Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 3, pp. 613-624

Title:

Some properties of extended multiplier transformations to the classes of meromorphic multivalent functions

> Author(s):

A. Muhammad, S. Hussain and W. Ul-Haq

SOME PROPERTIES OF EXTENDED MULTIPLIER TRANSFORMATIONS TO THE CLASSES OF MEROMORPHIC MULTIVALENT FUNCTIONS

A. MUHAMMAD*, S. HUSSAIN AND W. UL-HAQ

(Communicated by Abbas Salemi)

Abstract

In this paper, we introduce new classes $\sum_{k, p, n}(\alpha, m, \lambda, l, \rho)$ and $\mathcal{T}_{k, p, n}(\alpha, m, \lambda, l, \rho)$ of p-valent meromorphic functions defined by using the extended multiplier transformation operator. We use a strong convolution technique and derive inclusion results. A radius problem and some other interesting properties of these classes are discussed. Keywords: Multivalent functions, analytic functions, meromorphic functions, multiplier transformations, linear operator, functions with positive real part, Hadamard product (or Convolution). MSC(2010): Primary: 30C45; Secondary: 30C50.

1. Introduction

Let $\sum_{p, n}$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\sum_{t=n}^{\infty} a_{t} z^{t}, \quad(p \in \mathbb{N}=\{1,2, \ldots\} ; n>-p) \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured unit disk

$$
E^{*}=\{z: z \in \mathbb{C} \text { and } 0<|z|<1\}=E \backslash\{0\}
$$

For two functions $f_{j}(z) \in \sum_{p, n}(j=1,2)$, given by

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z^{p}}+\sum_{t=n}^{\infty} a_{t, j} z^{t}, \quad(j=1,2) \tag{1.2}
\end{equation*}
$$

[^0]we define the Hadamard product (or convolution) of $f_{1}(z)$ and $f_{2}(z)$ by
\[

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=\frac{1}{z^{p}}+\sum_{t=n}^{\infty} a_{t, 1} a_{t, 2} z^{k}=\left(f_{2} * f_{1}\right)(z) \tag{1.3}
\end{equation*}
$$

\]

Let $P_{k}(\rho)$ be the class of functions $p(z)$ analytic in E with $p(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\Re p(z)-\rho}{1-\rho}\right| d \theta \leq k \pi, z=r e^{i \theta} \tag{1.4}
\end{equation*}
$$

where $k \geqslant 2$ and $0 \leq \rho<1$. This class was introduced by Padmanabhan et al. in [13]. We note that $P_{k}(0)=P_{k}$, see Pinchuk [15], $P_{2}(\rho)=P(\rho)$, the class of analytic functions with positive real part greater than ρ and $P_{2}(0)=P$, the class of functions with positive real part. We can write (1.4) as

$$
p(z)=\frac{1}{2} \int_{0}^{2 \pi} \frac{1+(1-2 \rho) z e^{-i t}}{1-z e^{-i t}} d \mu(t)
$$

where $\mu(t)$ is a function with bounded variation on $[0,2 \pi]$ such that

$$
\int_{0}^{2 \pi} d \mu(t)=2, \quad \text { and } \quad \int_{0}^{2 \pi}|d \mu(t)| \leq k
$$

From (1.4) we can easily deduce that $p(z) \in P_{k}(\rho)$ if, and only if, there exists $p_{1}(z), p_{2}(z) \in P(\rho)$ such that for $z \in E$,

$$
\begin{equation*}
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z) \tag{1.5}
\end{equation*}
$$

For $l>0, \lambda \geq 0$ and $m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, Ashwah [5] defined the multiplier transformation $J_{p}^{m}(\lambda, l)$ of functions $f \in \sum_{p, n}$ by

$$
\begin{equation*}
J_{p}^{m}(\lambda, l) f(z)=\frac{1}{z^{p}}+\sum_{t=n}^{\infty}\left(\frac{l+\lambda(k+p)}{l}\right)^{m} a_{t} z^{t} \quad\left(l>0 ; \lambda \geq 0 ; z \in E^{*}\right) \tag{1.6}
\end{equation*}
$$

Obviously, we have

$$
\begin{equation*}
J_{p}^{m_{1}}(\lambda, l)\left(J_{p}^{m_{2}}(\lambda, l) f(z)\right)=J_{p}^{m_{1}+m_{2}}(\lambda, l) f(z)=J_{p}^{m_{2}}(\lambda, l)\left(J_{p}^{m_{1}}(\lambda, l) f(z)\right) \tag{1.7}
\end{equation*}
$$

for all positive integers m_{1} and m_{2}.
We note that
(i) $J_{1}^{m}(1, l) f(z)=I(m, l) f(z)$, see Cho et al $[3,4]$;
(ii) $J_{1}^{m}(1,1) f(z)=I^{m} f(z)$, see Uralegaddi and Somanatha [21].
(iii) $J_{1}^{m}(\lambda, 1) f(z)=D_{\lambda, p}^{m} f(z)$, see Al-Oboudi and Al-Zkero [1].

Ashwa [6] defined the integral operator $\mathcal{L}_{p}^{m}(\lambda, l) f(z)$ as follows:

$$
\begin{aligned}
\mathcal{L}_{p}^{0}(\lambda, l) f(z) & =f(z) \\
\mathcal{L}_{p}^{1}(\lambda, l) f(z) & =\left(\frac{l}{\lambda}\right) z^{-p-\left(\frac{l}{\lambda}\right)} \int_{0}^{z} t^{\left(\frac{l}{\lambda}+p-1\right)} f(t) d t \quad\left(f \in \sum_{p, n} ; z \in E^{*}\right) \\
\mathcal{L}_{p}^{2}(\lambda, l) f(z) & =\left(\frac{l}{\lambda}\right) z^{-p-\left(\frac{l}{\lambda}\right)} \int_{0}^{z} t^{\left(\frac{l}{\lambda}+p-1\right)} \mathcal{L}_{p}^{1}(\lambda, l) f(t) d t \quad\left(f \in \sum_{p, n} ; z \in E^{*}\right)
\end{aligned}
$$

and, in general,

$$
\begin{align*}
& \mathcal{L}_{p}^{m}(\lambda, l) f(z)=\left(\frac{l}{\lambda}\right) z^{-p-\left(\frac{l}{\lambda}\right)} \int_{0}^{z} t\left(\frac{l}{\lambda}+p-1\right) \\
& \mathcal{L}_{p}^{m-1}(\lambda, l) f(t) d t \tag{1.8}\\
&= \mathcal{L}_{p}^{1}(\lambda, l)\left(\frac{1}{z^{p}(1-z)}\right) * \mathcal{L}_{p}^{1}(\lambda, l)\left(\frac{1}{z^{p}(1-z)}\right) * \ldots \\
& * \mathcal{L}_{p}^{1}(\lambda, l)\left(\frac{1}{z^{p}(1-z)}\right) * f(z) \tag{1.9}\\
&\lfloor-----m-\text { times }----\rceil \\
&(f \in\left.\sum_{p, n} ; m \in \mathbb{N}_{\nvdash} ; z \in E^{*}\right) .
\end{align*}
$$

We note that if $f(z) \in \sum_{p, n}$, then from (1.1) and (1.8), we have

$$
\begin{align*}
\mathcal{L}_{p}^{m}(\lambda, l) f(z) & =\frac{1}{z^{p}}+\sum_{t=n}^{\infty}\left(\frac{l}{l+\lambda(k+p)}\right)^{m} a_{t} z^{t} \\
(l & \left.>0 ; \lambda \geq 0 ; p \in \mathbb{N} ; m \in \mathbb{N}_{0} ; z \in E^{*}\right) \tag{1.10}
\end{align*}
$$

From (1.9), Ashwa [6] obtained the following properties:

$$
\begin{equation*}
\lambda z\left(\mathcal{L}_{p}^{m+1}(\lambda, l) f(z)\right)^{\prime}=l \mathcal{L}_{p}^{m}(\lambda, l) f(z)-(l+\lambda p) \mathcal{L}_{p}^{m+1}(\lambda, l) f(z) \quad(\lambda>0) \tag{1.10}
\end{equation*}
$$

We note that:

$$
\begin{aligned}
\mathcal{L}_{p}^{m}(1, \beta) f(z) & =P_{p, \beta}^{\alpha} f(z), \\
\mathcal{L}_{1}^{\alpha}(1, \beta) f(z) & =\mathcal{L}_{p, l}^{m} f(z) \quad(\text { see Aqlan et al. }
\end{aligned}
$$

Also, we note that (see Ashwah [6])
(i) $\mathcal{L}_{p}^{m}(1, l) f(z)=\mathcal{L}_{p, l}^{m} f(z)$, where $\mathcal{L}_{p, l}^{m}(\lambda, l) f(z)$ is given by (1.9).
(ii) $\mathcal{L}_{p}^{m}(1,1) f(z)=\mathcal{L}_{p}^{m} f(z)$, where $\mathcal{L}_{p}^{m} f(z)$ is given by (1.9).

Definition 1.1. Let $f(z) \in \sum_{p, n}$. Then, $f \in \sum_{k, p, n}(\alpha, m, \lambda, l, \rho)$ if, and only if,

$$
\left\{(1-\alpha)\left(z^{p} \mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)+\frac{\alpha}{p} z^{p+1}\left(\mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)^{\prime}\right\} \in P_{k}(\rho)
$$

where α is a complex number, $k \geq 2, z \in E$ and $0 \leq \rho<p$.

Definition 1.2. Let $f \in \sum_{p, n}$. Then, $f \in \mathcal{T}_{k, p, n}(\alpha, m, \lambda, l, \rho)$ if, and only if,

$$
\left\{(1-\alpha)\left(z^{p} \mathcal{L}_{p}^{m+1}(\lambda, l) f(z)\right)+\alpha\left(z^{p} \mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)\right\} \in P_{k}(\rho)
$$

where $\alpha>0, k \geq 2, z \in E$, and $0 \leq \rho<p$.
In this paper, we introduce new classes of p-valent meromorphic functions defined by using the extended multiplier transformation operator. We use a strong convolution technique and derive inclusion results, a radius problem and some other interesting properties of these classes are discussed as well.

The interested reader are referred to the research works $[5,6,8,9,10,18,19,20]$.

2. Preliminary results

To establish our main results we need the following Lemmas.
Lemma 2.1. [16]
If $p(z)$ is analytic in E with $p(0)=1$, and if λ_{1} is a complex number satisfying $\Re\left(\lambda_{1}\right) \geq 0 \quad\left(\lambda_{1} \neq 0\right)$, then

$$
\Re\left\{p(z)+\lambda_{1} z p^{\prime}(z)\right\}>\beta \quad(0 \leq \beta<1)
$$

Implies

$$
\Re p(z)>\beta+(1-\beta)(2 \gamma-1)
$$

where γ is given by

$$
\gamma=\gamma\left(\Re \lambda_{1}\right)=\int_{0}^{1}\left(1+t^{\Re \lambda}\right)^{-1} d t
$$

which is an increasing function of $\Re \lambda_{1}$ and $\frac{1}{2} \leq \gamma<1$. The estimate is sharp in the sense that the bound cannot be improved.

Lemma 2.2. [17]
If $p(z)$ is analytic in $E, p(0)=1$ and $\Re p(z)>\frac{1}{2}, z \in E$, then for any function F analytic in E, the function $p * F$ takes values in the convex hull of the image of E under F.

Lemma 2.3. [14]
Let $p(z)=1+b_{1} z+b_{2} z^{2}+\ldots \in P(\rho)$. Then,

$$
\Re p(z) \geq 2 \rho-1+\frac{2(1-\rho)}{1+|z|}
$$

3. Main results

Theorem 3.1. Let $\Re \alpha>0$. Then,

$$
\sum_{k, p, n}(\alpha, m, \lambda, l, \rho) \subset \sum_{k, p, n}\left(0, m, \lambda, l, \rho_{1}\right)
$$

where ρ_{1} is given by

$$
\begin{equation*}
\rho_{1}=\rho+(1-\rho)(2 \gamma-1) \tag{3.1}
\end{equation*}
$$

and

$$
\gamma=\int_{0}^{1}\left(1+t^{\Re \frac{\alpha}{p}}\right)^{-1} d t
$$

Proof. Let $f \in \sum_{k, p, n}(\alpha, m, \lambda, l, \rho)$, and set

$$
\begin{equation*}
z^{p}\left(\mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)=p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z) \tag{3.2}
\end{equation*}
$$

Then, $p(z)$ is analytic in E with $p(0)=1$. After a simple computations, we have

$$
\left\{(1-\alpha)\left(z^{p} \mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)+\frac{\alpha}{p} z^{p+1}\left(\mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)^{\prime}\right\}=\left\{p(z)+\frac{\alpha}{p} z p^{\prime}(z)\right\}
$$

Since $f \in \sum_{k, p, n}(\alpha, m, \lambda, l, \rho)$, so $\left\{p(z)+\frac{\alpha}{p} z p^{\prime}(z)\right\} \in P_{k}(\rho)$ for $z \in E$. This implies that

$$
\Re\left\{p_{i}(z)+\frac{\alpha}{p} z p_{i}^{\prime}(z)\right\}>\rho, \quad i=1,2
$$

Using Lemma 2.1, we see that $\Re\left\{p_{i}(z)\right\}>\rho_{1}$, where ρ_{1} is given by (3.1). Consequently $p \in P_{k}\left(\rho_{1}\right)$ for $z \in E$, and the proof is complete.

Now, we examine at the converse statement for Theorem 3.1.
Theorem 3.2. Let $f \in \sum_{k, p, n}\left(0, m, \lambda, l, \rho_{1}\right)$, for $z \in E$. Then, $f \in \sum_{k, p, n}(\alpha, m, \lambda, l, \rho)$ for $|z|<R(\alpha, p, n)$,
where

$$
\begin{equation*}
R(\alpha, p, n)=\left[\frac{p}{|\alpha|(p+n)+\sqrt{|\alpha|^{2}(p+n)^{2}+p^{2}}}\right]^{\frac{1}{(p+n)}} \tag{3.3}
\end{equation*}
$$

Proof. Set

$$
z^{p}\left(\mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)=(p-\rho) h(z)+\rho, \quad h \in P_{k}
$$

Now proceeding as in Theorem 3.1, we have
$\left\{(1-\alpha)\left(z^{p} \mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)+\frac{\alpha}{p} z^{p+1}\left(\mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)^{\prime}-\rho\right\}=(p-\rho)\left\{h(z)+\frac{\alpha}{p} z h^{\prime}(z)\right\}$.

$$
\begin{equation*}
=(p-\rho)\left[\left(\frac{k}{4}+\frac{1}{2}\right)\left\{h_{1}(z)+\frac{\alpha z h_{1}(z)}{p}\right\}-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{h_{2}(z)+\frac{\alpha z h_{2}(z)}{p}\right\}\right] \tag{3.4}
\end{equation*}
$$

where we have used (1.5) and $h_{1}, h_{2} \in P, z \in E$. Using the following well known estimates, see MacGregor [11],

$$
\left|z h^{\prime}(z)\right| \leq \frac{2(p+n) r^{p+n}}{1-r^{2(p+n)}} \Re\{h(z)\}, \quad(|z|=r<1), \quad i=1,2,
$$

we have

$$
\begin{aligned}
\Re\left\{h_{i}(z)+\frac{\alpha}{p} z h_{i}^{\prime}(z)\right\} & \geq \Re\left\{h_{i}(z)-\frac{|\alpha|}{p}\left|z h_{i}^{\prime}(z)\right|\right\} \\
& \geq \Re h_{i}(z)\left\{1-\frac{2|\alpha|(p+n) r^{p+n}}{p\left(1-r^{2(p+n)}\right)}\right\}
\end{aligned}
$$

The right hand side of this inequality is positive if $r<R(\alpha, p, n)$, where $R(\alpha, p, n)$ is given by (3.3). Consequently it follows from (3.4) that $f \in \sum_{k, p, n}(\alpha$, $m, \lambda, l, \rho)$ for $|z|<R(\alpha, p, n)$.

Sharpness of this result follows by taking $h_{i}(z)=\frac{1+z^{p+n}}{1-z^{p+n}}$ in (3.4), $i=$ 1,2 .

Theorem 3.3.

$$
\sum_{k, p, n}\left(\alpha_{1}, m, \lambda, l, \rho\right) \subset \sum_{k, p, n}\left(\alpha_{2}, m, \lambda, l, \rho\right) \text { for } 0 \leq \alpha_{2}<\alpha_{1}
$$

Proof. For $\alpha_{2}=0$, the proof is immediate. Let $\alpha_{2}>0$ and let $f \in \sum_{k, p, n}\left(\alpha_{1}, m\right.$, $\lambda, l, \rho)$. Then, there exist two functions $H_{1}, H_{2} \in P_{k}(\rho)$ such that, from Definition 1.1 and Theorem 3.1, we have

$$
\left\{(1-\alpha)\left(z^{p} \mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)+\frac{\alpha}{p} z^{p+1}\left(\mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)^{\prime}\right\}=H_{1}(z)
$$

and

$$
z^{p}\left(\mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)=H_{2}(z)
$$

Hence,
(3.5)

$$
\left\{\left(1-\alpha_{2}\right)\left(z^{p} \mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)+\frac{\alpha_{2}}{p} z^{p+1}\left(\mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)^{\prime}\right\}=\frac{\alpha_{2}}{\alpha_{1}} H_{1}(z)+\left(1-\frac{\alpha_{2}}{\alpha_{1}}\right) H_{2}(z)
$$

Since the class $P_{k}(\rho)$ is a convex set, see Noor [12], it follows that the right hand side of (3.5) belongs to $P_{k}(\rho)$ and this proves the result.
Theorem 3.4. Let $f \in \sum_{k, p, n}(\alpha, m, \lambda, l, \rho)$, and let $\phi \in \sum_{p, n}$ satisfy the following inequality:

$$
\Re\left(z^{p} \phi(z)\right)>\frac{1}{2} \quad(z \in E)
$$

Then, $\phi * f \in \sum_{k, p, n}(\alpha, m, \lambda, l, \rho)$.

Proof. Let $F=\phi * F$. Then, we have

$$
\begin{aligned}
& \left\{(1-\alpha)\left(z^{p} \mathcal{L}_{p}^{m}(\lambda, l) F(z)\right)+\frac{\alpha}{p} z^{p+1}\left(\mathcal{L}_{p}^{m}(\lambda, l) F(z)\right)^{\prime}\right\} \\
= & \left\{(1-\alpha)\left(z^{p} \phi(z) * z^{p}\left(\mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)+\frac{\alpha}{p}\left(z^{p} \phi(z) * z^{p+1}\left(\mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)^{\prime}\right)\right\}\right. \\
= & \left(z^{p} \phi(z)\right) * G(z),
\end{aligned}
$$

where

$$
G(z)=\left\{(1-\alpha)\left(z^{p} \mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)+\frac{\alpha}{p} z^{p+1}\left(\mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)^{\prime}\right\} \in P_{k}(\rho) .
$$

Therefore, we have

$$
\begin{aligned}
& \left(z^{p} \phi(z)\right) * G(z)\left(\frac{k}{4}+\frac{1}{2}\right)\left\{(p-\rho)\left(z^{p} \phi(z) * g_{1}(z)\right)+\rho\right\} \\
& \quad-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(p-\rho)\left(z^{p} \phi(z) * g_{2}(z)\right)+\rho\right\} \\
& g_{1}, g_{2} \in P .
\end{aligned}
$$

Since, $\Re\left\{\left(z^{p} \phi(z)\right)\right\}>\frac{1}{2}, z \in E$, and so using Lemma 2.2, we conclude that $F=\phi * f \in \sum_{k, p, n}(\alpha, m, \lambda, l, \rho)$.

Next, we study the interesting properties of the class $\mathcal{T}_{k, p, n}(\alpha, m, \lambda, l, \rho)$.
Theorem 3.5. Let $f \in \mathcal{T}_{k, p, n}\left(\alpha, m, \lambda, l, \rho_{2}\right)$ and $g \in \mathcal{T}_{k, p, n}\left(\alpha, m, \lambda, l, \rho_{3}\right)$, and let $F=f * g$. Then, $F \in \mathcal{T}_{k, p, n}\left(\alpha, m, \lambda, l, \rho_{4}\right)$,
where

$$
\begin{equation*}
\rho_{4}=1-4\left(1-\rho_{2}\right)\left(1-\rho_{3}\right)\left[1-\frac{l}{\lambda \alpha} \int_{0}^{1} \frac{\frac{l}{\lambda \alpha}-1}{1+u} d u\right] . \tag{3.6}
\end{equation*}
$$

Proof. Since, $f \in \mathcal{T}_{k, p, n}\left(\alpha, m, \lambda, l, \rho_{2}\right)$, it follows that

$$
H(z)=\left\{(1-\alpha)\left(z^{p} \mathcal{L}_{p}^{m+1}(\lambda, l) f(z)\right)+\alpha\left(z^{p} \mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)\right\} \in P_{k}\left(\rho_{2}\right),
$$

and so using identity (1.10) in the above equation, we have

$$
\begin{equation*}
\left(\mathcal{L}_{p}^{m+1}(\lambda, l) f(z)=\frac{l}{\lambda \alpha} z^{-p-\frac{l}{\lambda \alpha}} \int_{0}^{z} t^{\frac{l}{\alpha \alpha}-1} H(t) d t .\right. \tag{3.7}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\left(\mathcal{L}_{p}^{m+1}(\lambda, l) g(z)=\frac{l}{\lambda \alpha} z^{-p-\frac{l}{\lambda \alpha}} \int_{0}^{z} t^{\frac{l}{\lambda \alpha}-1} H^{*}(t) d t,\right. \tag{3.8}
\end{equation*}
$$

where $H^{*} \in P_{k}\left(\rho_{3}\right)$. Using (3.7) and (3.8), we have

$$
\begin{equation*}
\left(\mathcal{L}_{p}^{m+1}(\lambda, l) F(z)=\frac{l}{\lambda \alpha} z^{-p-\frac{l}{\lambda \alpha}} \int_{0}^{z} t^{\frac{l}{\lambda \alpha}-1} Q(t) d t,\right. \tag{3.9}
\end{equation*}
$$

where

$$
\begin{align*}
Q(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) q_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) q_{2}(z) \tag{3.10}\\
& =\frac{l}{\lambda \alpha} z^{-\frac{l}{\lambda \alpha}} \int_{0}^{z} t^{\frac{\lambda+p}{\alpha}-1}\left(H * H^{*}\right) d t
\end{align*}
$$

Now

$$
\begin{aligned}
H(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) \\
H^{*}(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}^{*}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}^{*}(z)
\end{aligned}
$$

where $h_{i} \in P\left(\rho_{2}\right)$ and $h_{i}^{*} \in P\left(\rho_{3}\right), i=1,2$.
Since

$$
\begin{equation*}
p_{i}^{*}(z)=\frac{h_{i}^{*}(z)-\rho_{3}}{2\left(1-\rho_{3}\right)}+\frac{1}{2} \in P\left(\frac{1}{2}\right), \quad i=1,2 \tag{3.11}
\end{equation*}
$$

we obtain that $\left(h_{i} * p_{i}^{*}\right) \in P\left(\rho_{3}\right)$, by using Herglotz formula.
Thus,

$$
\begin{equation*}
\left(h_{i} * h_{i}^{*}\right) \in P\left(\rho_{4}\right) \tag{3.12}
\end{equation*}
$$

with

$$
\rho_{4}=1-2\left(1-\rho_{2}\right)\left(1-\rho_{3}\right)
$$

Using (3.9), (3.10), (3.11), (3.12) and Lemma 2.3, we have

$$
\begin{aligned}
\Re q_{i}(z) & =\frac{l}{\lambda \alpha} \int_{0}^{1} u^{\frac{l}{\lambda \alpha}-1} \Re\left\{\left(h_{i} * h_{i}^{*}\right)(u z)\right\} d u \\
& \geq \frac{l}{\lambda \alpha} \int_{0}^{1} u^{\frac{l}{\lambda \alpha}-1}\left(2 \rho_{4}-1+\frac{2\left(1-\rho_{4}\right)}{1+u|z|}\right) d u \\
& \geq \frac{l}{\lambda \alpha} \int_{0}^{1} u^{\frac{l}{\lambda \alpha}-1}\left(2 \rho_{4}-1+\frac{2\left(1-\rho_{4}\right)}{1+u}\right) d u \\
& =1-4\left(1-\rho_{2}\right)\left(1-\rho_{3}\right)\left[1-\frac{l}{\lambda \alpha} \int_{0}^{1} \frac{u^{\frac{l}{\lambda \alpha}-1}}{1+u} d u\right]
\end{aligned}
$$

From this we conclude that $F \in \mathcal{T}_{k, p, n}\left(\alpha, m, \lambda, l, \rho_{4}\right)$, where ρ_{4} is given by (3.6).
We discuss the sharpness as follows:
We take

$$
\begin{aligned}
H(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1+\left(1-2 \rho_{2}\right) z}{1-z}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1-\left(1-2 \rho_{2}\right) z}{1+z} \\
H^{*}(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1+\left(1-2 \rho_{3}\right) z}{1-z}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1-\left(1-2 \rho_{3}\right) z}{1+z}
\end{aligned}
$$

Since,

$$
\left(\frac{1+\left(1-2 \rho_{2}\right) z}{1-z}\right) *\left(\frac{1+\left(1-2 \rho_{3}\right) z}{1-z}\right)=1-4\left(1-\rho_{2}\right)\left(1-\rho_{3}\right)+\frac{4\left(1-\rho_{2}\right)\left(1-\rho_{3}\right)}{1-z} .
$$

It follows from (3.10), that

$$
\begin{aligned}
q_{i}(z) & =\frac{l}{\lambda \alpha} \int_{0}^{1} u^{\frac{l}{\lambda \alpha}-1}\left\{1-4\left(1-\rho_{2}\right)\left(1-\rho_{3}\right)+\frac{4\left(1-\rho_{2}\right)\left(1-\rho_{3}\right)}{1-z}\right\} d u \\
& \longrightarrow 1-4\left(1-\rho_{2}\right)\left(1-\rho_{3}\right)\left[1-\frac{l}{\lambda \alpha} \int_{0}^{1} \frac{u^{\frac{l}{\lambda \alpha}-1}}{1+u} d u\right] \quad \text { as } z \longrightarrow-1
\end{aligned}
$$

This completes the proof.
Theorem 3.6. Let $f(z) \in \sum_{p, n}$, we consider the integral operator J_{c} defined by

$$
\begin{align*}
J_{c} f(z) & =\frac{c}{z^{c+p}} \int_{0}^{z} t^{c+p-1} f(t) d t \tag{3.13}\\
& =\left(\frac{1}{z^{p}}+\sum_{t=n}^{\infty} \frac{c}{c+p+t} z^{t}\right) * f(z) \quad\left(c>0, z \in E^{*}\right) .
\end{align*}
$$

If

$$
\begin{equation*}
\left\{(1-\alpha)\left(z^{p} \mathcal{L}_{p}^{m+1}(\lambda, l) J_{c} f(z)\right)+\alpha\left(z^{p} \mathcal{L}_{p}^{m+1}(\lambda, l) f(z)\right)\right\} \in P_{k}(\rho), \tag{3.14}
\end{equation*}
$$

then

$$
\left(z^{p} \mathcal{L}_{p}^{m+1}(\lambda, l) J_{c} f(z)\right) \in P_{k}(\beta), \quad z \in E,
$$

where

$$
\begin{equation*}
\beta=\rho+(1-\rho)\left(2 \gamma_{1}-1\right), \tag{3.15}
\end{equation*}
$$

and

$$
\gamma_{1}=\int_{0}^{1}\left(1+t^{\Re \frac{\alpha}{c}}\right)^{-1} d t
$$

Proof. First of all it follows from the Definition 3.13, that $J_{c} f(z) \in \sum_{p, n}$ and (3.16) $z\left(\mathcal{L}_{p}^{m+1}(\lambda, l) J_{c} f(z)\right)^{\prime}=c\left(\mathcal{L}_{p}^{m+1}(\lambda, l) f(z)\right)-(c+p)\left(\mathcal{L}_{p}^{m+1}(\lambda, l) J_{c} f(z)\right)$.

Let

$$
\begin{equation*}
\left(z^{p} \mathcal{L}_{p}^{m+1}(\lambda, l) J_{c} f(z)\right)=h(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) . \tag{3.17}
\end{equation*}
$$

Then, the hypothesis (3.14) in conjection with (3.16) would yield

$$
\left\{(1-\alpha)\left(z^{p} \mathcal{L}_{p}^{m+1}(\lambda, l) J_{c} f(z)\right)+\alpha z^{p}\left(\mathcal{L}_{p}^{m+1}(\lambda, l) f(z)\right)\right\}=\left\{h(z)+\frac{\alpha z h^{\prime}(z)}{c}\right\}
$$

$\in P_{k}(\rho)$ for $z \in E$.

Consequently

$$
\left\{h_{i}(z)+\frac{\alpha z h_{i}^{\prime}(z)}{c}\right\} \in P(\rho), i=1,2,0 \leq \rho \leq p, \text { and } \quad z \in E
$$

Using Lemma 2.1, with $\lambda_{1}=\frac{a}{c}$, we have $\Re\left\{h_{i}(z)\right\}>\beta$, where β is given by (3.15), and the proof is complete.

Theorem 3.7. Let $f \in \mathcal{T}_{k, p, n}(\alpha, m, \lambda, l, \rho)$, and let $\phi \in \sum_{p, n}$ satisfy the following inequality:

$$
\Re\left(z^{p} \phi(z)\right)>\frac{1}{2} \quad(z \in E)
$$

Then, $\phi * f \in \mathcal{T}_{k, p, n}(\alpha, m, \lambda, l, \rho)$.
Proof. Let $F=\phi * f$. Then, we have

$$
\left\{(1-\alpha)\left(z^{p} \mathcal{L}_{p}^{m+1}(\lambda, l) F(z)\right)+\alpha z^{p} \mathcal{L}_{p}^{m}(\lambda, l) F(z)\right\}=z^{p} \phi(z) * G(z)
$$

where

$$
G(z)=\left\{(1-\alpha)\left(z^{p} \mathcal{L}_{p}^{m+1}(\lambda, l) f(z)\right)+\alpha\left(z^{p} \mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)\right\} \in P_{k}(\rho)
$$

Therefore, we have

$$
\begin{aligned}
& z^{p} \phi(z) * G(z) \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left\{(p-\rho)\left(z^{p} \phi(z) * g_{1}(z)\right)+\rho\right\}-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(p-\rho)\left(z^{p} \phi(z) * g_{2}(z)\right)+\rho\right\}, \\
& g_{1}, g_{2} \in P .
\end{aligned}
$$

Since $\Re\left\{\left(z^{p} \phi(z)\right)\right\}>\frac{1}{2}, z \in E$, and so using Lemma 2.2, we conclude that $F=\phi * f \in \mathcal{T}_{k, p, n}(\alpha, m, \lambda, l, \rho)$.

Theorem 3.8. For $0 \leq \alpha_{2}<\alpha_{1}$,

$$
\mathcal{T}_{k, p, n}\left(\alpha_{1}, m, \lambda, l, \rho\right) \subset \mathcal{T}_{k, p, n}\left(\alpha_{2}, m, \lambda, l, \rho\right)
$$

Proof. For $\alpha_{2}=0$, the proof is immediate. Let $\alpha_{2}>0$ and $f \in \mathcal{T}_{k, p, n}\left(\alpha_{1}, m, \lambda, l, \rho\right)$. Then,

$$
\begin{aligned}
& \left\{\left(1-\alpha_{2}\right)\left(z^{p} \mathcal{L}_{p}^{m+1}(\lambda, l) f(z)\right)+\alpha_{2} z^{p}\left(\mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)\right\} \\
= & \frac{\alpha_{2}}{a_{1}}\left[\left(\frac{\alpha_{1}}{a_{2}}-1\right)\left(z^{p} \mathcal{L}_{p}^{m+1}(\lambda, l) f(z)\right)+\left(1-a_{1}\right)\left(z^{p} \mathcal{L}_{p}^{m+1}(\lambda, l) f(z)\right)+a_{1}\left(z^{p} \mathcal{L}_{p}^{m}(\lambda, l) f(z)\right)\right] \\
= & \left(1-\frac{\alpha_{2}}{a_{1}}\right) H_{1}(z)+\frac{\alpha_{2}}{a_{1}} H_{2}(z), \quad H_{1}, \quad H_{2} \in P_{k}(\rho) .
\end{aligned}
$$

Since $P_{k}(\rho)$ is a convex set, see Noor [12], we conclude that $f \in \mathcal{T}_{k, p, n}\left(\alpha_{2}, m, \lambda, l, \rho\right)$, for $z \in E$.

References

[1] F. M. Al-Oboudi and H. A. Al-Zkeri, Applications of Briot-Bouquet differential subordination to certain classes of meromorphic functions, Arab J. Math Sci. 12 (2005) 1-14.
[2] E. Aqlan, Jay M. Jahangiri and S. R. Kulkarni, Certain integral operators applied to meromorphic P-valent functions, J. Nat. Geo. 24 (2003), no. 1-2, 111-120.
[3] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations, J. Math. Anal. Appl. 300 (2004), no. 2, 505-520.
[4] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations, Integral Transforms Spec. Functions 16 (2005), no. 8, 647-659.
[5] R. M. El-Ashwah, A note on certain meromorphic p-valent functions, Appl. Math. Letter 22 (2009), no. 11, 1756-1759.
[6] R. M. El-Ashwah, Properties of certain class of p-valent meromorphic functions associated with new integral operator, Acta Univ. Apulensis Math. Inform. 290 (2012) 255-264.
[7] A. Y. Lashin, On certain subclasses of meromorphic functions associated with certain integral operators, Comput, Math Appl. 59 (2010), no. 1, 524-531.
[8] J.-L. Liu, The Noor integral and strongly starlike functions, J. Math. Anal. Appl. 261 (2001), no. 2, 441-447.
[9] J.-L. Liu and K. I. Noor, Some properties of Noor integral operator, J. Nat. Geom. 21 (2002), no. 1-2, 81-90.
[10] J.-L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2001), no. 2, 566-581.
[11] T. H. MacGregor, Radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (1963) 514-520.
[12] K. I. Noor, On subclasses of close-to-convex functions of higher order, Internat. J. Math. Math. Sci. 15 (1992), no. 2, 279-289.
[13] K. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math. 31 (1975), no. 3, 311-323.
[14] D. Ž. Pashkouleva, The starlikeness and spiral-convexity of certain subclasses of analytic functions, Current Topics in Analytic Function Theory, 266-273, World Sci. Publ., River Edge, 1992.
[15] B. Pinchuk, Functions with bounded boundary rotation, Israel J. Math. 10 (1971) 6-16.
[16] S. Ponnusamy, Differential subordination and Bazilevic functions, Proc. Indian Acad. Sci. Math. Sci. 105 (1995), no. 2, 169-186.
[17] R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106 (1989), no. 1, 145-152.
[18] J. Sokól, On some subclass of strongly starlike functions, Dem. Math. 31 (1998), no. 1, 81-86.
[19] J. Sokól, On starlike functions connected with Fibonacci numbers, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 23 (1999) 111-116.
[20] J. Sokół, Classes of anaytic functions associated with the Choi-Saigo-Srivastava operator, J. Math. Anal. Appl. 318 (2006), no. 2, 517-525.
[21] B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc. 43 (1991), no. 1, 137-140.
(Ali Muhammad) Department of Basic Sciences, University of Engineering and Technology, P.O. Box 25000, Peshawar Pakistan

E-mail address: ali7887@gmail.com
(Saqib Hussain) Department of Mathematics, COMSATS Institute of Information Technology, P.O. Box 22010, Abbotabad, Pakistan

E-mail address: saqibhussain@ciit.net.pk
(Wasim Ul-Haq) Mathematics Department Faculty of Science, main campus Zulfi, P.O. Box 1712, Majmath University, Saudi Arabia

E-mail address: w.ulhaq@mu.edu.sa

[^0]: Article electronically published on June 15, 2015.
 Received: 23 May 2013, Accepted: 2 April 2014.

 * Corresponding author.

