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Abstract. In this paper, we introduce a new concept of volumes differ-

ence function of the projection and intersection bodies. Following this, we
establish the Minkowski and Brunn-Minkowski inequalities for volumes
difference function of the projection and intersection bodies.
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1. Introduction

The well-known classical Brunn-Minkowski inequality can be stated as fol-
lows:

If K and L are convex bodies in Rn, then

(1.1) V (K + L)1/n ≥ V (K)1/n + V (L)1/n,

with equality if and only if K and L are homothetic.
The Brunn-Minkowski inequality has in recent decades dramatically ex-

tended its influence in many areas of mathematics. Various applications have
surfaced, for example, to probability and multivariate statistics, shape of crys-
tals, geometric tomography, elliptic partial differential equations, and com-
binatorics (see [1, 5, 8–10, 19]). Several remarkable analogs have been estab-
lished in other areas, such as potential theory and algebraic geometry (see
[3,4,6,7,12,14,18,20–22]). Reverse forms of the inequality are important in the
local theory of Banach spaces (see [19]). An elegant survey on this inequality
is provided by Gardner (see [11]). In fact, a general version of the Brunn-
Minkowski’s inequality holds ( [11]): If K and L are convex bodies in Rn and
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0 ≤ i ≤ n− 1, then

(1.2) Wi(K + L)1/(n−i) ≥ Wi(K)1/(n−i) +Wi(L)
1/(n−i),

with equality if and only if K and L are homothetic.
In 2004, the quermassintegral difference function was defined by Leng [13]

as follows

Dwi(K,D) = Wi(K)−Wi(D),

where K and D are convex bodies, D ⊆ K, and 0 ≤ i ≤ n− 1. Inequality 1.2
was extended to the quermassintegral difference of convex bodies as follows.
Theorem A. K,L, and D be convex bodies in Rn. If D ⊆ K, and D′ is a
homothetic copy of D, then

(1.3) Dwi(K + L,D +D′)1/(n−i) ≥ Dwi(K,D)1/(n−i) +Dwi(L,D
′)1/(n−i),

with equality for 0 ≤ i < n − 1 if and only if K and L are homothetic and
(Wi(K),Wi(D)) = µ(Wi(L),Wi(D

′)), where µ is a constant. .
In 2010, the dual quermassintegral difference function was defined by Lv [24]

as follows

Dw̃i(K,D) = W̃i(K)− W̃i(D),

where K and D are star bodies and D ⊆ K. Dual Brunn-Minkowski-type
inequality for the dual quermassintegral difference was also established.

Motivated by the work of Leng and Lv, we give the following definition:

Definition 1.1. Let K be a convex body and D be a star body in Rn, with
D ⊆ K, the mixed volumes difference function of ΠK and ID is defined for
0 ≤ i < n by

(1.4) Dw∗
i (ΠK, ID) = Wi(ΠK)− W̃i(ID).

Taking i = 0 in 1.4, will change it to Dv∗(ΠK, ID) = V (ΠK) − V (ID),
which is called volume difference function of a projection body ΠK and an
intersection body ID.

In 1993, Lutwak established the Brunn-Minkowski inequality for mixed pro-
jection bodies as follows:
Theorem B ( [15]) Let K and L be convex bodies in Rn. If 0 ≤ j < n− 2 and
0 ≤ i < n, then

Wi(Πj(K + L))1/(n−i)(n−j−1)

≥ Wi(ΠjK)1/(n−i)(n−j−1) +Wi(ΠjL)
1/(n−i)(n−j−1),(1.5)

with equality if and only if K and L are homothetic.
The first aim of this paper is to establish the Brunn-Minkowski inequality for

volume difference function of the mixed projection and the mixed intersection
bodies.
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Theorem 1.2. Let K and L be convex bodies, and D and D′ be star bodies in
Rn. If D ⊆ K, D′ ⊆ L, 0 ≤ j < n− 2 and 0 ≤ i < n− 1, then

(Wi(Πj(K + L))− W̃i(Ij(D+̃D′)))1/(n−i)(n−j−1)

≥ (Wi(ΠjK)− W̃i(IjD))1/(n−i)(n−j−1)

+(Wi(ΠjL)− W̃i(IjD
′))1/(n−i)(n−j−1),(1.6)

with equality if and only if K and L are homothetic, D and D′ are dilates,
and (Wi(ΠjK), W̃i(IjD)) = µ(Wi(ΠjL), W̃i(IjD

′)), where µ is a constant.

Remark 1.3. Here, +̃ is the radial Minkowski sum, ΠjK denotes jth mixed
projection bodies of a convex body K and IjD denotes jth mixed intersection
bodies of a star body K (see Section 2).

In case D and D′ are single points, 1.6 reduces to inequality 1.5.
In [15], Lutwak established the Minkowski inequality for mixed projection

bodies as follows.
Theorem C ( [15]) Let K and L be convex bodies in Rn. If 0 ≤ j < n− 2 and
0 ≤ i < n, then

(1.7) Wi(Πj(K,L))n−1 ≥ Wi(ΠK)n−j−1Wi(ΠL)j ,

with equality if and only if K and L are homothetic.
The another aim of this paper is to establish the Minkowski inequality for

volume difference function of the mixed projection and the mixed intersection
bodies.

Theorem 1.4. Let K and L be convex bodies, and D and D′ be star bodies in
Rn. If D ⊆ K,D′ ⊆ L, 0 ≤ j < n− 2 and 0 ≤ i < n− 1, then

(Wi(Πj(K,L))− W̃i(Ij(D,D′)))n−1

≥ (Wi(ΠK)− W̃i(ID)))n−j−1(Wi(ΠK)− W̃i(ID)))j ,(1.8)

with equality if and only if K and L are homothetic, D and D′ are dilates,
and (Wi(ΠK), W̃i(ID)) = µ(Wi(ΠL), W̃i(ID

′)), where µ is a constant.

Remark 1.5. In case D and D′ are single points, 1.8 reduces to inequality
1.7.

We refer the reader to the next section for above interrelated notations,
definitions and background materials.

2. Background materials

The setting for this paper is the n-dimensional Euclidean space Rn(n > 2).
Let Kn denote the set of convex bodies (compact, convex subsets with non-
empty interiors) in Rn. We reserve the letter u for unit vectors and the letter
B for the unit ball centered at the origin. The boundary of B is Sn−1. For
u ∈ Sn−1, let Eu denote the hyperplane, through the origin, that is orthogonal
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to u. We will use Ku to denote the image of K under an orthogonal projection
onto the hyperplane Eu. We use V (K) for the n-dimensional volume of convex
bodyK. The support function ofK ∈ Kn, h(K, ·), is defined on Rn by h(K, ·) =
Max{x · y : y ∈ K}. Let δ denote the Hausdorff metric on Kn, namely, for
K,L ∈ Kn, δ(K,L) = |hK − hL|∞, where | · |∞ denotes the sup-norm on the
space of continuous functions C(Sn−1).

Associated with a compact subsetK of Rn, which is star-shaped with respect
to the origin, is its radial function ρ(K, ·) : Sn−1 → R defined for u ∈ Sn−1, by
ρ(K,u) = Max{λ ≥ 0 : λu ∈ K}. If ρ(K, ·) is positive and continuous, K will
be called a star body. Let Sn denote the set of star bodies in Rn.

2.1. Quermassintegral of convex body. ForK1, . . . ,Kr ∈ Kn and λ1, . . . , λr

≥ 0, the volume of the Minkowski liner combination λ1K1 + · · · + λrKr is a
homogeneous nth-degree polynomial in the λi,

(2.1) V (λ1K1 + · · ·+ λrKr) =
∑

Vi1,...,inλi1 · · ·λin ,

where the sum is taken over all n-tuples (i1, . . . , in) whose entries are positive
integers not exceeding r. If we require the coefficients of the polynomial in 2.1
to be symmetric in their arguments, then they are uniquely determined. The
coefficient Vi1,...,in is nonnegative and depends only on the bodies Ki1 , . . . ,Kin .
It is written as V (Ki1 , . . . ,Kin) and is called the mixed volume of Ki1 , . . . ,Kin .
IfK1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = L, the mixed volume is written
as Vi(K,L). The mixed volume Vi(K,B) is written as Wi(K) and called the
quermassintegral of a convex body K.

2.2. Dual quermassintegral of star body. We introduce a vector addition
on Rn, which we call radial addition, as follows. If x1, . . . , xr ∈ Rn, then
x1+̃ . . . +̃xr is defined to be the usual vector sum of x1, . . . , xr, provided that
x1, . . . , xr all lie in a 1-dimensional subspace of Rn, and as the zero vector
otherwise.

If K1, . . . ,Kr ∈ Sn and λ1, . . . , λr ∈ R, then the radial Minkowski linear
combination, λ1K1+̃ · · · +̃λrKr, is defined by λ1K1+̃ · · · +̃λrKr = {λ1x1+̃ · · · +̃
λrxr : xi ∈ Ki}. It has the following important property that for K,L ∈ Sn

and λ, µ ≥ 0,

(2.2) ρ(λK+̃µL, ·) = λρ(K, ·) + µρ(L, ·)

For K1, . . . ,Kr ∈ Sn and λ1, . . . , λr ≥ 0, the volume of the radial Minkowski
liner combination λ1K1+̃ . . . +̃λrKr is a homogeneous nth-degree polynomial
in the λi, defined by

(2.3) V (λ1K1+̃ . . . +̃λrKr) =
∑

Ṽi1,...,inλi1 · · ·λin ,

where the sum is taken over all n-tuples (i1, . . . , in) whose entries are positive
integers not exceeding r. If we require the coefficients of the polynomial in 2.3 to
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be symmetric in their arguments, then they are uniquely determined. The coef-
ficient Ṽi1,...,in is nonnegative and depends only on the bodiesKi1 , . . . ,Kin . It is

written as Ṽ (Ki1 , . . . ,Kin) and is called the dual mixed volume ofKi1 , . . . ,Kin .
If K1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = L, the dual mixed volumes

is written as Ṽi(K,L). The dual mixed volumes Ṽi(K,B) is written as W̃i(K)
and called as the dual quermassintegral of the star body K.

2.3. Mixed projection bodies. If K1, . . . ,Kr ∈ Kn and λ1, . . . , λr ≥ 0, then
the projection body of the Minkowski linear combination λ1K1 + · · ·+ λrKr ∈
Kn can be written as a symmetric homogeneous polynomial of degree (n − 1)
in the λi ( [15]):

(2.4) Π(λ1K1 + · · ·+ λrKr) =
∑

λi1 . . . λin−1
Πi1···in−1

where the sum is a Minkowski sum taken over all (n−1)-tuples (i1, . . . , in−1)
of positive integers not exceeding r. The body Πi1...in−1 depends only on the
bodies Ki1 , . . . ,Kin−1 , and is uniquely determined by (2.3.1), it is called the
mixed projection bodies of Ki1 , . . . ,Kin−1 , and is written as Π(Ki1 , . . . ,Kin−1).
IfK1 = · · · = Kn−1−i = K andKn−i = · · · = Kn−1 = L, thenΠ(Ki1 , . . . ,Kin−1)

will be written as Πi(K,L). If L = B, then Πi(K,L) is denoted by ΠiK and
when i = 0, ΠiK is denoted by ΠK, where ΠK is the projection body of K
(see [15]).

2.4. Mixed intersection bodies. For K ∈ Sn, there is a unique star body
IK whose radial function satisfies for u ∈ Sn−1,

(2.5) ρ(IK,u) = v(K ∩ Eu).

It is called the intersection bodies of K. From a result of Busemann, it
follows that IK is convex if K is convex and origin symmetric. Clearly any
intersection body is centred.

The volume of intersection bodies is given by

V (IK) =
1

n

∫
Sn−1

v(K ∩ Eu)
ndS(u).

The mixed intersection bodies of K1, . . . ,Kn−1 ∈ Sn, I(K1, . . . ,Kn−1),
whose radial function is defined by

(2.6) ρ(I(K1, . . . ,Kn−1), u) = ṽ(K1 ∩ Eu, . . . ,Kn−1 ∩ Eu),

where ṽ is the (n−1)-dimensional dual mixed volume. If K1 = · · · = Kn−i−1 =
K,Kn−i = · · · = Kn−1 = L, then I(K1, . . . ,Kn−1) is written as Ii(K,L). If
L = B, then Ii(K,L) is written IiK and is called the ith intersection body of
K. For I0K simply write IK.
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3. Main results

Theorem 3.1. Let K and L be convex bodies, and D and D′ be star bodies in
Rn. If D ⊆ K, D′ ⊆ L, 0 ≤ j < n− 2 and 0 ≤ i < n− 1, then

Dw∗
i (Πj(K + L), Ij(D+̃D′))1/(n−i)(n−j−1)

≥ Dw∗
i (ΠjK, IjD)1/(n−i)(n−j−1) +Dw∗

i (ΠjL, IjD
′)1/(n−i)(n−j−1),(3.1)

with equality if and only if K and L are homothetic, D and D′ are dilates,
and (Wi(ΠjK), W̃i(IjD)) = µ(Wi(ΠjL), W̃i(IjD

′)), where µ is a constant.

We need the following lemmas to prove Theorem 3.1.

Lemma 3.2 ( [9]). If K is a convex body in Rn with o ∈ intK, then

(3.2) IK ⊆ ΠK.

Lemma 3.3 ( [16]). If K is a convex body in Rn with o ∈ intK, then

(3.3) Wi(K) ≥ W̃i(K),

with equality if and only if K is a n-ball.

Lemma 3.4. (see [2]) Let

ϕ(x) = (xp
1 − xp

2 − · · · − xp
n)

1/p, p > 1,

for xi in the region R defined by

(a) xi ≥ 0,

(b) x1 ≥ (xp
2 + xp

3 + · · ·+ xp
n)

1/p.

Then for x, y ∈ Rn, we have

(3.4) ϕ(x+ y) ≥ ϕ(x) + ϕ(y),

with equality if and only if x = µy where µ is a constant.

Proof of Theorem 3.1. If K,L ∈ Kn, 0 ≤ j < n− 2 and 0 ≤ i < n, then

Wi(Πj(K + L))1/(n−i)(n−j−1)(3.5)

≥ Wi(ΠjK)1/(n−i)(n−j−1) +Wi(ΠjL)
1/(n−i)(n−j−1),(3.6)

with equality if and only if K and L are homothetic. □

Moreover, in view of the following inequality (see [23]), if D,D′ ∈ Sn, 0 ≤
j < n− 2 and 0 ≤ i < n, then

W̃i(Ij(D+̃D′))1/(n−i)(n−j−1)(3.7)

≤ W̃i(IjD)1/(n−i)(n−j−1) + W̃i(IjD
′)1/(n−i)(n−j−1),(3.8)

with equality if and only if D and D′ are dilates.
From 3.5 and 3.7, we have
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Wi(Πj(K + L))− W̃i(Ij(D+̃D′))(3.9)

≥
[
Wi(ΠjK)1/(n−i)(n−j−1) +Wi(ΠjL)

1/(n−i)(n−j−1)
](n−i)(n−j−1)

(3.10)

−
[
W̃i(IjD)1/(n−i)(n−j−1) + W̃i(IjD

′)1/(n−i)(n−j−1)
](n−i)(n−j−1)

,(3.11)

with equality if and only if K and L are homothetic, and D and D′ are dilates.
From Lemma 3.1 and 3.2, we have

Wi(Πj(K + L)) ≥ W̃i(Πj(K + L)) ≥ W̃i(Ij(D+̃D′)),

Wi(ΠjK) ≥ W̃i(ΠjK) ≥ W̃i(IjD),

and
Wi(ΠjL) ≥ W̃i(ΠjL) ≥ W̃i(IjD

′).

By using Lemma 3.3, we have[
Wi(Πj(K + L))− W̃i(Ij(D+̃D′))

]1/(n−i)(n−j−1)

≥
{[

Wi(ΠjK)1/(n−i)(n−j−1) +Wi(ΠjL)
1/(n−i)(n−j−1)

](n−i)(n−j−1)

−
[
W̃i(IjD)1/(n−i)(n−j−1) + W̃i(IjD

′)1/(n−i)(n−j−1)
](n−i)(n−j−1)

}1/(n−i)(n−j−1)

≥ (Wi(ΠjK)−W̃i(IjD))1/(n−i)(n−j−1)+(Wi(ΠjL)−W̃i(IjD
′))1/(n−i)(n−j−1).

In view of the equality conditions of 3.9 and Lemma 3.3, it follows that this
equality holds if and only if K and L are homothetic, D and D′ are dilates,
and (Wi(ΠjK), W̃i(IjD)) = µ(Wi(ΠjL), W̃i(IjD

′)), where µ is a constant.
Taking i = 0, j = 0 in 3.1, 3.1 reduces to

Dv∗(Π(K + L), I(D+̃D′))1/n(n−1)(3.12)

≥ Dv∗(ΠK, ID)1/n(n−1) +Dv∗(ΠL, ID′)1/n(n−1),(3.13)

with equality if and only if K and L are homothetic, D and D′ are dilates,
and (V (ΠK), V (ID)) = µ(V (ΠL), V (ID′)), where µ is a constant.

In case D and D′ are single points, 3.12 reduces to the classical Brunn-
Minkowski inequality for mixed projection bodies.

Theorem 3.5. Let K and L be convex bodies, and D and D′ be star bodies in
Rn. If D ⊆ K, D′ ⊆ L, 0 ≤ j < n− 2 and 0 ≤ i < n− 1, then

(3.14) Dw∗
i (Πj(K,L), Ij(D,D′))n−1 ≥ Dw∗

i (ΠK, ID)n−j−1Dw∗
i (ΠL, ID′)j ,

with equality if and only if K and L are homothetic, D and D′ are dilates and
(Wi(ΠK), W̃i(ID)) = µ(Wi(ΠL), W̃i(ID

′)), where µ is a constant.

We need the following lemmas to prove Theorem 3.2.



Volume difference inequalities for the projection and intersection bodies 588

Lemma 3.6 ( [24]). If K,L ∈ Sn, 0 ≤ i < n and 0 ≤ j < n− 1, then

W̃i(Ij(K,L))n−1 ≤ W̃i(IK)n−j−1W̃i(IL)
j ,

with equality if and only if K and L are dilates.

Lemma 3.7 ( [25]). Let a, b, c, d ≥ 0, 0 < α < 1, 0 < β < 1 and α + β = 1. If
a ≥ b and c ≥ d, then

(3.15) aαcβ − bαdβ ≥ (a− b)α(c− d)β ,

with equality if and only if ad = bc.

Proof of Theorem 3.2. If K,L ∈ Kn, then

(3.16) Wi(Πj(K,L))n−1 ≥ Wi(ΠK)n−j−1Wi(ΠL)j ,

with equality if and only if K and L are homothetic. □

If D,D′ ∈ Sn, then

(3.17) W̃i(Ij(D,D′))n−1 ≤ W̃i(ID)n−j−1W̃i(ID
′)j ,

with equality if and only if D and D′ are dilates.
From 3.16 and 3.17, we have

Wi(Πj(K,L))− W̃i(Ij(D,D′))

≥ Wi(ΠK)(n−j−1)/(n−1)Wi(ΠL)j/(n−1)

−W̃i(ID)(n−j−1)/(n−1)W̃i(ID
′)j/(n−1),(3.18)

with equality if and only if K and L are homothetic, and D and D′ are dilates
Notice that

Wi(Πj(K,L)) ≥ W̃i(Ij(D,D′)),

Wi(ΠK) ≥ W̃i(ID),

and
Wi(ΠL) ≥ W̃i(ID

′).

By using Lemma 3.5, we have[
Wi(Πj(K,L))− W̃i(Ij(D,D′))

]n−1

≥
[
Wi(ΠK)(n−j−1)/(n−1)Wi(ΠL)j/(n−1)

−W̃i(ID)(n−j−1)/(n−1)W̃i(ID
′)j/(n−1)

]n−1

≥
[
Wi(ΠK)− W̃i(ID)

]n−j−1 [
Wi(ΠL)− W̃i(ID

′)
]j

.

In view of the equality conditions of 3.18 and Lemma 3.5, it follows that this
equality holds if and only if K and L are homothetic, D and D′ are dilates,
and (Wi(ΠK), W̃i(ID)) = µ(Wi(ΠL), W̃i(ID

′)), where µ is a constant.
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Taking i = 0, j = 1 in the inequality 3.14, 3.14 changes to the following
result:

(3.19) Dv∗(Π1(K,L), I1(D,D′))n−1 ≥ Dv∗(ΠK, ID)n−2Dv∗(ΠL, ID′),

with equality if and only if K and L are homothetic, D and D′ are dilates, and
(V (ΠK), V (ID)) = µ(V (ΠL), V (ID′)), where µ is a constant.

In case D and D′ are single points, 3.19 reduces to the classical Minkowski
inequality for mixed projection bodies.
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