Proposition 3.2. If G is a finite group such that D(G) = D(L3(2
5)) and

|G| = |L3(2
5)|, then G ∼= L3(2

5).

Proof. By using Lemma 2.2, we have D(L3(2
5)) = (1, 2, 1, 2, 3, 1). Since |G| =

|L3(2
5)| = 215.3.7.11.312.151 and D(G) = D(L3(2

5)), we conclude that Γ(G)
has the following forms:

•

•

•

• • • • • •

•

• •

p1

31

3

11 p2 p3 p1 3 p2

31

11 p3

Figure 3-2 Figure 3-3
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• •

•

•

•

•
p1 p2

31

p4

p5

p3

Figure 3-4

where {p1, p2, p3} = {2, 7, 151} and {p4, p5} = {3, 11}.
Step 1. Let K be the maximal normal solvable subgroup of G. Then K is

a {11, 151}′-group. In particular, G is non-solvable.
We prove this step by considering two cases 1 and 2:
Case 1. 11.151 /∈ ω(G).
First, we show that K is a 151′-group. Assume to the contrary that |K| is
divisible by 151. Then 11 does not divide the order of K. Otherwise, we may
suppose that T is a Hall {11, 151}-subgroup of K. It is seen that T is an
abelian subgroup of order 11.151, hence 11.151 ∈ ω(K) ⊆ ω(G), a contradic-
tion. Therefore 151 ∈ π(K) ⊆ π(G)−{11}. Let K151 ∈ Syl151(K). By Frattini
argument, G = KNG(K151). Therefore, NG(K151) contains an element x of or-
der 11. Since G has no element of order 11.151, ⟨x⟩ should act fixed point freely
on K151, which implies that ⟨x⟩K151 is a Frobenius group. By using Lemma
2.3(b), we conclude that |⟨x⟩||(|K151| − 1), which is impossible. Therefore K is

a 151
′
-group.

Next, we show that K is a 11
′
-group. Assume the contrary, 11 ∈ π(K). Let

K11 ∈ Syl11(K). By Frattini argument, G = KNG(K11). Therefore, NG(K11)
has an element x of order 151. It is easy to see that ⟨x⟩K11 is an abelian
subgroup of G of order 11.151. Hence 11.151 ∈ ω(G), which is impossible.
Therefore K is a {11, 151}′-group. In addition since G ̸= K, G is non-solvable.
Case 2. 11.151 ∈ ω(G).
In this case, from the structure of degree pattern of G, it is easy to see that
7.11 /∈ ω(G) and 7.151 /∈ ω(G). Now, we show that K is a p′-group where
p ∈ {11, 151}. Assume the contrary and let p ∈ π(K). Then 7 does not
divide the order of K. Otherwise, we may suppose that T is a Hall {p, 7}-
subgroup of K. It is seen that T is an abelian subgroup of K of order p.7.
Thus, p.7 ∈ ω(K) ⊆ ω(G), a contradiction. Thus, p ∈ π(K) ⊆ π(G) − {7}.
Let Kp ∈ Sylp(K). By Frattini argument, we deduce that G = KNG(Kp).
Therefore, NG(Kp) contains an element of order 7, say x. Since G has no
element of order p.7, ⟨ x⟩ should act fixed point freely on Kp, that is imply-
ing ⟨x⟩Kp is a Frobenius group. By using Lemma 2.3(b), we conclude that
|⟨x⟩||(|Kp| − 1), which is impossible. Therefore K is a {11, 151}′-group. In
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addition since G ̸= K, G is non-solvable and this completes the proof of Step
1.

Step 2. The quotient G
K is an almost simple group. In fact, S⊴ G

K ≲ Aut(S),

where S is a finite non-abelian simple group isomorphic to L3(2
5).

Let G = G
K . Then S := Soc(G) = P1 × P2 × ... × Pm, where Pi

,s are finite

non-abelian simple groups and S ⊴ G
K ≲ Aut(S). We show that m = 1 and

S = P1
∼= L3(2

5). Assume to the contrary that m ≥ 2. We get a contradiction
by considering two cases 1 and 2:
Case 1. 2.11 /∈ ω(G).
In this case we claim that 11 does not divide |S|. Assume the contrary and
let 11 | |S|, on the other hand, 2 ∈ π(Pi) for every i, hence 2 ∼ 11, which is a
contradiction. Now, by Step 1 we observe that 11 ∈ π(G) ⊆ π(Aut(S)). But
Aut(S) = Aut(S1) × Aut(S2) × ... × Aut(Sr), where the groups Sj are direct
products of isomorphic Pi

,s such that S = S1 × S2 × ... × Sr. Therefore, for
some j, 11 divides the order of an automorphism group of a direct product Sj

of t isomorphic simple groups Pi. Since Pi ∈ S151, Lemma 2.1 implies that
|Out(Pi)| is not divisible by 11, so 11 does not divide the order of Aut(Pi). Now,
by using Lemma 2.4, we obtain |Aut(Sj)| = |Aut(Pi)|t.t!. Therefore t ≥ 11 and
so 222 must divide the order of G, which is a contradiction. Therefore m = 1
and S = P1.
Case 2. 2.11 ∈ ω(G).
In this case, we claim that 151 does not divide |S|. Assume to the contrary and
let 151 | |S|, on the other hand, 2 ∈ π(Pi) for every i, hence 2 ∼ 151, which is
a contradiction because deg(2) = 1 in Γ(G). Thus, by Step 1 we observe that
151 ∈ π(G) ⊆ π(Aut(S)). Now, by using a similar argument as in the proof
of Case 1, we can show that 2302 must divide |G|, which is a contradiction.
Therefore m = 1 and S = P1.
As S ∈ S151, by using Lemma 2.1 we conclude that 11 and 151 don’t divide
|Out(S)|, so Step 1 implies that

|S| = 2α1 .3α2 .7α3 .11.31α4 .151

where 2 ≤ α1 ≤ 15, 0 ≤ α2 ≤ 1, 0 ≤ α3 ≤ 1 and 0 ≤ α4 ≤ 2. Now, by using
Table 1 it follows that S ∼= L3(2

5), and this completes the proof of Step 2.
Step 3. G is isomorphic to L3(2

5).
By Step 2, L3(2

5)⊴ G
K ≲ Aut(L3(2

5)). Since |G| = |L3(2
5)|, we deduce K = 1,

so G ∼= L3(2
5) and the proof is complete. □

Proposition 3.3. If G is a finite group such that D(G) = D(L3(2
6)) and

|G| = |L3(2
6)|, then G ∼= L3(2

6).

Proof. By using lemma 2.2, we conclude thatD(G) = D(L3(2
6)) = (2, 4, 3, 4, 3, 1, 1).

Since |G| = |L3(2
6)| = 218.34.5.72.13.19.73 and D(G) = D(L3(2

6)), then we
have the following forms for Γ(G):
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•

•

•

•

•

• • • • •

•

•

•

•
5

3

13

7

2

19 73 p1 2 5

p3

13

p4

p2

Figure 3-5 Figure 3-6

• •

•

•

•

•

• • •

•

•

•

•

•
p1 13

7

2

5

3

p2 p1 3

5

2

7

13

p2

Figure 3-7 Figure 3-8

•

•

•

•

•

•

• •

•

•

•

•

•

•
p1

p5

3

2

p6

7

p2 p6

p5

2

7

3

p1

p2

Figure 3-9 Figure 3-10

•

•

•

•

•

•

• •

•

•

•

•

••

p2

3

7

2

p5

p6

p1 5

3

2

13

7

p2p1

Figure 3-11 Figure 3-12
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• •

•

•

•

•

•
p1 5

3

2

13

7

p2

Figure 3-13

where {p1, p2} = {19, 73}, {p3, p4} = {3, 7} and {p5, p6} = {5, 13}.
Step 1. Let K be the maximal normal solvable subgroup of G. Then K is

a {13, 19, 73}′
-group. In particular, G is non-solvable.

We prove this step by considering two Cases 1 and 2:
Case 1. 13.73 /∈ ω(G).
First, we show that K is a {13, 73}′-group. Assume that {13, 73} ⊆ π(K).
Then K has a Hall {13, 73}-subgroup H. It is easy to see that H is an abelian
subgroup of order 13.73, which implies that 13.73 ∈ ω(K) ⊆ ω(G), a contra-
diction.
Now, we assume 13 ∈ π(K) and 73 /∈ π(K). Then K is a {2, 3, 5, 7, 13}-group.
Let K13 ∈ Syl13(K). By Frattini argument, we deduce that G = KNG(K13).
Therefore the normalizer NG(K13) contains an element of order 73, say x. Now
⟨x⟩K13 is a subgroup ofG of order 13.73, which is abelian. Hence, 13.73 ∈ ω(G),
a contradiction. Next, we assume 73 ∈ π(K) and 13 /∈ π(K). In this case,K is a
{2, 3, 5, 7, 73}-group and we consider a Sylow 73-subgroup K73 of K. As before,
we see that G = KNG(K73) and by similar argument, we get 13.73 ∈ ω(G),
which is a contradiction.
Finally, we show thatK is a 19

′
-group. Assume the contrary and let 19 ∈ π(K).

We claim that p does not divide the order of K, where p ∈ {13, 73}. Other-
wise, we may suppose that T is a Hall {p, 19}-subgroup of K. It is seen that
T is an abelian subgroup of order p.19. Thus, p.19 ∈ ω(G), a contradiction
because from the structure of degree pattern of G, it is easy to see that if
19.13 ∈ ω(G), then 19.73 /∈ ω(G). Also, if 19.73 ∈ ω(G), then 13.73 /∈ ω(G).
Thus, 19 ∈ π(K) ⊆ π(G) − {p}. Let K19 ∈ Syl19(K). By Frattini argument,
G = KNG(K19). Therefore, NG(K19) contains an element x of order p. Since
G has no element of order 19.p, ⟨x⟩ should act fixed point freely on K19, that is
implying ⟨x⟩K19 is a Frobenius group. By Lemma 2.3(b), |⟨x⟩||(|K19| − 1). It

follows that 19|p − 1, which is a contradiction. Therefore K is a {13, 19, 73}′
-

group. In addition since G ̸= K, G is non-solvable.
Case 2. 13.73 ∈ ω(G).
First, we show that K is a {19, 73}′-group. To prove this, assume first that
{19, 73} ⊆ π(K). ThenK has a Hall {19, 73}-subgroupH. It is easy to see that
H is an abelian subgroup of order 19.73, which implies that 19.73 ∈ ω(K) ⊆
ω(G), a contradiction because deg(73) = 1 in Γ(G).
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Now, we assume 19 ∈ π(K) and 73 /∈ π(K). Then K is a {2, 3, 5, 7, 13, 19}-
group. Let K19 ∈ Syl19(K). By Frattini argument, we deduce that G =
KNG(K19). Therefore the normalizer NG(K19) contains an element of order
73, say x. Now ⟨x⟩K19 is a subgroup of G of order 19.73, which is abelian.
Hence, 19.73 ∈ ω(G), a contradiction.
Next, we assume 73 ∈ π(K) and 19 /∈ π(K). In this case,K is a {2, 3, 5, 7, 13, 73}-
group and we consider a Sylow 73-subgroup K73 of K. As before, we see that
G = KNG(K73) and by similar argument, we get 19.73 ∈ ω(G), which is a
contradiction.
Finally, we show thatK is a 13

′
-group. Assume the contrary and let 13 ∈ π(K).

By the structure of degree pattern of G, it is easy to see that 13.19 /∈ ω(G).
Now, we claim that 19 does not divide the order of K. Otherwise, we may
suppose that T is a Hall {13, 19}-subgroup of K. It is seen that T is an abelian
subgroup of K of order 13.19. Thus, 13.19 ∈ ω(K) ⊆ ω(G), a contradiction.
Thus, 13 ∈ π(K) ⊆ π(G) − {19}. Let K13 ∈ Syl13(K). By Frattini argument,
we deduce that G = KNG(K13). Therefore the normalizer NG(K13) contains
an element of order 19, say x. Since G has no element of order 13.19, ⟨ x⟩
should act fixed point freely on K13, that is implying ⟨x⟩K13 is a Frobenius
group. By using Lemma 2.3(b), we conclude that |⟨x⟩||(|K13| − 1), which is
impossible. Therefore K is a {13, 19, 73}′-group. In addition since G ̸= K, G
is non-solvable and this completes the proof of Step 1.

Step 2. The quotient G
K is an almost simple group. In fact, we have

S ⊴ G
K ≲ Aut(S), where S is a finite non-abelian simple group isomorphic to

L3(2
6).

Let G = G
K . Then S := Soc(G) = P1 × P2 × ... × Pm, where Pi

,s are finite

non-abelian simple groups and S ⊴ G
K ≲ Aut(S). We show that m = 1 and

S = P1
∼= L3(2

6). Assume to the contrary that m ≥ 2. We get a contradiction
by considering two cases 1 and 2:
Case 1. 2.19 /∈ ω(G).
In this case, we claim that 19 does not divide |S|. Assume the contrary and
let 19 | |S|, on the other hand, 2 ∈ π(Pi) for every i, hence 2 ∼ 19, which is a
contradiction. Now, by Step 1, we observe that 19 ∈ π(G) ⊆ π(Aut(S)). But
Aut(S) = Aut(S1) × Aut(S2) × ... × Aut(Sr), where the groups Sj are direct
products of isomorphic Pi

,s such that S = S1 × S2 × ... × Sr. Therefore, for
some j, 19 divides the order of an automorphism group of a direct product
Sj of t isomorphic simple groups Pi. Since Pi ∈ S73, Lemma 2.1 implies that
|Out(Pi)| is not divisible by 19, so 19 does not divide the order of Aut(Pi). Now,
by using Lemma 2.4 we obtain |Aut(Sj)| = |Aut(Pi)|t.t!. Therefore t ≥ 19 and
so 238 must divide the order of G, which is a contradiction. Therefore m = 1,
and then S = P1.
Case 2. 2.19 ∈ ω(G).
In this case according to degree pattern of G we have 2.73 /∈ ω(G). Now, we
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claim that 73 does not divide |S|. Assume the contrary and let 73 | |S|, on
the other hand, 2 ∈ π(Pi) for every i, hence 2 ∼ 73, which is a contradiction.
Thus, by Step 1 we observe that 73 ∈ π(G) ⊆ π(Aut(S)). Now, by using a
similar argument as in the proof of Case 1, we can show that 2146 must divide
|G|, which is a contradiction. Therefore m = 1 and S = P1.
As S ∈ S73, by using Lemma 2.1 we conclude that 13, 19 and 73 do not divide
|Out(S)|, so Step 1 implies that

|S| = 2α1 .3α2 .5α3 .7α4 .13.19.73

where 2 ≤ α1 ≤ 18, 0 ≤ α2 ≤ 4, 0 ≤ α3 ≤ 1 and 0 ≤ α4 ≤ 2. Now, by using
Table 1 it follows that S ∼= L3(2

6), and this completes the proof of Step 2.
Step 3. G is isomorphic to L3(2

6).
By Step 2, L3(2

6) ⊴ G
K ≲ Aut(L3(2

6)). As |G| = |L3(2
6)|, we deduce K = 1,

so G ∼= L3(2
6) and the proof is complete. □

Proposition 3.4. If G is a finite group such that D(G) = D(L3(2
7)) and

|G| = |L3(2
7)|, then G ∼= L3(2

7).

Proof. By using Lemma 2.2, we have D(L3(2
7)) = (1, 2, 1, 2, 3, 1). As |G| =

|L3(2
7)| = 221.3.72.

43.1272.337 and D(G) = D(L3(2
7)), then Γ(G) has the following forms:

•

•

•

• • • • • •

•

• •

p1

127

3

43 p2 p3 p1 3 p2

127

43 p3

Figure 3-14 Figure 3-15

• •

•

•

•

•
p1 p2

127

p4

p5

p3

Figure 3-16

where {p1, p2, p3} = {2, 7, 337} and {p4, p5} = {3, 43}.
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Let K be the maximal normal solvable subgroup of G, then by using a sim-
ilar argument as in the proof of proposition 3.2, we can verify that K is a
{43, 337}′

-group and the factor group G
K is an almost simple group. In fact,

S ⊴ G
K ≲ Aut(S), where S is a finite non-abelian simple group isomorphic to

L3(2
7). Since |G| = |L3(2

7)|, we deduce K = 1, so G ∼= L3(2
7) and the proof

is complete. □

Proposition 3.5. If G is a finite group such that D(G) = D(L3(2
8)) and

|G| = |L3(2
8)|, then G ∼= L3(2

8).

Proof. By using Lemma 2.2, we conclude that D(L3(2
8)) = (2, 2, 4, 2, 2, 4, 2, 2).

Since |G| = |L3(2
8)| = 224.32.52.7.13.172.241.257 and D(G) = D(L3(2

8)), then
we have the following forms for Γ(G):

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

p2

17

p3

5

p1

p5 p6

p4

p2

p1

p3

17

p4

5

p6

p5

Figure 3-17 Figure 3-18

•

•

•

•

•

•

•

•

p2

p1

p3

17

p4

5

p6

p5

Figure 3-19

•

•

•

•

•

•

•

•
p3

p5

17

p1

p6

5

p2

p4

Figure 3-20
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where {p1, p2, p3, p4, p5, p6} = {2, 3, 7, 13, 241, 257}.
We prove this proposition in two parts A and B:
Part A. Γ(G) is a disconnected graph.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a {13, 17, 257}′

-group. In particular, G is non-solvable.
For proving Step 1, we consider separate cases :
Case 1. 257 ∈ {p1, p2, p3}. First, we show that K is a 257′-group. Without
loss of generality, we can suppose that p1 = 257. Assume to the contrary that
|K| is divisible by 257 and let x be an element of K of order 257. According

to Γ(G), CG(x) is a {5, 17, 257}-group. Since NG(⟨x⟩)
CG(x) ≲ Aut(⟨x⟩) ∼= Z256,

π(NG(⟨x⟩)) ⊆ {2, 5, 17, 257}. By Frattini argument, G = KNG(⟨x⟩), which
implies that {3, 7, 13, 241, 257} ⊆ π(K). Since K is solvable, it follows that K
has a Hall {13, 257}-subgroup H. It is seen that H is abelian subgroup of G of
order 13.257. Thus 13 ∼ 257 in Γ(G), which is a contradiction. Therefore K is
a 257′-group.

Now, we show that K is a 17′-group. Assume to the contrary and let 17 ∈
π(K). We know that one primes of {p4, p5, p6} is unequal to 2 and 3, we set it
r. So r does not divide the order of K. Otherwise, we may suppose that T is
a Hall {r, 17}-subgroup of K. It is easy to see that T is a nilpotent subgroup
of order r.17i for i = 1 or 2. Thus r.17 ∈ ω(K) ⊆ ω(G), a contradiction.
Hence, 17 ∈ π(K) ⊆ π(G) − {r}. Let K17 ∈ Syl17(K), by Frattini argument
G = KNG(K17). Therefore, NG(K17) has an element x of order r. Since G
has no element of order r.17, ⟨x⟩ should act fixed point freely on K17, implying
⟨x⟩K17 is a Frobenius group. By Lemma 2.3(b), |⟨x⟩|||K17| − 1. It follows that
r||17i| − 1 for i = 1 or 2, which is a contradiction. Therefore K is a 17′-group.
Next, we prove that K is a 13′-group. Assume to the contrary that |K| is
divisible by 13. Let K13 ∈ Syl13(K), by Frattini argument G = KNG(K13).
Therefore, NG(K13) contains an element of order 257, say x. It is easy to see
that ⟨x⟩K13 is an abelian subgroup of G of order 257.13. Thus 257.13 ∈ ω(G),
which is impossible. Therefore K is a {13, 17, 257}′-group. In addition since
G ̸= K, G is non-solvable.
Case 2. 257 ∈ {p4, p5, p6}. Without loss of generality, we can suppose that
p4 = 257. Now, we consider this part in different cases:
a. 13 ∈ {p1, p2, p3}. Without loss of generality, we can suppose that p1 = 13.
First, we show that K is a 257′-group. Assume to the contrary that there
exists an element x of K of order 257. By the structure of Γ(G), we see that
CG(x) is a {257, p5, p6}-group. Therefore π(NG(⟨x⟩)) ⊆ {2, 257, p5, p6}. Now,
from Frattini argument, we deduce that G = KNG(⟨x⟩), which implies that
{5, 17, 257} ⊆ π(K). Let T be a Hall {17, 257}-subgroup of K. It is easy to
see that T is a nilpotent subgroup of G of order 257.17i for i = 1 or 2. Hence
17 ∼ 257 in Γ(G), which is impossible. Therefore K is a 257′-group.
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Next, we show thatK is a p
′
-group, where p ∈ {13, 17}. Assume the contrary

and let Kp ∈ Sylp(K). By Frattini argument G = KNG(Kp), hence NG(Kp)
contains an element of order 257, say x. Since G has no element of order
p.257, ⟨x⟩ should act fixed point freely on Kp, which implies that ⟨x⟩Kp is a
Frobenius group. By using Lemma 2.3(b) it follows that |⟨x⟩||(|Kp|−1), which
is a contradiction. Therefore K is a {13, 17}′-group.
b. 13 ∈ {p5, p6}. Without loss of generality, we can suppose that p5 = 13. By
using a similar argument as in the proof of Part A, we can verify that K is a
17

′
-group. Now, we show that K is a p

′
-group, where p ∈ {13, 257}. Assume

the contrary and let Kp ∈ Sylp(K). By Frattini argument G = KNG(Kp),
hence NG(Kp) contains an element of order 257, say x. It is easy to see that
⟨x⟩Kp is an abelian subgroup of G of order p.17. Thus p.17 ∈ ω(G), which is a
contradiction. Therefore K is a {13, 17, 257}′-group. In addition since G ̸= K,
G is non-solvable.

Step 2. The quotient G
K is an almost simple group. In fact, S⊴ G

K ≲ Aut(S),

where S is a finite non-abelian simple group isomorphic to L3(2
8).

Let G = G
K . Then S := Soc(G) = P1 × P2 × ... × Pm, where Pi

,s are finite

non-abelian simple groups and S ⊴ G
K ≲ Aut(S). We show that m = 1 and

S = P1
∼= L3(2

8). Assume to the contrary that m ≥ 2. We get a contradiction
by considering tow case 1 and case 2.
Case 1. 2 ∈ {p1, p2, p3}. Without loss of generality, we can assume that
p1 = 2. We claim that 13 does not divide |S|. Assume the contrary and let
13 | |S|, on the other hand, 2 ∈ π(Pi) for every i, hence 2 ∼ 13, which is a
contradiction. Now, by Step 1 we observe that 13 ∈ π(G) ⊆ π(Aut(S)). But
Aut(S) = Aut(S1) × Aut(S2) × ... × Aut(Sr), where the groups Sj are direct
products of isomorphic Pi

,s such that S = S1 × S2 × ... × Sr. Therefore for
some j, 13 divides the order of an automorphism group of a direct product
Sj of t isomorphic simple groups Pi. Since Pi ∈ S257, Lemma 2.1 follows that
|Out(Pi)| is not divisible by 13, so 13 does not divide the order of Aut(Pi). Now,
by using Lemma 2.4 we obtain |Aut(Sj)| = |Aut(Pi)|t.t!. Therefore t ≥ 13 and
so 226 must divide the order of G, which is a contradiction. Therefore m = 1,
and then S = P1.
Case 2. 2 ∈ {p4, p5, p6}. Without loss of generality, we can assume that
p4 = 2. By using similar argument, as in the proof of case 1 and replace 17
with 13 we conclude that 234 must divide the order of G, which is impossible.
Therefore m = 1 and then S = P1.
As S ∈ S257, by Lemma 2.1 we conclude that 13,17 and 257 don’t divide
|Out(S)|, so Step 1 implies that

|S| = 2α1 .3α2 .5α3 .7α4 .13.17.241α5 .257

where 2 ≤ α1 ≤ 24, 0 ≤ α2 ≤ 2, 0 ≤ α3 ≤ 2, 0 ≤ α4 ≤ 1 and 0 ≤ α5 ≤ 1. Now,
using Table 1 it follows that S ∼= L3(2

8), and this completes the proof of Step
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2.
Part B. Γ(G) is a connected graph.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a {241, 257}′

-group. In particular, G is non-solvable.
For proving this Step, we consider separate cases :
Case 1. 241 ∼ 257 and {p1, p2} ≠ {241, 257} in Figure 3-20.
In this case, we show that K is a p′-group where p ∈ {241, 257}. Assume the
contrary and let p ∈ π(K). Then 13 does not divide the order of K. Otherwise,
we may suppose that T is a Hall {p, 13}-subgroup of K. It is seen that T is a
nilpotent subgroup of K of order p.13. Thus, p.13 ∈ ω(K) ⊆ ω(G), a contra-
diction. Therefore, p ∈ π(K) ⊆ π(G) − {13}. Let Kp ∈ Sylp(K). By Frattini
argument, we deduce that G = KNG(Kp). Therefore the normalizer NG(Kp)
contains an element of order 13, say x. Since G has no element of order p.13,
⟨x⟩ should act fixed point freely on Kp, implying ⟨x⟩Kp is a Frobenius group.
By Lemma 2.3(b), |⟨x⟩|||Kp| − 1, which is a contradiction. Therefore K is a
{241, 257}′-group.
Case 2. {p1, p2} = {241, 257} in Figure 3-20.
In this case, we show that K is a p′-group where p ∈ {241, 257}. Assume the
contrary and let p ∈ π(K). Now, by using a similar argument as in the proof
of case 1 and considering 17 instead of 13, we get a contradiction. Therefore
K is a {241, 257}′-group.
Case 3. 241 ≁ 257.
First assume that {241, 257} ⊆ π(K). Then K has a Hall {241, 257}-subgroup
H. It is easy to see that H is an abelian subgroup of order 241.257, which
implies that 241.257 ∈ ω(K) ⊆ ω(G), a contradiction.
Next, we assume 241 ∈ π(K) and 257 /∈ π(K). Then K is a {2, 3, 5, 7, 13,
17, 241}-group. Let K241 ∈ Syl241(K). By Frattini argument, we deduce that
G = KNG(K241). Therefore the normalizer NG(K241) contains an element of
order 257, say x. Now ⟨x⟩K241 is a subgroup of G of order 241.257, which is
abelian. Hence, 241.257 ∈ ω(G), a contradiction.
Finally, we assume 257 ∈ π(K) and 241 /∈ π(K). In this case, K is a
{2, 3, 5, 7, 13, 17, 257}-group and we consider a Sylow 257-subgroup K257 of K.
As before, we see that G = KNG(K257) and by a similar argument, we get

241.257 ∈ ω(G), which is a contradiction. Therefore K is a {241, 257}′
-group.

In addition since G ̸= K, G is non-solvable and this completes the proof of
Step 1.

Step 2. The quotient G
K is an almost simple group. In fact, S⊴ G

K ≲ Aut(S),

where S is a finite non-abelian simple group isomorphic to L3(2
8).

Let G = G
K . Then S := Soc(G) = P1 × P2 × ... × Pm, where Pi

,s are finite

non-abelian simple groups and S ⊴ G
K ≲ Aut(S). We show that m = 1 and

S = P1
∼= L3(2

8).
Assume to the contrary that m ≥ 2. By the structure of Γ(G), we know
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that there exists one prime number p in {241, 257} such that p ≁ 2. Now,
we claim that p does not divide |S|. Assume the contrary and let p | |S|,
on the other hand, 2 ∈ π(Pi) for every i, hence 2 ∼ p, which is a con-
tradiction. Now, by Step 1, we observe that p ∈ π(G) ⊆ π(Aut(S)). But
Aut(S) = Aut(S1) × Aut(S2) × ... × Aut(Sr), where the groups Sj are direct
products of isomorphic Pi

,s such that S = S1×S2×...×Sr. Therefore, for some
j, p divides the order of an automorphism group of a direct product Sj of t iso-
morphic simple groups Pi. Since Pi ∈ S257, Lemma 2.1 implies that |Out(Pi)|
is not divisible by p, so p does not divide the order of Aut(Pi). Now, by using
Lemma 2.4 we obtain |Aut(Sj)| = |Aut(Pi)|t.t!. Therefore t ≥ p and so 22p

must divide the order of G, which is a contradiction because p ∈ {241, 257}.
Therefore m = 1 and S = P1.
As S ∈ S257, by Lemma 2.1 we conclude that 241 and 257 don’t divide
|Out(S)|, so Step 1 implies that

|S| = 2α1 .3α2 .5α3 .7α4 .13α5 .17α6 .241.257

where 2 ≤ α1 ≤ 24, 0 ≤ α2 ≤ 2, 0 ≤ α3 ≤ 2, 0 ≤ α4 ≤ 1, 0 ≤ α5 ≤ 1 and
0 ≤ α6 ≤ 1. Now, using Table 1 it follows that S ∼= L3(2

8), and this completes
the proof of Step 2.

Step 3. G is isomorphic to L3(2
8).

By Step 2 in Parts A and B, we conclude that L3(2
8) ⊴ G

K ≲ Aut(L3(2
8)).

As |G| = |L3(2
8)|, we deduce that K = 1, so G ∼= L3(2

8) and the proof is
complete. □
Proposition 3.6. If G is a finite group such that D(G) = D(L3(2

10)) and
|G| = |L3(2

10)|, then G ∼= L3(2
10).

Proof. By using Lemma 2.2, we conclude that D(L3(2
10)) = (2, 2, 3, 2, 5,

5, 3, 2, 2). Since |G| = |L3(2
10)| = 245.34.5.7.113.313.41.151.331 and D(G) =

D(L3(2
10)), the prime graph ofG has several possibilities shown in the following

figures:

•

•

•

•

•

•

• •

•

• • • •

• • • • •

5

41

11

31

p2

p1

p4 p5

p3

p1

p6

11

p2 p7

31

p3

p5

p4

Figure 3-21 Figure 3-22
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•

•

•

•

•

•

•

•
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•

•

•

•
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Figure 3-23 Figure 3-24
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•

•

•

• •
•
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p3

p2

5

31
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Figure 3-25 Figure 3-26

where {p1, p2, p3, p4, p5} = {2, 3, 7, 151, 331} and {p6, p7} = {5, 41}.
Step 1. Let K be the maximal normal solvable subgroup of G. Then K is

a {41, 151, 331}′
-group. In particular, G is non-solvable.

We consider this step in two parts A and B:
Part A. Consider Figures 3-21, 3-23 and 3-25.
First we show that K is a p

′
-group, where p ∈ {151, 331}. Assume the contrary

and let p ∈ π(K). Then 41 ∤ |K|, otherwise we may suppose that H is a Hall
{41, p}-subgroup of K. It is easy to see that H is an abelian subgroup of
G of order 41.p. Hence 41 ∼ p, which is a contradiction. Therefore p ∈
π(K) ⊆ π(G)− {41}. Suppose that Kp ∈ Sylp(K), then by Frattini argument
G = KNG(Kp). Therefore 41 ∈ π(NG(Kp)). If x is an element of NG(Kp) of
order 41, then ⟨x⟩ should act fixed point freely on Kp, since G has no element
of order 41.p. Hence by Lemma 2.3(b) we obtain that |⟨x⟩|||Kp| − 1, that is

impossible. Therefore K is a p
′
-group.

Next, we show that K is a 41
′
-group. Assume the contrary and let x be

an element of order 41. According to Γ(G), CG(x) is a {5, 11, 31, 41}-group.
Since NG(⟨x⟩)

CG(x) ≲ Aut(⟨x⟩) ∼= Z40, π(NG(⟨x⟩)) ⊆ {2, 5, 11, 31, 41}. By Frattini

argument, G = KNG(⟨x⟩), so 331 must divide the order of K, which is a

contradiction. Therefore K is a {41, 151, 331}′
-group and this completes the

proof of this part.
Part B. Consider Figures 3-22, 3-24 and 3-26.
Now, we consider this part in different cases:
Case 1. 151 ∼ 331. Then the proof is similar to Part A.



Characterization of projective special linear groups 568

Case 2. 151 ≁ 331. First, we show that K is a {151, 331}′
-group. Assume

that {151, 331} ⊆ π(K). Then K has a Hall {151, 331}-subgroup H. It is
easy to see that H is an abelian subgroup of order 151.331, which implies that
151.331 ∈ ω(K) ⊆ ω(G), a contradiction.
Now, we assume 151 ∈ π(K) and 331 /∈ π(K). Then K is a {2, 3, 5, 7, 11, 31, 41,
151}-group. Let K151 ∈ Syl151(K). By Frattini argument, we deduce that
G = KNG(K151). Therefore the normalizer NG(K151) contains an element of
order 331, say x. Now ⟨x⟩K151 is a subgroup of G of order 151.331, which is
abelian. Hence, 151.331 ∈ ω(G), a contradiction.
Next, we assume 331 ∈ π(K) and 151 /∈ π(K). In this case, K is a {2, 3, 5, 7, 11,
31, 41, 331}-group and we consider a Sylow 331-subgroup K331 of K. As before,
we see thatG = KNG(K331) and by a similar argument, we get 151.331 ∈ ω(G),

which is a contradiction. Therefore K is {151, 331}′
-group.

Finally, we show thatK is a 41
′
-group. Assume the contrary and let 41 ∈ π(K).

By the structure of Γ(G), we know that there exists one prime number p in
{7, 151, 331} such that p ≁ 41. Now, we claim that p does not divide the
order of K. Otherwise, we may suppose that T is a Hall {41, p}-subgroup
of K. It is seen that T is an abelian subgroup of K of order 41, p. Thus,
41.p ∈ ω(K) ⊆ ω(G), a contradiction. Thus, 41 ∈ π(K) ⊆ π(G) − {p}. Let
K41 ∈ Syl41(K). By Frattini argument, G = KNG(K41). Therefore, NG(K41)
contains an element x of order p. Since G has no element of order p.41, ⟨ x⟩
should act fixed point freely on K41, which implies that ⟨x⟩K41 is a Frobenius
group. By using Lemma 2.3(b), we conclude that |⟨x⟩||(|K41| − 1), which is

impossible. Therefore K is a {41, 151, 331}′
-group. In addition since G ̸= K,

G is non-solvable and this completes the proof of Step 1.
Step 2. The quotient G

K is an almost simple group. In fact, S⊴ G
K ≲ Aut(S),

where S is a finite non-abelian simple group isomorphic to L3(2
10).

Let G = G
K . Then S := Soc(G) = P1 × P2 × ... × Pm, where Pi

,s are finite

non-abelian simple groups and S ⊴ G
K ≲ Aut(S). We show that m = 1 and

S = P1
∼= L3(2

10). Assume to the contrary that m ≥ 2. We get a contradiction
by considering three cases 1 and 2.
Case 1. Consider Figures 3-21, 3-23 and 3-25.
In this case, we claim that 41 does not divide |S|. Assume the contrary and
let 41 | |S|, on the other hand, 2 ∈ π(Pi) for every i, hence 2 ∼ 41, which is a
contradiction. Now, by Step 1 we observe that 41 ∈ π(G) ⊆ π(Aut(S)). But
Aut(S) = Aut(S1) × Aut(S2) × ... × Aut(Sr), where the groups Sj are direct
products of isomorphic Pi

,s such that S = S1 × S2 × ... × Sr. Therefore, for
some j, 41 divides the order of an automorphism group of a direct product Sj

of t isomorphic simple groups Pi. Since Pi ∈ S331, Lemma 2.1 implies that
|Out(Pi)| is not divisible by 41, so 41 does not divide the order of Aut(Pi). Now,
by using Lemma 2.4, we obtain |Aut(Sj)| = |Aut(Pi)|t.t!. Therefore t ≥ 41 and
so 282 must divide the order of G, which is a contradiction. Therefore m = 1,
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and then S = P1.
Case 2. Consider Figures 3-22, 3-24 and 3-26.
In this case, by the structure of Γ(G), we know that there exists one prime
number p in {151, 331} such that p ≁ 2. Now, we claim that p does not divide
|S|. Assume the contrary and let p | |S|, on the other hand, 2 ∈ π(Pi) for
every i, hence 2 ∼ p, which is a contradiction. Hence, by Step 1 we observe
that p ∈ π(G) ⊆ π(Aut(S)). Now, by using a similar argument as in the proof
of Case 1, we can verify that 22p must divide |G|, which is a contradiction.
Therefore m = 1 and S = P1.
As S ∈ S331, by using Lemma 2.1 we conclude that 41,151 and 331 don’t divide
|Out(S)|, so Step 1 implies that

|S| = 2α1 .3α2 .5α3 .7α4 .11α5 .31α6 .41.151.331

where 2 ≤ α1 ≤ 45, 0 ≤ α2 ≤ 4, 0 ≤ α3 ≤ 1, 0 ≤ α4 ≤ 1, 0 ≤ α5 ≤ 1 and
0 ≤ α6 ≤ 1. Now, by using Table 1 it follows that S ∼= L3(2

10), and this
completes the proof of Step 2.

Step 3. G is isomorphic to L3(2
10).

By Step 2, L3(2
10)⊴ G

K ≲ Aut(L3(2
10)). As |G| = |L3(2

10)|, we deduce K = 1,

so G ∼= L3(2
10) and the proof is complete. □

Proposition 3.7. If G is a finite group such that D(G) = D(L3(2
12)) and

|G| = |L3(2
12)|, then G ∼= L3(2

12).

Proof. By using Lemma 2.2, we conclude that D(L3(2
12)) = (4, 6, 6, 6, 6,

5, 3, 3, 3, 3, 5). Since |G| = |L3(2
12)| = 236.35.52.72.132.17.19.37.73.109.

241 and D(G) = D(L3(2
12)), then we have the following forms for Γ(G):

•

•

•

• •

•

•

•

•

•

•
17

3

2

7 13

5

241

109

19

73

37

Figure 3-27

•
• •

• •

• •

• •
• •

2

p9 p10

p7 p8

p5 p6

p1 p4

p2 p3

Figure 3-28
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•
• •

• •

• •

• •
• •

2

p9 p10

p7 p8

p5 p6

p1 p4

p2 p3

Figure 3-29

•
• •

• •

• •

• •
• •

2

p9 p10

p7 p8

p5 p6

p1 p4

p2 p3

Figure 3-30

•
• •

• •

• •

• •
• •

2

p9 p10

p7 p8

p5 p6

p1 p4

p2 p3

Figure 3-31
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•
• •

• •

• •

• •
• •

2

p9 p10

p7 p8

p5 p6

p1 p4

p2 p3

Figure 3-32

•
• •

• •

• •

• •
• •

2

p9 p10

p7 p8

p5 p6

p1 p4

p2 p3

Figure 3-33

•
• •

• •

• •

• •
• •

2

p9 p10

p7 p8

p5 p6

p1 p4

p2 p3

Figure 3-34
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•
• •

• •

• •

• •
• •

2

p9 p10

p7 p8

p5 p6

p1 p4

p2 p3

Figure 3-35

•
• •

• •

• •

• •
• •

2

p9 p10

p7 p8

p5 p6

p1 p4

p2 p3

Figure 3-36

•
• •

• •

• •

• •
• •

2

p9 p10

p7 p8

p5 p6

p1 p4

p2 p3

Figure 3-37
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where {p1, p2, p2, p2} = {3, 5, 7, 13}, {p5, p6} = {17, 241} and {p7, p8, p9,
p10} = {19, 37, 73, 109}.
we prove this proposition in two parts A and B:
Part A. Consider Figure 3-22, 3-24, 3-25, 3-26, 3-27, 3-29 and 3-31.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a {19, 37, 73, 109, 241}′

-group. In particular, G is non-solvable.
We consider this step in two cases:
Case 1. Consider Figure 3-27.
First we show that K is a 241

′
-group. Assume the contrary and let 241 ∈ π(K).

We claim that 19 does not divide the order of K. Otherwise, we may suppose
that T is a Hall {19, 241}-subgroup of K. It is easy to see that T is an abelian
subgroup of order 19.241 and so 19.241 ∈ ω(K) ⊆ ω(G), a contradiction. Thus,
241 ∈ π(K) ⊆ π(G) − {19}. Let K241 ∈ Syl241(K). By Frattini argument,
G = KNG(K241). Therefore, NG(K241) contains an element x of order 19.
Since G has no element of order 19.241, ⟨x⟩ should act fixed point freely on
K241, which implies that ⟨x⟩K241 is a Frobenius group. By using Lemma 2.3(b)
it follows that |⟨x⟩||(|K241| − 1), which is a contradiction.

Next, we show that K is a p
′
-group, where p ∈ {19, 37, 73, 109}. Assume

the contrary and let x be an element of order p. According to Γ(G), CG(x)

is a {19, 37, 109, 73}-group. Since NG(⟨x⟩)
CG(x) ≲ Aut(⟨x⟩) ∼= Zp−1, π(NG(⟨x⟩)) ⊆

{2, 3, 19, 37, 109, 73}. By Frattini argument, G = KNG(⟨x⟩), so 241 must divide
the order of K, which is impossible. Therefore K is a {19, 37, 73, 109, 241}′-
group.
Case 2. Consider Figures 3-29, 3-30, 3-31, 3-32, 3-34 and 3-36.
First, we show that K is a p

′
-group, where p ∈ {p8, p10}. Assume the contrary

and let p ∈ π(K). Then p7 does not divide the order of K. Otherwise, we may
suppose that T is a Hall {p, p7}-subgroup of K. It is easy to see that T is an
abelian subgroup of order p.p7 and so p.p7 ∈ ω(K) ⊆ ω(G), a contradiction.
Thus, p ∈ π(K) ⊆ π(G) − {p7}. Let Kp ∈ Sylp(K). By Frattini argument,
G = KNG(Kp). Therefore, NG(Kp) contains an element x of order p7. Since
G has no element of order p.p7, ⟨x⟩ should act fixed point freely on Kp, which
implies that ⟨x⟩Kp is a Frobenius group. By using Lemma 2.3(b) it follows that
|⟨x⟩||(|Kp| − 1), which is a contradiction because {p7, p} ⊆ {19, 37, 73, 109}.
Therefore K is a {p8, p10}′-group.
Now, by using similar argument as above, we conclude that K is a {p7, p9}′-
group, because p10 does not divide the order of K.
Next, we prove that K is a 241

′
-group. We assume to the contrary that 241||K|

and K241 ∈ Syl241(K). Then by Frattini argument G = KNG(K241). In
Figures 3-32, 3-34 and 3-36, we set r = p9 and in Figures 3-29 and 3-30, we
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set r = p8 and in Figure 3-31, we set r = p10. Since r does not divide |K|,
we conclude that r must divide the order of NG(K241). Let x be an element
of NG(K241) of order r. As ⟨x⟩ normalizes K241, then ⟨x⟩K241 is a subgroup
of G, which is abelian. Thus r ∼ 241, which is impossible. Therefore K is a
{19, 37, 73, 109, 241}′-group. In addition since G ̸= K, G is non-solvable.

Step 2. The quotient G
K is an almost simple group. In fact, S⊴ G

K ≲ Aut(S),

where S is a finite non-abelian simple group isomorphic to L3(2
12).

Let G = G
K . Then S := Soc(G) = P1 × P2 × ... × Pm, where Pi

,s are finite

non-abelian simple groups and S ⊴ G
K ≲ Aut(S). We show that m = 1 and

S = P1
∼= L3(2

12). Assume to the contrary that m ≥ 2. We get a contradiction
by considering two cases:
Case 1. Consider Figure 3-27.
In this case, we claim that 19 does not divide |S|. Assume to the contrary and
let 19 | |S|, on the other hand, 2 ∈ π(Pi) for every i, hence 2 ∼ 19, which is a
contradiction. Now, by Step 1 we observe that 19 ∈ π(G) ⊆ π(Aut(S)). But
Aut(S) = Aut(S1) × Aut(S2) × ... × Aut(Sr), where the groups Sj are direct
products of isomorphic Pi

,s such that S = S1 × S2 × ... × Sr. Therefore, for
some j, 19 divides the order of an automorphism group of a direct product Sj

of t isomorphic simple groups Pi. Since Pi ∈ S241, Lemma 2.1 implies that
|Out(Pi)| is not divisible by 19, so 19 does not divide the order of Aut(Pi). Now,
by using Lemma 2.4, we obtain |Aut(Sj)| = |Aut(Pi)|t.t!. Therefore t ≥ 19 and
so 238 must divide the order of G, which is a contradiction. Therefore m = 1,
and then S = P1.
Case 2. Consider Figures 3-29, 3-30, 3-31, 3-32, 3-34 and 3-36.
In Figures 3-29, 3-31, 3-32, 3-34 and 3-36, we set r = p8 and in Figure 3-30, we
set r = p7. Now, we claim that r does not divide |S|. Assume to the contrary
and let r | |S|, on the other hand, 2 ∈ π(Pi) for every i, hence 2 ∼ r, which
is a contradiction. Thus, by Step 1 we observe that r ∈ π(G) ⊆ π(Aut(S)).
Now, by using a similar argument as in the proof of Part A, we can show that
22r must divide |G|, which is a contradiction, because r ∈ {19, 37, 73, 109}.
Therefore m = 1 and S = P1.
As S ∈ S241, by Lemma 2.1 we conclude that 19,37,73,109 and 241 don’t divide
|Out(S)|, so Step 1 implies that

|S| = 2α1 .3α2 .5α3 .7α4 .13α5 .17α6 .19.37.73.109.241

where 2 ≤ α1 ≤ 36, 0 ≤ α2 ≤ 5, 0 ≤ α3 ≤ 2, 0 ≤ α4 ≤ 2, 0 ≤ α5 ≤ 2 and
0 ≤ α6 ≤ 1. Now, by using Table 1 it follows that S ∼= L3(2

12), and this
completes the proof of Step 2.
Part B. Consider Figure 3-28, 3-23, 3-35 and 3-37.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a 241′-group. In particular, G is non-solvable.
First, we show thatK is a p

′

6-group. Assume to the contrary and let p6 ∈ π(K).
Then p7 does not divide the order of K. Otherwise, we may suppose that
T is a Hall {p6, p7}-subgroup of K. It is easy to see that T is an abelian
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subgroup of order p6.p7 and so p6.p7 ∈ ω(K) ⊆ ω(G), a contradiction. Thus,
p6 ∈ π(K) ⊆ π(G) − {p7}. Let Kp6 ∈ Sylp6

(K). By Frattini argument,
G = KNG(Kp6). Therefore, NG(Kp6) contains an element x of order p7. Since
G has no element of order p6.p7, ⟨x⟩ should act fixed point freely on Kp, which
implies that ⟨x⟩Kp is a Frobenius group. By using Lemma 2.3(b) it follows that
|⟨x⟩||(|Kp6 | − 1), which is a contradiction because {p6, p7} ⊆ {19, 37, 73, 109}.
Therefore K is a p′6-group.
Next, we show that K is a p′5-group. In Figures 3-33, 3-35 and 3-37, we set
r = p10 and in Figure 3-28, we set r = p8. Now, by using a similar argument
as above and replacing r with p7 we conclude that K is a p′5-group. Therefore
K is a {p5, p6}′-group. In addition since G ̸= K, G is non-solvable.

Step 2. The quotient G
K is an almost simple group. In fact, S⊴ G

K ≲ Aut(S),

where S is a finite non-abelian simple group isomorphic to L3(2
12).

Let G = G
K . Then S := Soc(G) = P1 × P2 × ... × Pm, where Pi

,s are finite

non-abelian simple groups and S ⊴ G
K ≲ Aut(S). We show that m = 1 and

S = P1
∼= L3(2

12).
Assume to the contrary that m ≥ 2. We claim that 241 does not divide |S|.
Assume to the contrary and let 241 | |S|, on the other hand, 2 ∈ π(Pi) for
every i, hence 2 ∼ 241, which is a contradiction. Now, by Step 1 we observe
that 241 ∈ π(G) ⊆ π(Aut(S)). But Aut(S) = Aut(S1) × Aut(S2) × ... ×
Aut(Sr), where the groups Sj are direct products of isomorphic Pi

,s such that
S = S1 × S2 × ... × Sr. Therefore, for some j, 241 divides the order of an
automorphism group of a direct product Sj of t isomorphic simple groups Pi.
Since Pi ∈ S241, Lemma 2.1 implies that |Out(Pi)| is not divisible by 241, so
241 does not divide the order of Aut(Pi). Now, by using Lemma 2.4, we obtain
|Aut(Sj)| = |Aut(Pi)|t.t!. Therefore t ≥ 241 and so 2482 must divide the order
of G, which is a contradiction. Therefore m = 1, and then S = P1.
As S ∈ S241, by Lemma 2.1 we conclude that 241 does not divide |Out(S)|, so
Step 1 implies that

|S| = 2α1 .3α2 .5α3 .7α4 .13α5 .17α6 .19α7 .37α8 .73α9 .109α10 .241

where 2 ≤ α1 ≤ 36, 0 ≤ α2 ≤ 5, 0 ≤ α3 ≤ 2, 0 ≤ α4 ≤ 2, 0 ≤ α5 ≤ 2,
0 ≤ α6 ≤ 1, 0 ≤ α7 ≤ 1, 0 ≤ α8 ≤ 1, 0 ≤ α9 ≤ 1 and 0 ≤ α10 ≤ 1. Now, by
using Table 1 it follows that S ∼= L3(2

12), and this completes the proof of Step
2.

Step 3. G is isomorphic to L3(2
12).

By Step 2 in Parts A and B, we conclude that L3(2
12) ⊴ G

K ≲ Aut(L3(2
12)).

As |G| = |L3(2
12)|, we deduce K = 1 and so G ∼= L3(2

12). □

The proof of our main Theorem is completed now.
As a consequence of the main theorem we will mention the following corollary,
which is related to characterizable by prime graph.

Corollary 1. Let G be a finite group satisfying |G| = |L3(2
n)|, where n ∈

{4, 5, 6, 7, 8, 10, 12}. If Γ(G) = Γ(L3(2
n)), then G ∼= L3(2

n).
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Proof. Since |G| = |L3(2
n)| and Γ(G) = Γ(L3(2

n)), we obtain |G| = |L3(2
n)|

and D(G) = D(L3(2
n)). By using the main theorem, we have G ∼= L3(2

n). □

Remark 3.1. Shi and Bi in [6] put forward the following conjecture:
Conjecture. Let G be a group and M be a finite simple group. Then G ∼= M
if and only if
(i) |G| = |M |,
(ii) ω(G) = ω(M).

A series of papers proved that this conjecture is true for most of finite simple
groups. As the consequence of the main theorem, we can conclude that this
conjecture is valid for the group under study.

Corollary 2. Let G be a finite group satisfying |G| = |L3(2
n)|, where n ∈

{4, 5, 6, 7, 8, 10, 12}. If ω(G) = ω(L3(2
n)), then G ∼= L3(2

n).

Table 1. Finite simple groups S ∈ Sp except alternating group

S |S|
p = 17
L2(17) 24 · 32 · 17
L2(16) 24 · 3 · 5 · 17
S4(4) 28 · 32 · 52 · 17
He 210 · 33 · 52 · 73 · 17

O−
8 (2) 212 · 34 · 5 · 7 · 17

L4(4) 212 · 34 · 52 · 7 · 17
S8(2) 216 · 35 · 52 · 7 · 17
U4(4) 212 · 32 · 53 · 13 · 17
U3(17) 26 · 34 · 7 · 13 · 173
O−

10(2) 220 · 36 · 52 · 7 · 11 · 17
L2(13

2) 23 · 3 · 5 · 7 · 132 · 17
S4(13) 26 · 32 · 5 · 72 · 134 · 17
L3(16) 212 · 32 · 52 · 7 · 13 · 17
S6(4) 218 · 34 · 53 · 7 · 13 · 17
O+

8 (4) 224 · 35 · 54 · 7 · 13 · 172
F4(2) 224 · 36 · 52 · 72 · 13 · 17
p = 73
U3(9) 25 · 36 · 52 · 73
L3(8) 29 · 32 · 72 · 73
L2(73) 23 · 32 · 37 · 73
U4(9) 29 · 312 · 53 · 41 · 73
3D4(3) 26 · 312 · 72 · 132 · 73
L2(2

9) 29 · 33 · 7 · 19 · 73
G2(8) 218 · 35 · 72 · 19 · 73

Table 1. (Continued)
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S |S|
L2(3

6) 23 · 36 · 5 · 7 · 13 · 73
S4(27) 26 · 312 · 5 · 72 · 132 · 73
G2(9) 28 · 312 · 52 · 7 · 13 · 73
L4(8) 218 · 34 · 5 · 73 · 13 · 73
L3(64) 218 · 34 · 5 · 72 · 13 · 19 · 73
S6(8) 227 · 37 · 5 · 73 · 13 · 19 · 73
O+

8 (8) 236 · 39 · 52 · 74 · 132 · 19 · 73
L3(3

4) 29 · 312 · 52 · 7 · 13 · 41 · 73
S6(9) 212 · 318 · 53 · 7 · 13 · 41 · 73
O7(9) 212 · 318 · 53 · 7 · 13 · 41 · 73
F4(3) 215 · 324 · 52 · 72 · 132 · 41 · 73
O+

8 (9) 216 · 324 · 54 · 7 · 13 · 412 · 73
L2(73

2) 24 · 32 · 5 · 13 · 37 · 41 · 732
S4(73) 28 · 34 · 5 · 13 · 372 · 41 · 734
E6(2) 236 · 36 · 52 · 73 · 13 · 17 · 31 · 73
U4(27) 27 · 318 · 5 · 73 · 132 · 19 · 37 · 73
O−

12(3) 218 · 330 · 53 · 7 · 112 · 13 · 41 · 61 · 73
L6(9) 218 · 330 · 53 · 72 · 112 · 132 · 41 · 61 · 73
O13(3) 221 · 336 · 53 · 72 · 112 · 132 · 41 · 61 · 73
S12(3) 221 · 336 · 53 · 72 · 112 · 132 · 41 · 61 · 73
2E6(3) 219 · 336 · 52 · 73 · 132 · 19 · 37 · 41 · 61 · 73
p = 151
L3(32) 215.3.7.11.312.151
L4(32) 230.32.52.7.112.313.41.151
L5(8) 230.34.5.74.13.31.73.151
L6(8) 245.37.5.75.13.19.31.732.151
L2(151) 23.3.52.19.151
p = 241
L2(241) 24.3.5.112.241
L4(64) 236.37.52.73.132.17.19.73.241
S8(8) 248.39.52.74.133.17.19.241
U4(64) 236.34.53.72.133.17.37.109.241
O+

10(8) 260.39.52.75.132.172.19.31.73.151.241
L3(2

12) 236.35.52.72.132.17.19.37.73.109.241
S6(64) 254.36.53.73.133.17.19.37.109.241
O+

8 (64) 272.37.53.74.134.172.37.73.109.2412

F4(8) 272.310.52.74.132.17.37.732.109.241

Table 1. (Continued)
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S |S|
p = 257
L2(257) 28.3.43.257
L2(2

8) 28.3.5.17.257
S4(16) 216.32.52.172.257
U4(16) 224.32.52.173.241.257
O−

8 (4) 224.34.53.7.13.17.257
S8(4) 232.35.54.7.13.172.257

L2(241
2) 25.3.5.73.112.113.2412.257

S4(241) 210.32.52.114.113.2412.257
U3(257) 211.32.7.13.43.241.2573

O−
10(4) 240.35.56.7.13.172.41.257

L3(2
8) 224.32.52.7.13.172.241.257

S6(16) 236.34.53.7.13.173.241.257
O+

8 (16) 248.35.54.7.13.174.241.257
F4(4) 248.36.54.72.132.172.241.257
O+

10(4) 240.36.54.7.11.13.172.31.257
L5(16) 240.35.54.7.11.13.172.31.41.257
S10(4) 250.36.56.7.11.13.172.31.41.257
O+

12(4)) 260.38.57.72.11.132.172.31.41.257
U8(4) 256.36.57.7.132.172.41.43.127.257
O−

12(4) 260.36.56.7.11.13.173.31.41.241.257
L6(16) 260.36.56.72.11.132.173.31.41.241.257
S12(4) 272.38.57.72.11.132.173.31.41.241.257
O−

16(2) 256.39.53.72.11.13.17.31.43.127.257
L8(4) 256.39.54.72.11.13.172.31.43.127.257
S16(2) 264.310.54.72.11.13.172.31.43.127.257
2E6(4) 272.36.57.72.133.172.37.41.109.241.257
O−

18(2) 272.313.54.72.11.13.172.19.31.43.127.257
E6(4) 272.39.54.73.11.132.172.19.31.73.241.257
O+

18(2) 272.310.54.73.11.13.172.31.43.73.127.257
U9(4) 272.35.59.7.133.172.29.37.41.109.113.257
L9(4) 272.311.54.73.11.13.172.19.31.43.73.127.257
S18(2) 281.313.54.73.11.13.172.19.31.43.73.127.257
O+

20(2) 290.314.54.73.112.13.172.19.312.43.73.127.257
O−

14(4) 284.38.58.73.11.132.172.29.31.41.113.241.257
L10(4) 290.313.56.73.112.13.172.19.312.41.43.73.127.257

Table 1. (Continued)
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S |S|
S20(2) 2100.314.56.73.112.13.172.19.312.41.43.73.127.257
U10(4) 290.36.510.7.11.133.172.29.31.37.412.109.113.257
L7(16) 284.38.57.72.11.132.173.29.31.41.43.113.127.241.257
S14(4) 298.37.56.72.11.132.173.29.31.41.43.113.127.241.257
O+

16(4) 2112.38.57.72.11.132.174.29.31.41.43.113.127.241.2572

O+
22(2) 2110.314.56.73.112.13.172.19.23.312.41.43.73.89.127.257

E7(4) 2126.311.58.73.11.133.172.19.29.31.37.41.43.73.109.113.127.241.257
p = 331
L2(331) 22.3.5.11.83.331
L3(331) 27.32.52.313.331
U3(32) 215.32.112.31.331
L2(31

3) 25.32.5.72.19.313.331
G2(31) 212.33.52.73.19.316.331
U4(32) 230.34.52.113.312.41.331
L4(31) 213.34.53.19.316.331
L2(2

15) 215.32.7.11.31.151.331
G2(32) 230.33.7.112.312.151.331
U5(8) 230.39.5.72.11.13.19.331
U6(8) 245.311.5.73.11.13.192.73.331
L3(2

10) 245.34.5.7.113.313.41.151.331
S6(32) 230.32.52.7.112.312.41.151.331
O+

8 (32) 260.35.54.7.114.314.412.151.331
L3(31

2) 213.32.52.72.13.19.37.331
O7(31) 218.34.53.72.13.19.319.37.331
S6(31) 218.34.53.72.13.19.319.37.331
O+

8 (31) 225.35.54.72.132.19.312.372.41.331
O−

10(8) 260.311.52.74.11.132.17.19.73.241.331
L5(64) 260.39.52.74.11.13.17.19.31.73.151.241.331
S10(8) 275.311.52.74.11.132.17.19.73.151.241.331
O+

12(8) 290.314.52.76.11.132.17.192.31.732.151.241.331
O−

12(8) 290.311.53.75.11.133.17.19.31.37.732.109.151.241.331
L6(64) 290.312.53.75.11.133.17.192.31.37.732.109.151.241.331
S12(8) 2108.314.53.76.11.133.17.192.31.37.732.109.151.241.331
E8(2) 2120.313.55.74.112.132.172.19.312.41.43.73.127.151.241.331
p = 337
L3(2

7) 221.3.72.43.1272.337

Table 1. (Continued)
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S |S|
L2(337

2) 25.3.5.7.132.41.277.337
S4(337) 210.32.5.72.134.41.277.3374

L4(2
7) 242.32.5.72.29.432.113.1273.337

L7(8) 263.37.5.76.13.19.31.73.127.151.337
L8(8) 284.39.52.78.132.17.19.31.73.127.151.241.337
O+

14(8) 2126.314.53.79.11.133.192.31.37.732.109.127.151.241.331.337
L2(337) 24.3.7.132.337
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