## Bulletin of the

## Iranian Mathematical Society

Vol. 41 (2015), No. 3, pp. 591-602

Title:
Almost simple groups with Socle $G_{2}(q)$ acting on finite linear spaces
Author(s):
S. Li, X. Li and W. Liu

Published by Iranian Mathematical Society

# ALMOST SIMPLE GROUPS WITH SOCLE $G_{2}(q)$ ACTING ON FINITE LINEAR SPACES 

S. LI, X. LI AND W. LIU*

(Communicated by Jamshid Moori)


#### Abstract

After the classification of the flag-transitive linear spaces, the attention has been turned to line-transitive linear spaces. In this article, we present a partial classification of the finite linear spaces $\mathcal{S}$ on which an almost simple group $G$ with the socle $G_{2}(q)$ acts line-transitively. Keywords: Line-transitive, linear space, almost simple group. MSC(2010): Primary: 05B05; Secondary: 20B25.


## 1. Introduction

A linear space $\mathcal{S}$ is an incidence structure consisting of a set of points $\mathcal{P}$ and a set of lines $\mathcal{L}$ such that any two points are incident with exactly one line. The linear space is called non-trivial if every line contains at least three points and there are at least two lines. Write $v=|\mathcal{P}|$ and $b=|\mathcal{L}|$.

The classification of the finite linear spaces admitting a line-transitive automorphism group has been already investigated by Camina, et al, (see [5] and $[7]$ ). We continue this investigation by considering the case where the socle of a line-transitive automorphism group is $G_{2}(q)$. The statement of our theorem is as follows:

Theorem A Let $G$ be an almost simple group and let $\mathcal{S}$ be a finite linear space on which $G$ acts as a line-transitive automorphism group. Suppose that $T=\operatorname{Soc}(G)$ is isomorphic to $G_{2}(q)$, where $q=p^{a}$ and $a \not \equiv 0(\bmod 6)$. Then either
(a) $T$ is line-transitive; or
(b) $T_{L}$ is isomorphic to one subgroup of $\left(S L_{2}(q) \circ S L_{2}(q)\right) \cdot 2$, where $T_{L}$ is the line-stabilizer of $T$.

In the case (b) of the theorem it has not been made further progress without adding an extra hypothesis and a complete classification seems to be out of

[^0]reach with our present methods. The restriction $a \not \equiv 0(\bmod 6)$ will play a role in our proof of the theorem and it can't be removed with our present methods.

If a linear space $\mathcal{S}$ is line-transitive, then every line has the same number of points and every point lies on the same number of lines. We call such a linear space a regular linear space. Let $G$ be a group acting on a linear space $\mathcal{S}$. We will write $\alpha$ to be a point of $\mathcal{S}$ and $G_{\alpha}$ to be the stabilizer of $\alpha$ under the action of $G$. Similarly $L$ is a line of $\mathcal{S}$ and $G_{L}$ is the corresponding line-stabilizer.

## 2. Preliminary results

Let $\mathbf{F}=G F(q)$ be a finite field of order $q=p^{a}$ ( $p$ a characteristic). Let $T$ be the Chevalley group of type $G_{2}$ over $\mathbf{F}$. Then the order of $T$ is

$$
q^{6}\left(q^{2}-1\right)\left(q^{6}-1\right)=q^{6}(q-1)^{2}(q+1)^{2}\left(q^{2}+q+1\right)\left(q^{2}-q+1\right)
$$

We know that no prime greater than three divides more than one of these factors. Let $V$ and $\mathcal{F}$ be as defined in [1]. We define $\Gamma(V)$ to be the group of all semilinear maps on $V$. Write $\Gamma(V, \mathcal{F})$ to be the subgroup of $\Gamma(V)$ preserving $\mathcal{F}$. Then $\Gamma(V, \mathcal{F})$ is an extension of $T$ by a field automorphism of order $a$, and $\operatorname{Aut}(T)=\Gamma(V, \mathcal{F})$ unless $p=3$. Let $H_{1}=\Gamma(V, \mathcal{F})$ and $H_{0}=G_{2}(q)$. If $p=3$, then $\left|\operatorname{Aut}\left(H_{0}\right): H_{1}\right|=2$, and if $p \geq 5$, we have $H_{1}=\operatorname{Aut}\left(H_{0}\right)$.

We need some information about the subgroup of $G_{2}(q)$.
Lemma 2.1. ( [11])) Assume that $H_{0} \leq H \leq H_{1}$, where $H_{0} \cong G_{2}(q)\left(q=p^{n}\right.$ is odd) and $H_{1}$ are as above. Let $M$ be a maximal subgroup of $H$ not containing $H_{0}$. Then $M_{0}=M \cap H_{0}$ is $H_{0}$-conjugate to one of the following groups:

| Structure | Order | Remarks |
| :--- | :--- | :--- |
| $\left[q^{5}\right]: G L_{2}(q)$ | $q^{6}(q-1)^{2}(q+1)$ | parabolic |
| $\left(S L_{2}(q) \circ S L_{2}(q)\right) \cdot 2$ | $2 q^{2}\left(q^{2}-1\right)^{2}$ | involution centralizer |
| $S L_{3}^{\epsilon}(q): 2$ | $2 q^{3}\left(q^{3}-\epsilon 1\right)\left(q^{2}-1\right)$ | $\epsilon= \pm$ |
| $G_{2}(q)$ | $q_{0}^{6}\left(q_{0}^{2}-1\right)\left(q_{0}^{6}-1\right)$ | $q=q_{0}^{m}$, m prime |
| ${ }^{2} G_{2}(q)$ | $q^{3}\left(q^{3}+1\right)(q-1)$ | $p=3, n$ odd |
| $P G L_{2}(q)$ | $q\left(q^{2}-1\right)$ | $p \geq 7, q \geq 11$ |
| $2^{3 \cdot} L_{3}(2)$ | $2^{6} \cdot 3 \cdot 7$ | $q=p$ |
| $L_{2}(8)$ | $2^{3} \cdot 3^{2} \cdot 7$ | $p \geq 5, \mathbf{F}=\mathbf{F}_{p}[\omega]$ |
|  |  | $\omega^{3}-3 \omega+1=0$ |
| $L_{2}(13)$ | $2^{2} \cdot 3 \cdot 7 \cdot 13$ | $p \neq 13, \mathbf{F}=\mathbf{F}_{p}[\sqrt{13}]$ |
| $G_{2}(2)$ | $2^{6} \cdot 3^{3} \cdot 7$ | $q=p \geq 5$ |
| $J_{1}$ | $2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$ | $q=11$ |

Conversely, if $K \leq H_{0}$ is $H_{0}$-conjugate to one of these groups, then $N_{G}(K)$ is maximal in $H$.

Lemma 2.2. ( [11])) Assume that $H_{0} \leq H \leq H_{1}$, where $H_{0} \cong G_{2}(q)\left(q=3^{n}\right)$ and $H$ contains a graph automorphism of $H_{0}$. Let $M$ be a maximal subgroup of $H$ not containing $H_{0}$. Then $M_{0}=M \cap H_{0}$ is $H_{0}$-conjugate to one of the following groups:

| Structure | Order | Remarks |
| :--- | :--- | :--- |
| $\left[q^{5}\right]: G L_{2}(q)$ | $q^{6}(q-1)^{2}(q+1)$ | parabolic |
| $\left(S L_{2}(q) \circ S L_{2}(q)\right) \cdot 2$ | $2 q^{2}\left(q^{2}-1\right)^{2}$ | involution centralizer |
| $2^{3} \cdot L_{3}(20)$ | $2^{6} \cdot 3 \cdot 7$ | $q=3$ |
| $\left(Z_{q^{2}-\epsilon 1}\right)^{2} \cdot D_{12}$ | $12\left(q^{2}-1\right)^{2}$ | $p \geqslant 9, \epsilon= \pm 1$ |
| $\left(Z_{q^{2}}+\epsilon q+1\right)^{2} \cdot Z_{6}$ | $6\left(q^{2}+\epsilon q+1\right)$ | $p \geqslant 9, \epsilon= \pm 1$ |
| $G_{2}\left(q_{0}\right)$ | $q_{0}^{6}\left(q_{0}^{2}-1\right)\left(q_{0}^{6}-1\right)$ | $q=q_{0}^{m}, m$ prime |
| ${ }^{2} G_{2}(q)$ | $q^{3}\left(q^{3}+1\right)(q-1)$ | $p=3, n$ odd |
| $P G L_{2}(q)$ | $q\left(q^{2}-1\right)$ | $p \geq 7, q \geq 11$ |
| $L_{2}(13)$ | $2^{2} \cdot 3 \cdot 7 \cdot 13$ | $p \neq 13, F=F_{p}[\sqrt{13}]$ |

Conversely, if $K \leq H_{0}$ is $H_{0}$-conjugate to one of these groups, then $N_{G}(K)$ is maximal in $H$.

Lemma 2.3. ( [8]) Let $G=G_{2}(q)$, where $q=2^{a}$ with $a>2$. The maximal subgroups of $G$ are listed as follows:

| Structure | Order | Remarks |
| :--- | :--- | :--- |
| $\left[q^{5}\right]: G L_{2}(q)$ | $q^{6}(q-1)^{2}(q+1)$ | parabolic |
| $\left(\left(S L_{2}(q) \circ S L_{2}(q)\right) \cdot 2\right.$ | $2 q^{2}\left(q^{2}-1\right)^{2}$ | reducible |
| $S L_{3}^{\epsilon}(q): 2$ | $2 q^{3}\left(q^{3}-\epsilon 1\right)\left(q^{2}-1\right)$ | $\epsilon= \pm$, the normalizer of |
| $S L_{3}^{\epsilon}(q): 2$ | $2 q^{3}\left(q^{3}-\epsilon 1\right)\left(q^{2}-1\right)$ | subgroup of order 3 |
| $G_{2}\left(q_{0}\right)$ | $q_{0}^{6}\left(q_{0}^{2}-1\right)\left(q_{0}^{6}-1\right)$ | $q=q_{0}^{m}$, irreducible prime |

Lemma 2.4. ( [8] and [11])
(i) If $q$ is even, then $G_{2}(q)$ has exactly two conjugacy class of involutions, and the order of the centralizer of a non-central involution is $q^{4}\left(q^{2}-1\right)$.
(ii) If $q$ is odd, then $G_{2}(q)$ has a unique conjugacy class of involutions, and the order of the centralizer of an involution is $q^{2}\left(q^{2}-1\right)^{2}$.

Lemma 2.5. (Lemma 3.3 of [13]) Some subgroups of $G=G_{2}(q)$ are being shown in the following:
(1) $T_{1}=Z_{q-1} \times Z_{q-1}$ and $N_{G}\left(T_{1}\right)=T_{1} \cdot D_{12}$;
(2) $T_{2}=Z_{q+1} \times Z_{q+1}$ and $N_{G}\left(T_{2}\right)=T_{2} \cdot D_{12}$;
(3) $T_{3}=Z_{q^{2}+q+1}$ and $N_{G}\left(T_{3}\right)=T_{3}: Z_{6}$;
(4) $T_{4}=Z_{q^{2}-q+1}$ and $N_{G}\left(T_{4}\right)=T_{4}: Z_{6}$;
(5) $T_{5}=Z_{q^{2}-1}$ and $N_{G}\left(T_{5}\right)=T_{5} \cdot\left(Z_{2} \times Z_{2}\right)$.

Lemma 2.6. (Lemma 3.5 of [13]) Let $q=q_{0}^{m}$, where $m$ is an odd prime and let $\epsilon= \pm$. Then the following hold:
(1) $(q-\epsilon 1)^{2}$ does not divide $\left|G_{2}\left(q_{0}\right)\right|$;
(2) $\left(q^{2}+\epsilon q+1\right)$ does not divide $\left|G_{2}\left(q_{0}\right)\right|$.

Lemma 2.7. Let $q=q_{0}^{m}$, where $m$ is a positive integer with $m \geqslant 4$ and let $\epsilon= \pm$. Then the following hold:
(1) $(q-\epsilon 1)^{2}$ does not divide $\left|G_{2}\left(q_{0}\right)\right|$;
(2) $\left(q^{2}+\epsilon q+1\right)$ does not divide $\left|G_{2}\left(q_{0}\right)\right|$.
(3) $\left(q^{2}-1\right)$ does not divide $\left|G_{2}\left(q_{0}\right)\right|$.

Proof. (1) If $m>6$, then there exists a $p$-primitive divisor of $p^{m}-1$, denoted by $t$. Hence $t \nmid q_{0}^{6}$ and $(q-\epsilon 1)^{2}$ does not divide $\left|G_{2}\left(q_{0}\right)\right|$; if $m=4$ or 6 , then $(q-\epsilon 1)^{2} \nmid\left|G_{2}\left(q_{0}\right)\right|$. The proof is finished.

Similarly we can prove that the assertions (2) and (3) are true.
We assume that $G$ is a automorphism group acting line-transitively on a linear space $\mathcal{S}$ with parameters $b, v, k, r$, where $b$ is the number of lines, $v$ is the number of points, $r$ is the number of lines through a point and $k$ is the number of points on a line. Recall the basic counting lemmas for regular linear spaces.

$$
\begin{align*}
& v=r(k-1)+1  \tag{2.1}\\
& v(v-1)=b k(k-1) \tag{2.2}
\end{align*}
$$

Let $b_{1}=(b, v), b_{2}=(b, v-1), k_{1}=(k, v)$, and $k_{2}=(k, v-1)$. Then

$$
k=k_{1} k_{2}, b=b_{1} b_{2}, r=b_{2} k_{2}, \quad \text { and } v=b_{1} k_{1} .
$$

In [5], the authors defined a significant prime which divides $b$ but not $v$. Observe that every prime divisor of $b_{2}$ is a significant prime. It is well-known that a linear space is a projective plane if and only if $b=v$, namely, $b_{2}=1$. Thus every linear space other than the projective plane has significant primes.

There is a fact that we shall use throughout this article. Observe that if an involution in $G$ does not fix a point then $G$ acts flag-transitively (see [6]). But the flag-transitive linear spaces are classified by Buekenhout, Delandtsheer, Doyen et al (see [4] and [3]), and so we assume that every involution fixes at least a point.

We state here a number of basic results which will be used repeatedly throughout the paper.

Lemma 2.8. Let $G$ act line-transitively on a linear space $\mathcal{S}$, and $b_{2}$ be defined as above. Then the followings hold:
(1) $\left(b_{2}, v\right)=1$;
(2) $b_{2}$ divides $\left|G_{\alpha}\right|$.

Proof. (1) Note that $b_{2}=(b, v-1)$, it is clear that $\left(b_{2}, v\right)=1$.
(2) Since $G$ is line-transitive, by the theorem of R. E. Block in [2] we have $G$ is point-transitive. Hence $b=\left|G: G_{L}\right|$ and $v=\left|G: G_{\alpha}\right|$, where $L \in \mathcal{L}$ and $\alpha \in \mathcal{P}$. Since $r v=b k$, it follows that $b_{2}\left|G_{L}\right|=k_{1}\left|G_{\alpha}\right|$. Note that $\left(b_{2}, k_{1}\right)=1$ and hence $b_{2}$ divides $\left|G_{\alpha}\right|$.

Lemma 2.9. (Zhou, Li and Liu [18]) Let $G$ act line-transitively on a linear space $\mathcal{S}$. Let $K$ be a subgroup of $G$. If $K \not \leq G_{L}$ for any line $L \in \mathcal{L}$, and $K \leq G_{\alpha}$ for some point $\alpha \in \mathcal{P}$, then $N_{G}(K) \leq G_{\alpha}$.

Lemma 2.10. (Lemma 2.8 of [16]) Let $G$ act line-transitively on a linear space $\mathcal{S}$. If there exists a prime $p$ such that $p \mid b$ but $p \nmid v$, then for some $\alpha \in \mathcal{P}$, $N_{G}(P) \leq G_{\alpha}$, where $P$ is a Sylow p-subgroup of $G$.
Lemma 2.11. (Liu [12] and [13]) Let $G$ act line-transitively on a linear space $\mathcal{S}$. Assume that $P$ is a Sylow p-subgroup of $G_{\alpha}$ for some $\alpha \in \mathcal{P}$. If $P$ is not a Sylow p-subgroup of $G$, then there exists a line $L$ through $\alpha$ such that $P \leq G_{L}$.

Lemma 2.12. ([14] and [15]) Let $G$ be a transitive group on $\Omega$, and $K$ be a conjugacy class of an element of $G$. Let $x \in K$ and $\operatorname{Fix}_{\Omega}(\langle x\rangle)$ denote the fixed points set of $\langle x\rangle$ acting on $\Omega$. Then

$$
\left|\operatorname{Fix}_{\Omega}(\langle x\rangle)\right|=\left|G_{\alpha} \mathcal{K}\right| \cdot|\Omega| /|K|
$$

where $\alpha \in \Omega$. In particular, if $G$ has a unique conjugacy class of involutions, then

$$
\left|\operatorname{Fix}_{\Omega}(\langle i\rangle)\right|=\frac{e\left(G_{\alpha}\right) \cdot|\Omega|}{e(G)}
$$

where $i$ is an involution of $G$ and $e(G)$ denotes the number of involutions of $G$.
Lemma 2.13. ( [14] and [15]) Let $G$ act line-transitively on a linear space $\mathcal{S}$. Let $i$ be an involution of $G_{L}$, where $L$ is a line of $\mathcal{S}$. Set $f_{1}=\left|\operatorname{Fix}_{\mathcal{P}}(\langle i\rangle)\right|$ and $f_{2}=\left|\operatorname{Fix}_{\mathcal{L}}(\langle i\rangle)\right|$. If $\mathcal{S}$ is not a projective plane and $f_{1} \geq 2$, then $v \leq f_{2}^{2}$.

In order to do our work, we need to introduce the concept of exceptional triple. Let $G$ and $H$ be finite groups acting transitively on a finite set $\Omega$; with $H$ a normal subgroup of $G$. Then the triple $(G, H, \Omega)$ is called exceptional if the only common orbit of $G$ and $H$ on $\Omega \times \Omega$ is the diagonal. This definition is equivalent to the following: Let $\alpha \in \Omega$, then every $G_{\alpha}$-orbit except $\{\alpha\}$ breaks up into strictly smaller $H_{\alpha}$-orbits.

We call the triple $(G, H, \Omega)$ arithmetically exceptional, if there is a subgroup $B$ of $G$ which contains $H$, such that $(B, H, \Omega)$ is exceptional, and $B / H$ is cyclic. When $G$ is a primitive permutation group of almost simple type, Guralnick, Muller and Saxl have obtained their classification (see [10]). In particular, when $\operatorname{Soc}(G)=G_{2}(q)$, there is the following lemma:

Lemma 2.14. ([10, Theorem $1.5(\mathrm{~g})]$ Let $G$ be a primitive permutation group of almost simple type, so $L \unlhd G \leq A u t(L)$ with $L$ a simple nonabelian group. Suppose that there are subgroups $B$ and $H$ of $G$ with $H \unlhd G$ and $B / H$ cyclic, such that $(B, H)$ is exceptional. Let $M$ be a point stabilizer in $G$. Suppose that $L$ has Lie rank $\geq 2, L \neq S p_{4}(2)^{\prime} \cong P S L_{2}(9)$. Then $M \cap L$ is a subfield subgroup, the centralizer in $L$ of a field automorphism of odd prime order $r$. Moreover,
(i) $r \neq p$ (with $p$ the defining characteristic of $L$ ),
(ii) if $r=3$, then $L$ is of type $S p_{4}(q)$ with $q$ even, and
(iii) there are no $A u t(L)$-stable $L$-conjugacy classes of $r$-elements.

Lemma 2.15. ([10, Lemma 3.3]) Let $H$ be a normal subgroup of the finite group $G$ with $G / H$ cyclic generated by $x H$. Let $\Omega$ be a transitive $G$-set. Assume that $H$ is also transitive on $\Omega$. Let $\chi(g)$ be the number of fixed points of $g \in G$ on $\Omega$. The following are equivalent:
(1) $(G, H, \Omega)$ is exceptional;
(2) $\chi(x h) \leq 1$ for all $h \in H$;
(2) $\chi(x h)=1$ for all $h \in H$;
(2) $\chi(x h) \geq 1$ for all $h \in H$.

Lemma 2.16. ( [9]) Let $G$ act line-transitively on a linear space $\mathcal{S}$. Let $H$ be a subgroup of $G$ such that $H \unlhd G$ and $|G: H|=s$, a prime. If $H$ is lineintransitive and $\mathcal{S}$ is not a projective plane, then $(G, H, \mathcal{P})$ is an exceptional triple.

## 3. The proof of Theorem

Since $T=G_{2}(q) \unlhd G \leq \operatorname{Aut}(T)$ with $q=p^{a}$, we have $|\operatorname{Out}(T)|=2 a$ or $a$ according as $p=3$ or not, and $G=T:\langle x\rangle$, where $x \in \operatorname{Out}(T)$. Let $o(x)=m$. Then we have when $p=3, m \mid 2 a$; when $p \neq 3, m \mid a$. Moreover, $|G|=q^{6}\left(q^{2}-1\right)\left(q^{6}-1\right) m$.

By [9], we know that almost simple groups cannot act line-transitively on non-Desarguesian projective planes. Hence we can assume that $\mathcal{S}$ is not a projective plane. Suppose that $T$ is not line-transitive on $\mathcal{S}$.

Let $s$ be a prime divisor of $m$. There exists a normal subgroup $H$ in $G$ such that $|G / H|=s$ and $H$ is not line-transitive(otherwise replacing $G$ by $H$ ). By Lemma 2.16 we have that the triple $(G, H, \mathcal{P})$ is exceptional. Let $\chi(g)$ be the number of fixed points of $g \in G$ on $\mathcal{P}$ and $y=x^{m / s}$. Then $G / H=\langle y H\rangle$. We show that $H$ is point-transitive. In fact, if $H$ is not point-transitive, by the proof of Lemma 2.16 (see [9, Lemma 26]) we have $\mathcal{S}$ is a projective plane, a contradiction. Now appealing to Lemma 2.15 we have $\chi(y h)=1$ for all $h \in H$. It follows that $y$ has a unique fixed point of $\mathcal{P}$, says $\alpha$. Considering the cycle decomposition of $x$ acting on $\mathcal{P}$, we find that $x$ fixes no other points of $\mathcal{P}$ than $\alpha$. Hence $x \in G_{\alpha}$ and $G=T G_{\alpha}$. Then $T$ acts transitively on $\mathcal{P}$.

Since $T$ is not line-transitive, it follows that $x \notin G_{L}$ for any $L \in \mathcal{L}$. Note that $x \in G_{\alpha}$ and we appeal to Lemma 2.9 to conclude that $N_{G}(\langle x\rangle) \leq G_{\alpha}$. By Lemmas 2.1 and 2.2 and 2.3, we find that the overgroup of $G_{2}(p)$ is only the subfield subgroup. Since $C_{T}(x) \leq N_{G}(\langle x\rangle)$ and $G_{2}(p) \leq C_{T}(x)$, we may assume that $G_{\alpha} \cap T=T_{\alpha} \cong G_{2}\left(q_{0}\right)$ for $q=q_{0}^{c}$ with a positive integer $c$. If $c$ is prime, then $G_{\alpha}$ is a maximal subgroup of $G$ and hence $G$ is primitive on $\mathcal{P}$. Thus by the proof of Lemma 2.14 (see [10, Theorem $1.5(\mathrm{~g})]$ )we have $\left.c \nmid\right|^{2} G_{2}(3) \mid$ for $p=3$ and $c \nmid\left|G_{2}(p)\right|$ for $p \neq 3$, and hence 1) if $p=2$, then $c \nmid\left|G_{2}(2)\right|=2^{6} \cdot 3^{3} \cdot 7$, and hence $c \neq 2,3,7 ; 2)$ if $p=3$, then $c \nmid{ }^{2} G_{2}(3) \mid=2^{3} \cdot 3^{3} \cdot 7$ and hence $c \neq 2,3,7$; 3) if $p \geq 5$, then $c \nmid\left|G_{2}(p)\right|=p^{6}\left(p^{6}-1\right)\left(p^{2}-1\right)$, it follows that $c \neq p, 2$ and $c \nmid(p-1)^{2},(p+1)^{2}, p^{2}+p+1$ and $p^{2}-p+1$.

Let $i$ be an involution of $T$ and $K$ be a conjugate class of $i$ in $G$. If $q$ is even, then we let $i$ be a non-central involution. Thus by Lemma 2.4 we have $\left|C_{G}(i)\right| \leq q^{4}\left(q^{2}-1\right) m$. If $q$ is even, then $v$ is even and so $f_{1}$ is even. Note that $i$ fixes at least a point, hence $f_{1} \geq 2$. If $q$ is odd, then by Lemma 2.12 we have

$$
f_{1}=\left|\operatorname{Fix}_{\mathcal{P}}(\langle i\rangle)\right|=\frac{v \cdot\left|G_{\alpha} \cap K\right|}{|K|}=\frac{\left|C_{G}(i)\right|}{\left|C_{G_{\alpha}}(i)\right|} \geq \frac{q^{2}\left(q^{2}-1\right)^{2}}{q_{0}^{4}\left(q_{0}^{2}-1\right)} \geq 2
$$

Since

$$
f_{2}=\left|\operatorname{Fix}_{\mathcal{L}}(\langle i\rangle)\right|=\frac{b \cdot\left|G_{L} \cap K\right|}{|K|}<\left|C_{G}(i)\right|
$$

by Lemma 2.13 we can get the following inequality

$$
v=\frac{q^{6}\left(q^{6}-1\right)\left(q^{2}-1\right)}{q_{0}^{6}\left(q_{0}^{6}-1\right)\left(q_{0}^{2}-1\right)}<\left(\left|C_{G}(i)\right|\right)^{2}=q^{8}\left(q^{2}-1\right)^{2} m^{2}
$$

This implies that

$$
q^{6}\left(q^{6}-1\right)\left(q^{2}-1\right)<q^{8}\left(q^{2}-1\right)^{2} m^{2} q_{0}^{14}
$$

It follows that

$$
q^{2}<\frac{q^{4}+q^{2}+1}{q^{2}}=\frac{q^{6}\left(q^{6}-1\right)\left(q^{2}-1\right)}{q^{8}\left(q^{2}-1\right)^{2}}<q_{0}^{14} m^{2}
$$

Let $q_{0}=p^{\lambda}$. Then $a=\lambda c$ for a positive integer $\lambda$ and $q=p^{\lambda c}$. We can get

$$
\begin{equation*}
p^{\lambda(c-7)}<m \tag{3.1}
\end{equation*}
$$

Recall that $m \mid 2 a$ for $p=3$ and $m \mid a$ for $p \neq 3$, so we have

1) if $p=3$, then $m \mid 2 a$ and it follows from (3) that

$$
\begin{equation*}
3^{\lambda(c-7)}<2 \lambda c \tag{3.2}
\end{equation*}
$$

which forces that $c \leq 9$.
2) if $p=2$, then $\bar{m} \mid a$ and hence

$$
\begin{equation*}
2^{\lambda(c-7)}<\lambda c \tag{3.3}
\end{equation*}
$$

which forces that $c \leq 10$.
3) if $p \geq 5$, then $m \mid a$ and it follows that

$$
\begin{equation*}
5^{\lambda(c-7)} \leq p^{\lambda(c-7)}<\lambda c \tag{3.4}
\end{equation*}
$$

which forces that $c \leq 8$.

1. If $p=2, c=9$, then it follows from (5) that $4^{\lambda}<9 \lambda$. Hence $\lambda=1, a=9$ or $\lambda=2, a=18$.
2. If $p=2, c=10$, then again by (5) we have $8^{\lambda}<10 \lambda$, and hence $\lambda=$ $1, a=10$.
3. If $p=3, c=9$, then it follows from (4) that $9^{\lambda}<18 \lambda$. We have $\lambda=$ $1, a=9$.

Recall that $a \not \equiv 0(\bmod 6)$. Hence the cases we should examine are in the following table.

Almost simple group

| $c$ | $a$ | $p$ |
| :---: | :---: | :---: |
| 3 | $3 \lambda$, where $\lambda$ is is a positive integer | $p \geq 5$ is a prime |
| 7 | $7 \lambda$, where $\lambda$ is is a positive integer | $p \geq 5$ is a prime |
| $4,5,8$ | $\lambda c$, where $\lambda$ is is a positive integer | $p$ is a prime |
| 9 | 9 | 2 |
| 9 | 9 | 3 |
| 10 | 10 | 2 |

It is clear that $G_{\alpha}$ contains no Sylow $p$-subgroups of $G$. Let $Q_{0}$ be a Sylow $p$-subgroup of $G_{2}\left(q_{0}\right)$. It follows by Lemma 2.11 that $Q_{0} \leq G_{L}$. Then $Q_{0} \leq$ $T \cap G_{L}=T_{L}$. Examining the subgroup of $G_{2}(q)$ in Lemmas 2.1 and 2.2 and 2.3, we find that $G_{L} \cap T$ is isomorphic to $G_{2}\left(q_{2}\right)$ or a subgroup of some maximal subgroup of $T$, where $q$ is a power of $q_{2}$ and $q_{0} \mid q_{2}$.
3.1 Case: $T_{L} \cong G_{2}\left(q_{2}\right)$.

By Lemma 2.4 we have $\left|C_{G_{L}}(i)\right| \geq q_{2}^{2}\left(q_{2}^{4}-1\right) \geq q_{0}^{2}\left(q_{0}^{4}-1\right)$ and hence

$$
\left|\operatorname{Fix}_{\mathcal{L}}(\langle i\rangle)\right|=\frac{\left|G_{L} \cap K\right|}{\left|G_{L}\right|}=\frac{\left|C_{G}(i)\right|}{\left|C_{G_{L}(i) \mid}\right|} \leq \frac{q^{4}\left(q^{2}-1\right) m}{q_{0}^{2}\left(q_{0}^{4}-1\right)}
$$

Appealing to Lemma 2.13, we have

$$
v=\frac{q^{6}\left(q^{6}-1\right)\left(q^{2}-1\right)}{q_{0}^{6}\left(q_{0}^{6}-1\right)\left(q_{0}^{2}-1\right)}<\left(\frac{q^{4}\left(q^{2}-1\right) m}{q_{0}^{2}\left(q_{0}^{4}-1\right)}\right)^{2} .
$$

Since $q^{6}\left(q^{6}-1\right)\left(q^{2}-1\right)>q^{2}\left(q^{4}\left(q^{2}-1\right)\right)^{2}$ and $q_{0} \geq 2$, we have

$$
q^{2}<\frac{q_{0}^{6}\left(q_{0}^{6}-1\right)\left(q_{0}^{2}-1\right)}{\left(q_{0}^{2}\left(q_{0}^{4}-1\right)\right)^{2}}=\frac{q_{0}^{2}\left(1+q_{0}^{2}+q_{0}^{4}\right)}{\left(1+q_{0}^{2}\right)^{2}}<\frac{21}{16} q_{0}^{2} m^{2}
$$

It follows that

$$
q<\sqrt{\frac{21}{16}} q_{0} m<\frac{8}{5} q_{0} m
$$

Thus

$$
p^{a}<\frac{8}{5} p^{a / c} \cdot m
$$

Recall that $q_{0}=p^{\lambda}$ and $a=\lambda c$. Then we have

$$
p^{\lambda(c-1)}<\frac{8}{5} \cdot m
$$

- if $p=2$, then $2^{\lambda(c-1)} \leq \frac{8}{5} \lambda c$, which is a contradiction for $c \geq 4$.
- if $p=3$, then $3^{\lambda(c-1)} \leq \frac{16}{5} \lambda c$. This is impossible for $c \geq 4$.
- if $p \geq 5$, then $5^{\lambda(c-1)} \leq \frac{8}{5} \lambda c$. This is a contradiction.

Hence the case where $T_{L} \cong G_{2}\left(q_{2}\right)$ is excluded.
3.2 Case: $G_{L} \cap T$ is conjugate to a subgroup of some maximal subgroup of $T$.

Let $M$ be a maximal subgroup of $T$ such that $T_{L} \leq M$. Let $b=\left|G: G_{L}\right|=$ $\frac{|T| m}{\left|T_{L}\right| m_{1}}$ (where $\left.m_{1} \mid m\right)$ and $a_{1}=|M| /\left|T_{L}\right|$ and let $b^{\prime}=|T| /|M|$, then we have $b=b^{\prime} a_{1} \frac{m}{m_{1}}$. Thus if a prime divides $b^{\prime}$, it also divides $b$. We can assume that $T_{L}$ is not isomorphic to one subgroup of $\left(S L_{2}(q) \circ S L_{2}(q)\right) \cdot 2$. If $G$ contains a graph automorphism of $G_{2}(q)$, then $M$ lies inside $\left[q^{5}\right]: G L_{2}(q)$, or ${ }^{2} G_{2}(q)$ or $P G L_{2}(q)$. Otherwise, $M$ lies in $\left[q^{5}\right]: G L_{2}(q)$, or $S L_{3}^{\epsilon}(q): 2$, or ${ }^{2} G_{2}(q)$, or $P G L_{2}(q)$, where $\epsilon= \pm$.
3.2.1 Case: $c=9, p=2$

In this case we have $v=2^{48} \cdot 3 \cdot 7 \cdot 3249 \cdot 5329 \cdot 261633 \cdot 262657$ and $q=2^{9}$. Hence $b_{2}$ divides $2^{6}\left(2^{2}-1\right)\left(2^{6}-1\right) \cdot 9$ by Lemma 2.8. Since $\left(b_{2}, v\right)=1$, we have $b_{2}=1$. This implies that $\mathcal{S}$ is a projective plane which is a contradiction.
3.2.2 Case: $c=10, p=2$

We have $v=2^{54} \cdot 5^{2} \cdot 11^{2} \cdot 13 \cdot 31^{2} \cdot 205^{2} \cdot 151 \cdot 331 \cdot 80581$ and $q=2^{10}$. Let $S$ be a Sylow 7 -subgroup of $T$. Since $(7, a)=1$ and hence $S$ is also the Sylow 7 -subgroup of $G$. Note that $7 \nmid v$, and so we may split the proof into 2 or 3 cases. ¿.

If $7 \mid b$, it follows from Lemmas 2.10 and 2.5 that $Z_{q^{2}+q+1} \leq G_{\alpha}$, which is impossible by Lemma 2.7.

If $7 \nmid b$, this implies that $7 \nmid b_{2}$ and $G_{L}$ contains a Sylow 7-subgroup of $G$. Hence the only case to occur is that $M=S L_{3}^{\epsilon}(q): 2$ and $\epsilon=+$. It follows from Lemma 2.8 that $b_{2} \mid 2^{7} \cdot 3^{3} \cdot 5 \cdot 7$. Note that $\left(b_{2}, v\right)=1$ and hence $b_{2} \mid 3^{3}$. Since $v$ is even, then $k_{1}$ is even. If $b_{2}=3$, then $k_{1}=2$ and hence $\left|G_{L}\right|=\frac{2}{3}\left|G_{\alpha}\right|=2^{8} \cdot 3^{2} \cdot 5 \cdot 7$. There is no such group. Thus $3^{2} \mid b$. Note that $3^{3}| ||T|$ and hence $Z_{3} \times Z_{3} \nsubseteq T_{L}$. Applying Lemma 2.9 and 2.5 it yields the fact that $N_{G}\left(Z_{3} \times Z_{3}\right) \leq G_{\alpha}$, which implies $Z_{q-1} \times Z_{q-1} \leq G_{\alpha}$, a contradiction.
3.2.3 Case: $c=9, p=3$

We have $v=3^{48} \cdot 7 \cdot 13 \cdot 703^{2} \cdot 757^{2} \cdot 387400807 \cdot 387440173$ and $q=3^{9}$. By Lemma 2.4 we have that $\left|C_{G}(i)\right| \leq q^{2}\left(q^{2}-1\right)^{2} m$. Note that $\left|C_{G_{L}}(i)\right| \geq 2$ and hence it follows from Lemma 2.13 that $v \leq \frac{\left|C_{G_{L}}(i)\right|^{2}}{\left|C_{G}(i)\right|^{2}} \leq \frac{1}{4}\left|C_{G}(i)\right|^{2}$. This implies that $3^{48} \cdot 7 \cdot 13 \cdot 703^{2} \cdot 757^{2} \cdot 387400807 \cdot 387440173 \leq 2^{10} \cdot 3^{40} \cdot 7^{4} \cdot 13^{4} \cdot 703^{4} \cdot 757^{4}$, which is a contradiction.
3.2.4 Case: $c=3, p \geq 5$

In this case we have $Z_{q_{0}+1} \times Z_{q_{0}+1} \leq G_{\alpha}$. We may consider two cases.
If $Z_{q_{0}+1} \times Z_{q_{0}+1} \leq G_{L}$, it follows by Lemmas 2.1 that $M=S L_{3}^{\epsilon}(q): 2$ where $\epsilon=-$. Then $Z_{q_{0}-1} \times Z_{q_{0}-1} \not \leq G_{L}$. It follows from Lemma 2.9 that $N_{G}\left(Z_{q_{0}-1} \times Z_{q_{0}-1}\right) \leq G_{\alpha}$, which implies that $Z_{q-1} \times Z_{q-1} \leq G_{\alpha}$. This is a contradiction.

If $Z_{q_{0}+1} \times Z_{q_{0}+1} \not \leq G_{L}$, it follows from Lemma 2.9 that $N_{G}\left(Z_{q_{0}+1} \times Z_{q_{0}+1}\right) \leq$ $G_{\alpha}$. This implies that $Z_{q+1} \times Z_{q+1} \leq G_{\alpha}$ which is a contradiction.
3.2.5 Case: $c=7, p \geq 5$

In this case we can find a prime $t$ greater than 5 such that $t$ divides $q_{0}^{2}+\epsilon q_{0}+1$. Let $U^{\epsilon}$ be a cyclic subgroup of $G_{2}\left(q_{0}\right)$ of order $q_{0}^{2}+\epsilon q_{0}+1$, where $\epsilon= \pm$. Then $U^{\epsilon} \leq Z_{q^{2}+\epsilon q+1}$. If $U^{-} \leq G_{L}$, by Lemmas 2.1 and 2.3 we find that the possibility for $M$ is the case $M=S L_{3}^{\epsilon}(q): 2$ or ${ }^{2} G_{2}(q)$ where $\epsilon=-$. Hence $U^{+} \not \leq M$. It follows by Lemmas 2.9 and 2.5 that $Z_{q^{2}+q+1}: Z_{6} \leq G_{\alpha}$, which gives a contradiction. If $U^{-} \nsubseteq G_{L}$, then by Lemma 2.9 we have $N_{G}\left(Z_{q^{2}-q+1}\right) \leq G_{\alpha}$ and hence $Z_{q^{2}-q+1}: Z_{6} \leq G_{\alpha}$. This is a contradiction.
3.2.6 Case: $c=4$ or 8

We have $v=q_{0}^{18}\left(q_{0}^{2}+1\right)^{2}\left(q_{0}^{4}+1\right)^{2}\left(q_{0}^{4}-q_{0}^{2}+1\right)\left(q_{0}^{8}-q_{0}^{4}+1\right)$ for $c=4$ and $q_{0}^{42}\left(q_{0}^{2}+1\right)^{2}\left(q_{0}^{4}+1\right)^{2}\left(q_{0}^{8}+1\right)^{2}\left(q_{0}^{4}-q_{0}^{2}+1\right)\left(q_{0}^{8}-q_{0}^{4}+1\right)\left(q_{0}^{16}-q_{0}^{8}+1\right)$ for $c=8$.

First suppose that $G$ contains a graph automorphism of $G_{2}(q)$. Then $M$ lies inside $\left[q^{5}\right]:\left(Z_{q-1}\right)^{2}$, or ${ }^{2} G_{2}(q)$ or $P G L_{2}(q)$. Hence $Z_{q_{0}^{2}+q_{0}+1} \not \leq M$ and $Z_{q_{0}^{2}+q_{0}+1} \not \leq G_{L}$. Note that $Z_{q_{0}^{2}+q_{0}+1} \leq Z_{q^{2}+q+1}$. It follows by Lemma 2.9 that $N_{G}\left(Z_{q_{0}^{2}+q_{0}+1}\right) \leq G_{\alpha}$, which implies $Z_{q^{2}+q+1} \leq G_{\alpha}$. Thus $Z_{q^{2}+q+1} \leq T \cap G_{\alpha}=$ $T_{\alpha}$. This contradicts Lemma 2.7.

Now assume that $G$ contains no graph automorphism of $G_{2}(q)$. We consider several cases.

Suppose first that $q_{0}=2$. We have $v=2^{18} \cdot 5^{2} \cdot 13 \cdot 17^{2} \cdot 241$ and $q=2^{4}$ for $c=4$ and $v=2^{42} \cdot 5^{2} \cdot 13 \cdot 17^{2} \cdot 241 \cdot 257^{2} \cdot 65281$ and $q=2^{8}$ for $c=8$. Hence the Sylow 7 -subgroup of $T$ is also of $G$. Note that $7 \nmid v$ and so we may split the proof into 2 or 3 cases .

If $7 \mid b$, it follows from Lemmas 2.9 and 2.5 that $Z_{q^{2}+q+1} \leq G_{\alpha}$, which is impossible by Lemma 2.7.

If $7 \nmid b$, this implies that $7 \nmid b_{2}$ and $G_{L}$ contains a Sylow 7 -subgroup of $G$. Hence the only case to occur is that $M=S L_{3}(q): 2$. It follows from Lemma 2.8 that $b_{2} \mid 2^{8} \cdot 3^{3} \cdot 7$ for $c=4$ and $b_{2} \mid 2^{9} \cdot 3^{3} \cdot 7$ for $c=8$. Note that $\left(b_{2}, v\right)=1$ and hence $b_{2} \mid 3^{3}$. Since $v$ is even, then $k_{1}$ is even. If $b_{2}=3$, then $k_{1}=2$ and hence $\left|G_{L}\right|=\frac{2}{3}\left|G_{\alpha}\right|=2^{9} \cdot 3^{2} \cdot 5 \cdot 7$ for $c=4$ and $\left|G_{L}\right|=\frac{2}{3}\left|G_{\alpha}\right|=2^{10} \cdot 3^{2} \cdot 5 \cdot 7$ for $c=8$. There are no subgroups of such orders. Thus $3^{2} \mid b$. Note that $3^{3}| ||T|$ and hence $Z_{3} \times Z_{3} \nsubseteq T_{L}$. Applying Lemma 2.9 and 2.5 it yields the fact that $N_{G}\left(Z_{3} \times Z_{3}\right) \leq G_{\alpha}$, which implies $Z_{q-1} \times Z_{q-1} \leq G_{\alpha}$, a contradiction.

Suppose next that $q_{0} \neq 2$. Then we calculate that there exists a prime divisor $s$ greater than 3 of $q_{0}^{2}+\epsilon q_{0}+1$. It follows that $s \mid b^{\prime}$ and hence $s \mid b$. We may have

$$
\left.\begin{array}{c}
\left(q_{0}^{2}+\epsilon q_{0}+1, q_{0}^{2}+1\right)=1, \\
\left(q_{0}^{2}+\epsilon q_{0}+1, q_{0}^{8}+1\right)=1, \quad\left(q_{0}^{2}+\epsilon q_{0}+1, q_{0}^{4}+1\right)=1 \\
\left(q_{0}^{2}+\epsilon q_{0}+1, q_{0}^{8}-q_{0}^{4}+1\right)=1,
\end{array}\left(q_{0}^{2}+\epsilon q_{0}^{2}+1, q_{0}^{16}-q_{0}^{8}+1\right)=1\right)
$$

Then it follows that $\left(q_{0}^{2}+\epsilon q_{0}+1, v\right)=1$ and hence $s \nmid v$.
Let $S$ be a Sylow $s$-subgroup of $T$. Then $S$ is also a $s$-subgroup of $T_{\alpha}$. We have $S \nsubseteq T_{L}$ (In fact, if $S \leq T_{L}$, then $S \leq M$ and hence $s \nmid b^{\prime}=\frac{|T|}{|M|}$, a
contradiction.) It follows from Lemma 2.10 that $N_{G}(S) \leq G_{\alpha}$, which implies that $Z_{q^{2}+q+1} \leq G_{\alpha}$. This is impossible.
3.2.7 Case: $c=5$

Suppose first that $q_{0}=2$. Then $v=2^{24} \cdot 11^{2} \cdot 31^{2} \cdot 151 \cdot 331$ and $q=2^{5}$. The Sylow 7 -subgroups of $T$ are also those of $G$. We may split the proof into 2 cases

If 7 divides $b$, it follows from Lemmas 2.10 and 2.5 that $Z_{q^{2}+q+1}: Z_{6} \leq G_{\alpha}$. This contradicts Lemma 2.7.

If 7 does not divide $b$, then $G_{L}$ contains a Sylow 7 -subgroup of $G$. Thus the only case to occur is that $M=S L_{3}(q): 2$. We may get $b^{\prime}=q^{3}\left(q^{3}+1\right) / 2=$ $2^{14}\left(2^{15}+1\right)$ and hence $9 \mid b$. Since $27\left|\left||T|\right.\right.$, it follows that $Z_{3} \times Z_{3} \not \leq T_{L}$. Applying Lemmas 2.9 and 2.5 it yields the fact that $N_{G}\left(Z_{3} \times Z_{3}\right) \leq G_{\alpha}$, and hence $\left(Z_{q+1} \times Z_{q+1}\right) \cdot D_{12} \leq G_{\alpha}$, which is a contradiction.

Now we can assume that $q_{0} \neq 2$. Then there exists a prime divisor $t$ greater than 3 of $q_{0}^{2}+\epsilon q_{0}+1$ by a direct calculation. Let $U^{\epsilon}$ be a cyclic subgroup of $G_{2}\left(q_{0}\right)$ of order $q_{0}^{2}+\epsilon q_{0}+1$, where $\epsilon= \pm$. Then $U^{\epsilon} \leq Z_{q^{2}+\epsilon q+1}$. If $U^{-} \leq G_{L}$, by Lemmas 2.1 and 2.2 and 2.3 we find that $M=S L_{3}^{\epsilon}(q): 2$ or ${ }^{2} \bar{G}_{2}(q)$, where $\epsilon=-$. Hence $U^{+} \not \leq M$. It follows from Lemmas 2.9 and 2.5 that $Z_{q^{2}+q+1}: Z_{6} \leq G_{\alpha}$. This is a contradiction. If $U^{-} \not \leq G_{L}$, then by Lemma 2.9 we have $N_{G}\left(Z_{q^{2}-q+1}\right) \leq G_{\alpha}$ and hence $Z_{q^{2}-q+1}: Z_{6} \leq G_{\alpha}$. This is a contradiction.

Thus we have that $T$ is line-transitive on $\mathcal{S}$. The proof of the Theorem is complete.

## Acknowledgments

The authors are grateful to the Editor and referee for pointing out errors in the original version of this paper and their valuable comments and suggestions. The research was supported by the Natural Science Foundation of China (No. 11271208 and No. 11172643).

## References

[1] M. Aschbacher, Chevalley groups of type $G_{2}$ as the group of a trilinear form, J. Algebra 109 (1987), no. 1, 193-259.
[2] R. E. Block, On the orbits of collineation groups, Math. Z. 96 (1967) 33-49.
[3] F. Buekenhout, A. Delandtsheer and J. Doyen, Finite linear spaces with flag-transitive groups, J. Combin. Theory Ser. A 49 (1988), no. 2, 268-293.
[4] F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck and J. Saxl, Linear spaces with flag-transitive automorphism groups, Geometriae Dedicata 36 (1990), no. 1, 89-94.
[5] A. R. Camina, P. M. Neumann and C. E. Praeger, Alternating groups acting on finite linear spaces, Proc. London Math. Soc. (3) 87 (2003), no. 1, 29-53.
[6] A. R. Camina and J. Siemons, Block transitive automorphism groups of 2-(v, k, 1) block designs, J. Combin. Theory Ser. A 51 (1989), no. 2, 268-276.
[7] A. R. Camina and F. Spiezia, Sporadic groups and automorphisms of linear spaces, $J$. Combin. Des. 8 (2000), no. 5, 353-362.
[8] B. N. Cooperstein, Maximal subgroups of $G_{2}\left(2^{n}\right)$, J. Algebra 70 (1981), no. 1, 23-36.
[9] N. Gill, PSL $(3, q)$ and line-transitive linear spaces, Beiträge Algebra Geom 48 (2007), no. 2, 591-620.
[10] R. M. Guralnick, P. Muller and J. Saxl, The rational function analogue of a question of Schur and exceptionality of permutation representations, Mem. Amer. Math. Soc. 162 (2003), no. 773, 1-79.
[11] P. B. Kleidman, The maximal subgroups of the Chevalley groups $G_{2}(q)$ with $q$ odd, the Ree groups ${ }^{2} G_{2}(q)$, and their automorphism groups, J. Algebra 117 (1988), no. 1, 30-71.
[12] W. J. Liu, The Chevalley groups $G_{2}\left(2^{n}\right)$ and $2-(v, k, 1)$ designs, Algebra Colloq. 8 (2001), no. 4, 471-480.
[13] W. J. Liu, The Chevalley groups $G_{2}(q)$ with $q$ odd and $2-(v, k, 1)$ designs, European J. Combin. 24 (2003), no. 3, 331-346.
[14] W. J. Liu, S. J. Dai and L. Z. Gong, Almost simple groups with socle ${ }^{3} D_{4}(q)$ acting on finite linear spaces, Sci. China Ser. A 49 (2006), no. 12, 1768-1776.
[15] W. J. Liu, S. Z. Li and L. Z. Gong, Almost simple groups with socle Ree $(q)$ acting on finite linear spaces, European J. Combin. 27 (2006), no. 6, 788-800.
[16] W. J. Liu, H. L. Li and C. G. Ma, Suzuki groups and 2-( $v, k, 1$ )designs, European J. Combin. 22 (2001), no. 4, 513-519.
[17] G. Thomas, A characterization of the Steinberg groups $D_{4}^{2}\left(q^{3}\right), q=2^{n}$, J. Algebra 14 (1970) 373-385.
[18] S. L. Zhou, H. L. Li and W. J. Liu, The Ree groups ${ }^{2} G_{2}(q)$ and $2-(v, k, 1)$ block designs, Discrete Mathematics 224 (2000), no. 1-3, 251-258.
(Shangzhao Li) School of Mathematical Sciences, Soochow University, Suzhou, P. R. China, School of Mathematics and Statistics, Changshu Institute of Technology, Suzhou, P. R. China

E-mail address: lszfd2004@163.com
(Xianhua Li) School of Mathematical Sciences, Soochow University, Suzhou, P. R. China

E-mail address: xhli@suda.edu.cn
(Weijun Liu) School of Mathematics, Central South University, Changsha, P. R. China

E-mail address: wjliu6210@126.com


[^0]:    Article electronically published on June 15, 2015.
    Received: 9 April 2013, Accepted: 2 April 2014.

    * Corresponding author.

