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Abstract. In this article, we consider the uniqueness of the difference

monomials fn(z)f(z + c). Suppose that f(z) and g(z) are transcenden-
tal meromorphic functions with finite order and Ek(1, f

n(z)f(z + c)) =
Ek(1, g

n(z)g(z+ c)). Then we prove that if one of the following holds (i)
n ≥ 14 and k ≥ 3, (ii) n ≥ 16 and k = 2, (iii) n ≥ 22 and k = 1, then

f(z) ≡ t1g(z) or f(z)g(z) = t2, for some constants t1 and t2 that satisfy

tn+1
1 = 1 and tn+1

2 = 1. We generalize some previous results of Qi et. al.

Keywords: Meromorphic functions, difference equations, uniqueness, fi-
nite order.
MSC(2010): Primary: 30D35; Secondary: 39B12

1. Introduction and main results

In this article, we assume that the reader is familiar with the fundamental
results and the standard notations of the Nevanlinna theory (see, e.g., [8, 18]).
Let f(z) and g(z) be two non-constant meromorphic functions in the complex
plane. By S(r, f), we denote any quantity satisfying S(r, f) = o(T (r, f)) as r →
∞, possibly outside a set of finite logarithmic measure. Then the meromorphic
function α is called a small function of f(z), if T (r, α) = S(r, f). If f(z)−α and
g(z)−α have same zeros, counting multiplicity (ingoring multiplicity), then we
say f(z) and g(z) share the small function α CM (IM).

Let a be a finite complex number, and k be a positive integer. We denote by
Nk)(r,

1
f−a ) the counting function for the zeros of f(z)−a with multiplicity ≤ k,

and by Nk(r,
1

f−a ) the corresponding one for which multiplicity is not counted.

Let N(k(r,
1

f−a ) be the counting function for the zeros of f(z)− a with multi-

plicity ≥ k, and N (k(r,
1

f−a ) be the corresponding one for which multiplicity is
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not counted. Moreover, we set Nk(r,
1

f−a ) = N(r, 1
f−a ) + N (2(r,

1
f−a ) + · · · +

N (k(r,
1

f−a ). In the same way, we can define Nk(r, f).

Currently, Many articles have focused on value distribution in difference
analogues of meromorphic functions (see, e.g., [1, 2, 5–7, 9–17, 19]). In particu-
lar, there has been an increasing interest in studying the uniqueness problems
related to meromorphic functions and their shifts or their difference operators
(see, e.g., [1, 9, 11–15]). Our aim in this article is to investigate the uniqueness
problems of difference monomials of meromorphic functions.

In 2010, Qi et al. [16] studied the uniqueness of the difference monomials
and obtained the following result:

Theorem 1.1. Let f(z) and g(z) be transcendental entire functions with finite
order, c a non-zero complex constant; and n ≥ 6 an integer. If E(1, fn(z)f(z+
c)) = E(1, gn(z)g(z + c)), then f(z) ≡ t1g(z) or f(z)g(z) = t2, for some
constants t1 and t2 that satisfy tn+1

1 = 1 and tn+1
2 = 1.

In this paper, we consider the case of meromorphic functions of Theorem A.
Our result can be stated as follows:

Lemma 1.2. Let c ∈ C \ {0}. Let f(z) and g(z) be two transcendental mero-
morphic functions with finite order, and n(≥ 14), k(≥ 3) be two positive in-
tegers. If Ek(1, f

n(z)f(z + c)) = Ek(1, g
n(z)g(z + c)), then f(z) ≡ t1g(z) or

f(z)g(z) = t2, for some constants t1 and t2 that satisfy tn+1
1 = 1 and tn+1

2 = 1.

In the previous theorem we considered the case k ≥ 3. The following two
theorems are about the case k ≤ 2.

Theorem 1.3. Let c ∈ C and n ≥ 16 be an integer. Let f(z) and g(z) be two
transcendental meromorphic functions with finite order. If E2(1, f

n(z)f(z +
c)) = E2(1, g

n(z)g(z + c)), then f(z) ≡ t1g(z) or f(z)g(z) = t2, for some
constants t1 and t2 that satisfy tn+1

1 = 1 and tn+1
2 = 1.

Theorem 1.4. Let c ∈ C and n ≥ 22 be an integer. Let f(z) and g(z) be two
transcendental meromorphic functions with finite order. If E1(1, f

n(z)f(z +
c)) = E1(1, g

n(z)g(z + c)), then f(z) ≡ t1g(z) or f(z)g(z) = t2, for some
constants t1 and t2 that satisfy tn+1

1 = 1 and tn+1
2 = 1.

2. Preliminary lemmas

Before proceeding to the actual proofs, we recall a few lemmas that play an
important role in the reasoning.

Lemma 2.1. [3] Let f and g be two meromorphic functions, and let k be a
positive integer. If Ek(1, f) = Ek(1, g), then one of the following cases must
occur:
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1.

T (r, f) + T (r, g) ≤ N2(r, f) +N2

(
r,

1

f

)
+N2(r, g) +N2

(
r,
1

g

)
+N

(
r,

1

f − 1

)
+N

(
r,

1

g − 1

)
−N11

(
r,

1

f − 1

)
+N (k+1

(
r,

1

f − 1

)
+N (k+1

(
r,

1

g − 1

)
+ S(r, f) + S(r, g);(2.1)

2.

(2.2) f =
(b+ 1)g + (a− b− 1)

bg + (a− b)
,

where a(̸= 0), b are two constants.

Lemma 2.2. [7] Let f(z) be a nonconstant finite order meromorphic function
and let c ̸= 0 be an arbitrary complex number. Then

T (r, f(z + |c|)) = T (r, f(z)) + S(r, f).

Remark 2.3. It is shown in [4, p. 66], that for c ∈ C \ {0},
(1 + o(1))T (r − |c|, f(z)) ≤ T (r, f(z + c)) ≤ (1 + o(1))T (r + |c|, f(z))

hold as r → ∞, for a general meromorphic function. By this and Lemma 2.2,
we obtain

T (r, f(z + c)) = T (r, f(z)) + S(r, f).

Lemma 2.4. Let f(z) and g(z) be two meromorphic functions with finite order,
n ≥ 8 a positive integer, and let F = fn(z)f(z + c) and G = gn(z)g(z + c). If

(2.3) F =
(b+ 1)G+ (a− b− 1)

bG+ (a− b)
,

where a( ̸= 0), b are two constants, then f(z) ≡ t1g(z) or f(z)g(z) = t2, for
some constants t1 and t2 that satisfy tn+1

1 = 1 and tn+1
2 = 1.

Proof of Lemma 2.3. Remark 2.3 yields that

T (r, F ) = T (r, fn(z)f(z + c)) + S(r, f)(2.4)

≤ T (r, fn(z)) + T (r, f(z + c)) + S(r, f)(2.5)

= (n+ 1)T (r, f) + S(r, f).(2.6)

On the other hand, together the first main Theorem with Remark 2.3, we
obtain

nT (r, f) = T (r, fn(z)) + S(r, f)

≤ T (r, fn(z)f(z + c)) + T
(
r,

1

f(z + c)

)
+ S(r, f)

= T (r, f(z)) + T (r, F (z)) + S(r, f)(2.7)
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that is,

(2.8) T (r, F ) ≥ (n− 1)T (r, f) + S(r, f)

Hence, (2.4) and (2.6) yield that

(2.9) S(r, F ) = S(r, f).

Similarly, we obtain

(2.10) T (r,G) ≥ (n− 1)T (r, g) + S(r, g),

and

(2.11) S(r,G) = S(r, g).

Set I1 = {r : T (r, g) ≥ T (r, f)} ⊆ (0,∞), and I2 = (0,∞)\I1. Then there is
at least one Ii(i = 1, 2) such that Ii has infinite logarithmic measure. Without
loss of generality, we may suppose that I1 has infinite logarithmic measure. We
break the rest of the proof into three cases. □

Case 1. b ̸= 0,−1. If a− b− 1 ̸= 0, then we know from 2.3

(2.12) N
(
r,

1

F

)
= N

(
r,

1

G− a−b−1
b+1

)
.

Together with the first main theorem, the second main theorem with Remark
2.3, 2.8 and 2.12, we obtain

(n− 1)T (r, g) ≤ T (r,G) + S(r, g)

≤ N
(
r,

1

G

)
+N(r,G) +N

(
r,

1

G− a−b−1
b+1

)
+ S(r,G) + S(r, g)

= N
(
r,

1

G

)
+N(r,G) +N

(
r,

1

F

)
+ S(r, g)

≤ N
(
r,
1

g

)
+N

(
r,

1

g(z + c)

)
+N(r, g) +N(r, g(z + c))

+N
(
r,

1

f

)
+N

(
r,

1

f(z + c)

)
+ S(r, g)

≤ 4T (r, g) + 2T (r, f) + S(r, g)(2.13)

≤ 6T (r, g) + S(r, g), r ∈ I1(2.14)

which is impossible, since n ≥ 8. Hence, we obtain a− b− 1 = 0, so

F (z) =
(b+ 1)G(z)

bG(z) + 1
.
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Using the similar method as above, we obtain

(n− 1)T (r, g) ≤ T (r,G) + S(r, g)

≤ N
(
r,

1

G

)
+N(r,G) +N

(
r,

1

G+ 1
b

)
+ S(r,G)

= N
(
r,

1

G

)
+N(r,G) +N(r, F ) + S(r,G)

≤ 6T (r, g) + S(r, g), r ∈ I1

which is a contradiction, since n ≥ 8.
Case 2. b = −1, a ̸= −1. By 2.3, we have

(2.15) F =
a

a+ 1−G
.

Similarly, we get a contradiction, hence, we obtain a = −1. So, we get
FG = 1, that is fn(z)f(z+c)gn(z)g(z+c) = 1. Set H(z) = f(z)g(z). Suppose
that H(z) is not a constant. Then we obtain

(2.16) Hn(z)H(z + c) = 1.

Remark 2.3, the first main Theorem and 2.16 imply that

(2.17) nT (r,H(z)) = T (r,Hn(z)) = T
(
r,

1

H(z + c)

)
= T (r,H(z)) + S(r,H).

Hence H(z) must be a nonzero constant, since n ≥ 8. Set H(z) = t1, by
2.16, we know tn+1

1 = 1. Thus, f(z)g(z) = t1, where tn+1
1 = 1.

Case 3. b = 0, a ̸= 1. By 2.3, we obtain

F =
G+ a− 1

a
.

Similarly, we get a contradiction, hence we obtain a = 1, so we get F = G,
that is

fn(z)f(z + c) = gn(z)g(z + c).

Let H(z) = f(z)
g(z) , using the similar method as above, we also obtain that H(z)

must be a nonzero constant. Thus, we have f = t2g, where tn+1
2 = 1.

3. Proof of Theorem 1.1

Let F (z) = fn(z)f(z + c) and G(z) = gn(z)g(z + c). Since k ≥ 3, we have

N
(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
−N11

(
r,

1

F − 1

)
+N (k+1

(
r,

1

F − 1

)
+N (k+1

(
r,

1

G− 1

)
≤ 1

2
N
(
r,

1

F − 1

)
+

1

2
N
(
r,

1

G− 1

)
≤ 1

2
T (r, F ) +

1

2
T (r,G) + S(r, f) + S(r, g).)(3.1)
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2.1 and 3.1 give that
(3.2)

T (r, F )+T (r,G) ≤ 2
{
N2

(
r,

1

F

)
+N2(r, F )+N2

(
r,

1

G

)
+N2(r,G)

}
+S(r, f)+S(r, g).

Together the definition of F , the first main Theorem with Remark 2.3, we
have

N2

(
r,

1

F

)
≤ 2N

(
r,

1

f

)
+N

(
r,

1

f(z + c)

)
+ S(r, f)

≤ 3T (r, f) + S(r, f).(3.3)

Similarly,

(3.4) N2

(
r,

1

G

)
≤ 3T (r, g) + S(r, f),

(3.5) N2(r, F ) ≤ 3T (r, f) + S(r, f),

(3.6) N2(r,G) ≤ 3T (r, g) + S(r, f).

(3.2)-(3.6) yield that

(3.7) T (r, F ) + T (r,G) ≤ 12(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

Then, by (2.6), (2.8) and (3.7), we obtain

(3.8) (n− 13)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

which is a contradiction since n ≥ 14. Hence, by Lemma 2.1, we have F =

(b + 1)G + (a−b−1)
bG+a−b , where a ̸= 0, b are two constants. By Lemma 2.3, we

get f(z) ≡ t1g(z) or f(z)g(z) = t2, for some constants t1 and t2 that satisfy
tn+1
1 = 1 and tn+1

2 = 1.

4. Proof of Theorem 1.2

Note that

N
(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
−N11

(
r,

1

F − 1

)
+

1

2
N (3

(
r,

1

F − 1

)
+
1

2
N (3

(
r,

1

G− 1

)
≤ 1

2
N
(
r,

1

F − 1

)
+

1

2
N
(
r,

1

G− 1

)
≤ 1

2
T (r, F ) +

1

2
T (r,G) + S(r, f) + S(r, g).(4.1)

Then we obtain from 2.1 and 4.1

T (r, F ) + T (r,G) ≤ 2
{
N2

(
r,

1

F

)
+N2(r, F ) +N2

(
r,

1

G

)
+N2(r,G)

}
+N (3

(
r,

1

F − 1

)
+N (3

(
r,

1

G− 1

)
+ S(r, f) + S(r, g)
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Obviously, combining the first main Theorem and Remark 2.3, we have

N (3

(
r,

1

F − 1

)
≤ 1

2
N
(
r,

F

F ′

)
=

1

2
N
(
r,

F ′

F

)
+ S(r, f)

≤ 1

2
N(r, F ) +

1

2
N
(
r,

1

F

)
+ S(r, f)

≤ 1

2

[
N(r, f(z)) +N(r, f(z + c)) +N

(
r,

1

f(z)

)
+N

(
r,

1

f(z + c)

)]
+S(r, f) ≤ 2T (r, f) + S(r, f).(4.2)

Similarly, we obtain

(4.3) N (3

(
r,

1

G− 1

)
≤ 2T (r, g) + S(r, f)

Suppose that

T (r, F ) + T (r,G) ≤ 2
{
N2

(
r,

1

F

)
+N2(r, F ) +N2

(
r,

1

G

)
+N2(r,G)

}
+ N (3

(
r,

1

F − 1

)
+N (3

(
r,

1

G− 1

)
+ S(r, f) + S(r, g).(4.4)

Then we have from 2.8, 2.10, 3.3-3.6 and 4.2-4.4

(n− 1)T (r, f) + (n− 1)T (r, g) ≤ T (r, F ) + T (r,G)

≤ 14T (r, f) + 14T (r, g) + S(r, f) + S(r, g),

which is a contradiction, since n ≥ 16. By Lemma 2.1, we obtain that

F = (b+ 1)G+ (a−b−1)
bG+a−b , where a ̸= 0, b are two constants. By Lemma 2.3, we

get f(z) ≡ t1g(z) or f(z)g(z) = t2, for some constants t1 and t2 that satisfy
tn+1
1 = 1 and tn+1

2 = 1.

5. Proof of Theorem 1.3

Since

N
(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
−N11

(
r,

1

F − 1

)
≤ 1

2
N
(
r,

1

F − 1

)
+

1

2
N
(
r,

1

G− 1

)
≤ 1

2
T (r, F ) +

1

2
T (r,G) + S(r, f) + S(r, g).(5.1)

Then (2.1) becomes

T (r, F ) + T (r,G) ≤ 2
{
N2

(
r,

1

F

)
+N2(r, F ) +N2

(
r,

1

G

)
+N2(r,G)

+N (2

(
r,

1

F − 1

)
+N (2

(
r,

1

G− 1

)}
+ S(r, f) + S(r, g).
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Combining the first main Theorem and Remark 2.3, we obtain

N (2

(
r,

1

F − 1

)
≤ N

(
r,

F

F ′

)
= N

(
r,

F ′

F

)
+ S(r, f)

≤ N(r, F ) +N
(
r,

1

F

)
+ S(r, f)

≤ N(r, f(z)) +N(r, f(z + c)) +N
(
r,

1

f(z)

)
+N

(
r,

1

f(z + c)

)
+S(r, f)

≤ 4T (r, f) + S(r, f).(5.2)

Similarly, we get

(5.3) N (2

(
r,

1

G− 1

)
≤ 4T (r, g) + S(r, f).

Suppose that

T (r, F ) + T (r,G) ≤ 2
{
N2

(
r,

1

F

)
+N2(r, F ) +N2

(
r,

1

G

)
+N2(r,G)

+ N (2

(
r,

1

F − 1

)
+N (2

(
r,

1

G− 1

)}
+ S(r, f) + S(r, g).(5.4)

Then we obtain from 2.8, 2.10, 3.3-3.6 and 5.2-5.4

(n− 1)T (r, f) + (n− 1)T (r, g) ≤ T (r, F ) + T (r,G)

≤ 20T (r, f) + 20T (r, g) + S(r, f) + S(r, g),

which is impossible, since n ≥ 22. By Lemma 2.1, we obtain that F =

(b + 1)G + (a−b−1)
bG+a−b , where a ̸= 0, b are two constants. By Lemma 2.3, we

get f(z) ≡ t1g(z) or f(z)g(z) = t2, for some constants t1 and t2 that satisfy
tn+1
1 = 1 and tn+1

2 = 1.
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