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Abstract. In this paper, we introduce new classes
∑

k,p,n(α,m, λ, l, ρ)

and Tk,p,n(α,m, λ, l, ρ) of p-valent meromorphic functions defined by us-

ing the extended multiplier transformation operator. We use a strong
convolution technique and derive inclusion results. A radius problem and
some other interesting properties of these classes are discussed.
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1. Introduction

Let
∑

p,n denote the class of functions of the form

(1.1) f(z) =
1

zp
+

∞∑
t=n

at z
t, (p ∈ N = {1, 2, ...};n > −p),

which are analytic in the punctured unit disk

E∗ = {z : z ∈ C and 0 < |z| < 1} = E\{0}.

For two functions fj(z) ∈
∑

p,n (j = 1, 2), given by

(1.2) fj(z) =
1

zp
+

∞∑
t=n

at,j zt, (j = 1, 2),
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we define the Hadamard product (or convolution) of f1(z) and f2(z) by

(1.3) (f1 ∗ f2)(z) =
1

zp
+

∞∑
t=n

at,1 at,2z
k = (f2 ∗ f1)(z).

Let Pk(ρ) be the class of functions p(z) analytic in E with p(0) = 1 and

(1.4)

∫ 2π

0

∣∣∣∣ℜp(z)− ρ

1− ρ

∣∣∣∣ dθ ≤ kπ, z = reiθ,

where k ⩾ 2 and 0 ≤ ρ < 1. This class was introduced by Padmanabhan et al.
in [13]. We note that Pk(0) = Pk, see Pinchuk [15], P2( ρ) = P (ρ), the class
of analytic functions with positive real part greater than ρ and P2(0) = P, the
class of functions with positive real part. We can write (1.4) as

p(z) =
1

2

2π∫
0

1 + (1− 2ρ)ze−it

1− ze−it
dµ(t),

where µ(t) is a function with bounded variation on [0, 2π] such that

2π∫
0

dµ(t) = 2, and

2π∫
0

|dµ(t)| ≤ k.

From (1.4) we can easily deduce that p(z) ∈ Pk(ρ) if, and only if, there exists
p1(z), p2(z) ∈ P (ρ) such that for z ∈ E,

(1.5) p(z) =

(
k

4
+

1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z).

For l > 0, λ ≥ 0 and m ∈ N0 = N ∪ {0}, Ashwah [5] defined the multiplier
transformation Jm

p (λ, l) of functions f ∈
∑

p,n by

(1.6) Jm
p (λ, l)f(z) =

1

zp
+

∞∑
t=n

(
l + λ(k + p)

l

)m

at z
t (l > 0; λ ≥ 0; z ∈ E∗).

Obviously, we have
(1.7)

Jm1
p (λ, l)(Jm2

p (λ, l)f(z)) = Jm1+m2
p (λ, l)f(z) = Jm2

p (λ, l)(Jm1
p (λ, l)f(z)),

for all positive integers m1 and m2.
We note that
(i) Jm

1 (1, l)f(z) = I(m, l)f(z), see Cho et al [3, 4];
(ii) Jm

1 (1, 1)f(z) = Imf(z), see Uralegaddi and Somanatha [21].
(iii) Jm

1 (λ, 1)f(z) = Dm
λ,pf(z), see Al-Oboudi and Al-Zkero [1].
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Ashwa [6] defined the integral operator Lm
p (λ, l)f(z) as follows:

L0
p(λ, l)f(z) = f(z),

L1
p(λ, l)f(z) =

(
l

λ

)
z−p−( l

λ )
∫ z

0

t(
l
λ
+p−1)f(t)dt (f ∈

∑
p,n

; z ∈ E∗),

L2
p(λ, l)f(z) =

(
l

λ

)
z−p−( l

λ )
∫ z

0

t(
l
λ
+p−1)L1

p(λ, l)f(t)dt (f ∈
∑

p,n
; z ∈ E∗),

and, in general,

Lm
p (λ, l)f(z) =

(
l

λ

)
z−p−( l

λ )
∫ z

0

t(
l
λ+p−1)Lm−1

p (λ, l)f(t)dt

= L1
p(λ, l)

(
1

zp(1− z)

)
∗ L1

p(λ, l)

(
1

zp(1− z)

)
∗ ...(1.8)

∗L1
p(λ, l)

(
1

zp(1− z)

)
∗ f(z)

⌊− − − − −m− times− − − −⌉
(f ∈

∑
p,n

; m ∈ N⊬ ; z ∈ E∗).(1.9)

We note that if f(z) ∈
∑

p,n, then from (1.1) and (1.8), we have

Lm
p (λ, l)f(z) =

1

zp
+

∞∑
t=n

(
l

l + λ(k + p)

)m

at z
t

(l > 0; λ ≥ 0; p ∈ N; m ∈ N0 ; z ∈ E∗).(1.10)

From (1.9), Ashwa [6] obtained the following properties:

(1.10) λz(Lm+1
p (λ, l)f(z))′ = lLm

p (λ, l)f(z)−(l+λp)Lm+1
p (λ, l)f(z) (λ > 0).

We note that:

Lm
p (1, β)f(z) = Pα

p,βf(z), (see Aqlan et al. [2])

Lα
1 (1, β)f(z) = Lm

p,lf(z) (see Lashin [7]).

Also, we note that (see Ashwah [6])
(i) Lm

p (1, l)f(z) = Lm
p,lf(z), where Lm

p,l(λ, l)f(z) is given by (1.9).

(ii) Lm
p (1, 1)f(z) = Lm

p f(z), where Lm
p f(z) is given by (1.9).

Definition 1.1. Let f(z) ∈
∑

p,n . Then, f ∈
∑

k,p,n(α,m, λ, l, ρ) if, and only
if, {

(1− α)(zpLm
p (λ, l)f(z)) +

α

p
zp+1(Lm

p (λ, l)f(z))′
}

∈ Pk(ρ),

where α is a complex number, k ≥ 2, z ∈ E and 0 ≤ ρ < p.
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Definition 1.2. Let f ∈
∑

p,n . Then, f ∈ Tk,p,n(α,m, λ, l, ρ) if, and only if,{
(1− α)(zpLm+1

p (λ, l)f(z)) + α(zpLm
p (λ, l)f(z))

}
∈ Pk(ρ),

where α > 0, k ≥ 2, z ∈ E, and 0 ≤ ρ < p.
In this paper, we introduce new classes of p-valent meromorphic functions

defined by using the extended multiplier transformation operator. We use a
strong convolution technique and derive inclusion results, a radius problem and
some other interesting properties of these classes are discussed as well.

The interested reader are referred to the research works [5, 6, 8, 9, 10, 18, 19, 20].

2. Preliminary results

To establish our main results we need the following Lemmas.

Lemma 2.1. [16]
If p(z) is analytic in E with p(0) = 1, and if λ1 is a complex number satis-

fying ℜ(λ1) ≥ 0 (λ1 ̸= 0), then

ℜ
{
p(z) + λ1zp

′
(z)
}
> β (0 ≤ β < 1).

Implies

ℜp(z) > β + (1− β)(2γ − 1),

where γ is given by

γ = γ(ℜλ1) =

∫ 1

0

(1 + tℜ λ)−1dt,

which is an increasing function of ℜλ1 and 1
2 ≤ γ < 1. The estimate is sharp

in the sense that the bound cannot be improved.

Lemma 2.2. [17]
If p(z) is analytic in E, p(0) = 1 and ℜp(z) > 1

2 , z ∈ E, then for any
function F analytic in E, the function p ∗ F takes values in the convex hull of
the image of E under F.

Lemma 2.3. [14]
Let p(z) = 1 + b1z + b2z

2 + ... ∈ P (ρ). Then,

ℜp(z) ≥ 2ρ− 1 +
2(1− ρ)

1 + |z|
.
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3. Main results

Theorem 3.1. Let ℜα > 0. Then,∑
k,p,n

(α,m, λ, l, ρ) ⊂
∑
k,p,n

(0,m, λ, l, ρ1),

where ρ1 is given by

(3.1) ρ1 = ρ+ (1− ρ)(2γ − 1),

and

γ =

∫ 1

0

(
1 + tℜ

α
p

)−1

dt.

Proof. Let f ∈
∑

k,p,n(α,m, λ, l, ρ), and set

(3.2) zp(Lm
p (λ, l)f(z)) = p(z) =

(
k

4
+

1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z).

Then, p(z) is analytic in E with p(0) = 1. After a simple computations, we
have{

(1− α)(zpLm
p (λ, l)f(z)) +

α

p
zp+1(Lm

p (λ, l)f(z))′
}

=

{
p(z) +

α

p
zp′(z)

}
.

Since f ∈
∑

k,p,n(α,m, λ, l, ρ), so
{
p(z) + α

p zp
′(z)
}

∈ Pk(ρ) for z ∈ E. This

implies that

ℜ
{
pi(z) +

α

p
zp′i(z)

}
> ρ, i = 1, 2.

Using Lemma 2.1, we see that ℜ{pi(z)} > ρ1, where ρ1 is given by (3.1).
Consequently p ∈ Pk(ρ1) for z ∈ E, and the proof is complete. □

Now, we examine at the converse statement for Theorem 3.1.

Theorem 3.2. Let f ∈
∑

k,p,n(0,m, λ, l, ρ1), for z ∈ E. Then,

f ∈
∑

k,p,n(α,m, λ, l, ρ) for |z| < R(α, p, n),
where

(3.3) R(α, p, n) =

 p

|α| (p+ n) +

√
|α|2 (p+ n)2 + p2

 1
(p+n)

.

Proof. Set

zp(Lm
p (λ, l)f(z)) = (p− ρ)h(z) + ρ, h ∈ Pk.

Now proceeding as in Theorem 3.1, we have{
(1− α)(zpLm

p (λ, l)f(z)) +
α

p
zp+1(Lm

p (λ, l)f(z))′ − ρ

}
= (p−ρ)

{
h(z) +

α

p
zh′(z)

}
.
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(3.4)

= (p− ρ)

[
(
k

4
+

1

2
)

{
h1(z) +

αzh1(z)

p

}
− (

k

4
− 1

2
)

{
h2(z) +

αzh2(z)

p

}]
,

where we have used (1.5) and h1, h2 ∈ P, z ∈ E. Using the following well known
estimates, see MacGregor [11],∣∣∣zh′

(z)
∣∣∣ ≤ 2(p+ n) rp+n

1− r2(p+n)
ℜ{h(z)}, (|z| = r < 1), i = 1, 2,

we have

ℜ
{
hi(z) +

α

p
zh′

i(z)

}
≥ ℜ

{
hi(z)−

|α|
p

|zh′
i(z)|

}
≥ ℜhi(z)

{
1− 2 |α| (p+ n)rp+n

p(1− r2(p+n))

}
.

The right hand side of this inequality is positive if r < R(α, p, n), where
R(α, p, n) is given by (3.3). Consequently it follows from (3.4) that f ∈

∑
k,p,n(α,

m, λ, l, ρ) for |z| < R(α, p, n).

Sharpness of this result follows by taking hi(z) = 1+zp+n

1−zp+n in (3.4), i =
1, 2. □
Theorem 3.3.∑

k,p,n

(α1,m, λ, l, ρ) ⊂
∑
k,p,n

(α2,m, λ, l, ρ) for 0 ≤ α2 < α1.

Proof. For α2 = 0, the proof is immediate. Let α2 > 0 and let f ∈
∑

k,p,n(α1,m,

λ, l, ρ). Then, there exist two functions H1,H2 ∈ Pk(ρ) such that, from Defini-
tion 1.1 and Theorem 3.1, we have{

(1− α)(zpLm
p (λ, l)f(z)) +

α

p
zp+1(Lm

p (λ, l)f(z))′
}

= H1(z),

and
zp(Lm

p (λ, l)f(z)) = H2(z).

Hence,
(3.5){
(1− α2)(z

pLm
p (λ, l)f(z)) +

α2

p
zp+1(Lm

p (λ, l)f(z))′
}

=
α2

α1
H1(z)+(1−α2

α1
)H2(z).

Since the class Pk(ρ) is a convex set, see Noor [12], it follows that the right
hand side of (3.5) belongs to Pk(ρ) and this proves the result. □
Theorem 3.4. Let f ∈

∑
k,p,n(α,m, λ, l, ρ), and let ϕ ∈

∑
p,n satisfy the

following inequality:

ℜ(zpϕ(z)) > 1

2
(z ∈ E).

Then, ϕ ∗ f ∈
∑

k,p,n(α,m, λ, l, ρ).
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Proof. Let F = ϕ ∗ F. Then, we have{
(1− α)(zpLm

p (λ, l)F (z)) +
α

p
zp+1(Lm

p (λ, l)F (z))′
}

=

{
(1− α)(zpϕ(z) ∗ zp(Lm

p (λ, l)f(z)) +
α

p
(zpϕ(z) ∗ zp+1(Lm

p (λ, l)f(z))′)

}
= (zpϕ(z)) ∗G(z),

where

G(z) =

{
(1− α)(zpLm

p (λ, l)f(z)) +
α

p
zp+1(Lm

p (λ, l)f(z))′
}

∈ Pk(ρ).

Therefore, we have

(zpϕ(z)) ∗G(z)(
k

4
+

1

2
) {(p− ρ) (zpϕ(z) ∗ g1(z)) + ρ}

−(
k

4
− 1

2
) {(p− ρ) (zpϕ(z) ∗ g2(z)) + ρ} ,

g1, g2 ∈ P.

Since, ℜ{(zpϕ(z))} > 1
2 , z ∈ E, and so using Lemma 2.2, we conclude that

F = ϕ ∗ f ∈
∑

k,p,n(α,m, λ, l, ρ). □

Next, we study the interesting properties of the class Tk,p,n(α,m, λ, l, ρ).

Theorem 3.5. Let f ∈ Tk,p,n(α,m, λ, l, ρ2) and g ∈ Tk,p,n(α,m, λ, l, ρ3), and
let F = f ∗ g. Then, F ∈ Tk,p,n(α,m, λ, l, ρ4),

where

(3.6) ρ4 = 1− 4(1− ρ2)(1− ρ3)

[
1− l

λα

∫ 1

0

u
l

λα −1

1 + u
du

]
.

Proof. Since, f ∈ Tk,p,n(α,m, λ, l, ρ2), it follows that

H(z) =
{
(1− α)(zpLm+1

p (λ, l)f(z)) + α(zpLm
p (λ, l)f(z))

}
∈ Pk(ρ2),

and so using identity (1.10) in the above equation, we have

(3.7) (Lm+1
p (λ, l)f(z) =

l

λα
z−p− l

λα

∫ z

0

t
l

λα−1H(t)dt.

Similarly

(3.8) (Lm+1
p (λ, l)g(z) =

l

λα
z−p− l

λα

∫ z

0

t
l

λα−1H∗(t)dt,

where H∗ ∈ Pk(ρ3). Using (3.7) and (3.8), we have

(3.9) (Lm+1
p (λ, l)F (z) =

l

λα
z−p− l

λα

∫ z

0

t
l

λα−1Q(t)dt,
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where

(3.10) Q(z) =

(
k

4
+

1

2

)
q1(z)−

(
k

4
− 1

2

)
q2(z)

=
l

λα
z−

l
λα

∫ z

0

t
λ+p
α −1(H ∗H∗)dt.

Now

H(z) =

(
k

4
+

1

2

)
h1(z)−

(
k

4
− 1

2

)
h2(z),

H∗(z) =

(
k

4
+

1

2

)
h∗
1(z)−

(
k

4
− 1

2

)
h∗
2(z),

where hi ∈ P (ρ2) and h∗
i ∈ P (ρ3), i = 1, 2.

Since

(3.11) p∗i (z) =
h∗
i (z)− ρ3
2(1− ρ3)

+
1

2
∈ P (

1

2
), i = 1, 2,

we obtain that (hi ∗ p∗i ) ∈ P (ρ3), by using Herglotz formula.
Thus,

(3.12) (hi ∗ h∗
i ) ∈ P (ρ4),

with

ρ4 = 1− 2(1− ρ2)(1− ρ3).

Using (3.9), (3.10), (3.11), (3.12) and Lemma 2.3, we have

ℜqi(z) =
l

λα

∫ 1

0

u
l

λα−1ℜ{(hi ∗ h∗
i )(uz)}du

≥ l

λα

∫ 1

0

u
l

λα−1

(
2ρ4 − 1 +

2(1− ρ4)

1 + u |z|

)
du

≥ l

λα

∫ 1

0

u
l

λα−1

(
2ρ4 − 1 +

2(1− ρ4)

1 + u

)
du

= 1− 4(1− ρ2)(1− ρ3)

[
1− l

λα

∫ 1

0

u
l

λα−1

1 + u
du

]
.

From this we conclude that F ∈ Tk,p,n(α,m, λ, l, ρ4), where ρ4 is given by (3.6).
We discuss the sharpness as follows:
We take

H(z) =

(
k

4
+

1

2

)
1 + (1− 2ρ2)z

1− z
−
(
k

4
− 1

2

)
1− (1− 2ρ2)z

1 + z
,

H∗(z) =

(
k

4
+

1

2

)
1 + (1− 2ρ3)z

1− z
−
(
k

4
− 1

2

)
1− (1− 2ρ3)z

1 + z
.
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Since,(
1 + (1− 2ρ2)z

1− z

)
∗
(
1 + (1− 2ρ3)z

1− z

)
= 1−4(1−ρ2)(1−ρ3)+

4(1− ρ2)(1− ρ3)

1− z
.

It follows from (3.10), that

qi(z) =
l

λα

∫ 1

0

u
l

λα−1

{
1− 4(1− ρ2)(1− ρ3) +

4(1− ρ2)(1− ρ3)

1− z

}
du

−→ 1− 4(1− ρ2)(1− ρ3)

[
1− l

λα

∫ 1

0

u
l

λα−1

1 + u
du

]
as z −→ −1.

This completes the proof. □

Theorem 3.6. Let f(z) ∈
∑

p,n, we consider the integral operator Jc defined
by

Jcf(z) =
c

zc+p

∫ z

0

tc+p−1f(t)dt(3.13)

=

(
1

zp
+

∞∑
t=n

c

c+ p+ t
zt

)
∗ f(z) (c > 0, z ∈ E∗).

If

(3.14)
{
(1− α)(zpLm+1

p (λ, l)Jcf(z)) + α(zpLm+1
p (λ, l)f(z))

}
∈ Pk(ρ),

then

(zpLm+1
p (λ, l)Jcf(z)) ∈ Pk(β), z ∈ E,

where

(3.15) β = ρ+ (1− ρ)(2γ1 − 1),

and

γ1 =

∫ 1

0

(
1 + tℜ

α
c

)−1
dt.

Proof. First of all it follows from the Definition 3.13, that Jcf(z) ∈
∑

p,n and

(3.16) z(Lm+1
p (λ, l)Jcf(z))

′ = c(Lm+1
p (λ, l)f(z))− (c+ p)(Lm+1

p (λ, l)Jcf(z)).

Let

(3.17) (zpLm+1
p (λ, l)Jcf(z)) = h(z) = (

k

4
+

1

2
)h1(z)− (

k

4
− 1

2
)h2(z).

Then, the hypothesis (3.14) in conjection with (3.16) would yield{
(1− α)(zpLm+1

p (λ, l)Jcf(z)) + αzp(Lm+1
p (λ, l)f(z))

}
=

{
h(z) +

αzh′(z)

c

}
∈ Pk(ρ) for z ∈ E.
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Consequently{
hi(z) +

αzh′
i(z)

c

}
∈ P (ρ), i = 1, 2, 0 ≤ ρ ≤ p, and z ∈ E.

Using Lemma 2.1, with λ1 = a
c , we have ℜ {hi(z)} > β, where β is given by

(3.15), and the proof is complete. □

Theorem 3.7. Let f ∈ Tk,p,n(α,m, λ, l, ρ), and let ϕ ∈
∑

p,n satisfy the fol-
lowing inequality:

ℜ(zpϕ(z)) > 1

2
(z ∈ E).

Then, ϕ ∗ f ∈ Tk,p,n(α,m, λ, l, ρ).

Proof. Let F = ϕ ∗ f . Then, we have{
(1− α)(zpLm+1

p (λ, l)F (z)) + αzpLm
p (λ, l)F (z)

}
= zpϕ(z) ∗G(z),

where

G(z) =
{
(1− α)(zpLm+1

p (λ, l)f(z)) + α(zpLm
p (λ, l)f(z))

}
∈ Pk(ρ).

Therefore, we have

zpϕ(z) ∗G(z)

= (
k

4
+

1

2
) {(p− ρ) (zpϕ(z) ∗ g1(z)) + ρ} − (

k

4
− 1

2
) {(p− ρ) (zpϕ(z) ∗ g2(z)) + ρ} ,

g1, g2 ∈ P.

Since ℜ{(zpϕ(z))} > 1
2 , z ∈ E, and so using Lemma 2.2, we conclude that

F = ϕ ∗ f ∈ Tk,p,n(α,m, λ, l, ρ). □

Theorem 3.8. For 0 ≤ α2 < α1,

Tk,p,n(α1,m, λ, l, ρ) ⊂ Tk,p,n(α2,m, λ, l, ρ).

Proof. For α2 = 0, the proof is immediate. Let α2 > 0 and f ∈ Tk,p,n(α1,m, λ, l, ρ).
Then,{

(1 − α2)(zpLm+1
p (λ, l)f(z)) + α2z

p(Lm
p (λ, l)f(z))

}
=

α2

a1

[(
α1

a2
− 1

)
(zpLm+1

p (λ, l)f(z)) + (1 − a1)(zpLm+1
p (λ, l)f(z)) + a1(zpLm

p (λ, l)f(z))

]
=

(
1 −

α2

a1

)
H1(z) +

α2

a1
H2(z), H1, H2 ∈ Pk(ρ).

Since Pk(ρ) is a convex set, see Noor [12], we conclude that f ∈ Tk,p,n(α2,m, λ, l, ρ),
for z ∈ E. □
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