ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 3, pp. 625-632

Title:

Coherence in amalgamated algebra along an ideal

Author(s):

K. Alaoui Ismaili and N. Mahdou

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 41 (2015), No. 3, pp. 625–632 Online ISSN: 1735-8515

COHERENCE IN AMALGAMATED ALGEBRA ALONG AN IDEAL

K. ALAOUI ISMAILI AND N. MAHDOU*

(Communicated by Rahim Zaare-Nahandi)

ABSTRACT. Let $f : A \to B$ be a ring homomorphism and let J be an ideal of B. In this paper, we investigate the transfer of the property of coherence to the amalgamation $A \bowtie^f J$. We provide necessary and sufficient conditions for $A \bowtie^f J$ to be a coherent ring. **Keywords:** Amalgamated algebra, coherent ring. **MSC(2010):** Primary: 13D05; Secondary: 13D02.

1. Introduction

Throughout this paper, all rings are commutative with identity element, and all modules are unitary. Let R be a commutative ring. We say that an ideal is regular if it contains a regular element, i.e; a non-zerodivisor element. For a nonnegative integer n, an R-module E is called n-presented if there is an exact sequence of R-modules:

$$F_n \to F_{n-1} \to \dots F_1 \to F_0 \to E \to 0$$

where each F_i is a finitely generated free *R*-module. In particular, 0-presented and 1-presented *R*-modules are, respectively, finitely generated and finitely presented *R*-modules.

A ring R is coherent if every finitely generated ideal of R is finitely presented; equivalently, if (0:a) and $I \cap J$ are finitely generated for every $a \in R$ and any two finitely generated ideals I and J of R. Examples of coherent rings are Noetherian rings, Boolean algebras, von Neumann regular rings, and Prüfer/semihereditary rings. For instance see [15].

Recall that an R-module M is called a coherent R-module if it is finitely generated and every finitely generated submodule of M is finitely presented.

O2015 Iranian Mathematical Society

Article electronically published on June 15, 2015.

Received: 30 September 2013, Accepted: 6 April 2014.

 $^{^{\}ast}\mbox{Corresponding}$ author.

⁶²⁵

Let A and B be two rings, let J be an ideal of B and let $f : A \to B$ be a ring homomorphism. In this setting, we can consider the following subring of $A \times B$:

$$A \bowtie^f J = \{(a, f(a) + j) \not a \in A, j \in J\}$$

called the amalgamation of A with B along J with respect to f (introduced and studied by D'Anna, Finocchiaro, and Fontana in [6,7]). This construction is a generalization of the amalgamated duplication of a ring along an ideal (introduced and studied by D'Anna and Fontana in [8–10] and denoted by $A \bowtie I$). Moreover, other classical constructions (such as the A + XB[X], A + XB[[X]], and the D + M constructions) can be studied as particular cases of the amalgamation [6, Examples 2.5 & 2.6] and other classical constructions, such as the Nagata's idealization and the CPI extensions (in the sense of Boisen and Sheldon [2]) are strictly related to it (see [6, Example 2.7 & Remark 2.8]).

One of the key tools for studying $A \bowtie^f J$ is based on the fact that the amalgamation can be studied in the frame of pullback constructions [6, Section 4]. This point of view allows the authors in [6,7] to provide an ample description of various properties of $A \bowtie^f J$, in connection with the properties of A, J and f. Namely, in [6], the authors studied the basic properties of this construction (e.g., characterizations for $A \bowtie^f J$ to be a Noetherian ring, an integral domain, a reduced ring) and they characterized those distinguished pullbacks that can be expressed as an amalgamation.

This paper investigates a property of coherence in amalgamated algebra along an ideal. Our results generate original examples which enrich the current literature with new families of non-Noetherian coherent rings.

2. Main results

This section characterizes the amalgamated algebra along an ideal $A \bowtie^f J$ to be a coherent ring. The main result (Theorem 2.2) examines the property of coherence that the amalgamation $A \bowtie^f J$ might inherit from the ring A for some classes of ideals J and homomorphisms f, and hence generates new examples of non-Noetherian coherent rings.

Let $f: A \to B$ be a ring homomorphism, J be an ideal of B and let n be a positive integer. Consider the function $f^n: A^n \to B^n$ to defined by $f^n((\alpha_i)_{i=1}^{i=n}) = (f(\alpha_i))_{i=1}^{i=n}$. Obviously, f^n is a ring homomorphism and J^n is an ideal of B^n . This allows us to define $A^n \bowtie^{f^n} J^n$. Moreover, let $\phi: (A \bowtie^f J)^n \to A^n \bowtie^{f^n} J^n$ defined by $\phi((a_i, f(a_i) + j_i)_{i=1}^{i=n}) = ((a_i)_{i=1}^{i=n}, f^n((a_i)_{i=1}^{i=n}) + (j_i)_{i=1}^{i=n})$. It is easily checked that ϕ is a ring isomorphism. So $(A \bowtie^f J)^n$ and $A^n \bowtie^{f^n} J^n$ are isomorphic as rings. Let U be a submodule of A^n . Then

 $U \bowtie^{f^n} J^n := \{(u, f^n(u) + j) \in A^n \bowtie^{f^n} J^n \not u \in U, j \in J^n\} \text{ is a submodule of } A^n \bowtie^{f^n} J^n.$

Next, before we announce the main result of this section (Theorem 2.2), we make the following useful remark.

Remark 2.1. Let $f : A \to B$ be a ring homomorphism and let J be an ideal of B. Then $f^n(\alpha a) = f(\alpha)f^n(a)$ for all $\alpha \in A$ and $a \in A^n$.

Now, to the main result:

Theorem 2.2. Let $f : A \to B$ be a ring homomorphism and let J be a proper ideal of B.

- (1) If $A \bowtie^f J$ is a coherent ring, then so is A.
- (2) Assume that J and $f^{-1}(J)$ are finitely generated ideals of f(A)+J and A respectively. Then $A \bowtie^f J$ is a coherent ring if and only if A and f(A) + J are coherent rings.
- (3) Assume that J is a regular finitely generated ideal of f(A) + J. Then $A \bowtie^f J$ is a coherent ring if and only if A and f(A) + J are coherent rings and $f^{-1}(J)$ is a finitely generated ideal of A.

Before proving Theorem 2.2, we establish the following lemmas.

Lemma 2.3. Let $f : A \to B$ be a ring homomorphism and let J be a proper ideal of B. Then:

- (1) $\{0\} \times J \text{ (resp., } f^{-1}\{J\} \times \{0\}) \text{ is a finitely generated ideal of } A \bowtie^f J \text{ if and only if } J \text{ (resp., } f^{-1}\{J\}) \text{ is a finitely generated ideal of } f(A) + J \text{ (resp., } A).$
- (2) If $A \bowtie^f J$ is a coherent ring and $f^{-1}(J)$ is a finitely generated ideal of A, then f(A) + J is a coherent ring.

Proof. (1) Assume that $J := \sum_{i=1}^{i=n} (f(A) + J)k_i$ is a finitely generated ideal of f(A) + J, where $k_i \in J$. It is clear that $\sum_{i=1}^{i=n} (A \bowtie^f J)(0, k_i) \subset \{0\} \times J$. Let $x := (0, \sum_{i=1}^{i=n} (f(\alpha_i) + j_i)k_i) \in \{0\} \times J$, where $\alpha_i \in A$ and $j_i \in J$. Hence, $x = \sum_{i=1}^{i=n} (0, (f(\alpha_i) + j_i)k_i) = \sum_{i=1}^{i=n} (\alpha_i, f(\alpha_i) + j_i)(0, k_i) \in \sum_{i=1}^{i=n} (A \bowtie^f J)((0, k_i))$. Therefore, $\{0\} \times J \subset \sum_{i=1}^{i=n} (A \bowtie^f J)(0, k_i)$ and so $\{0\} \times J = \sum_{i=1}^{i=n} (A \bowtie^f J)(0, k_i)$ is a finitely generated ideal of $A \bowtie^f J$, where $k_i \in J$. It is readily seen that $J = \sum_{i=1}^{i=n} (f(A) + J)k_i$, as desired.

 $J = \sum_{i=1}^{i=1} (J(A) + J)k_i, \text{ as desired.}$ Assume that $f^{-1}\{J\} := \sum_{i=1}^{i=n} Ak_i$ is a finitely generated ideal of A, where $k_i \in f^{-1}\{J\}$. It is obvious that $\sum_{i=1}^{i=n} A \bowtie^f J(k_i, 0) \subset f^{-1}\{J\} \times \{0\}$. Let $x =: (\sum_{i=1}^{i=n} \alpha_i k_i, 0) \in f^{-1}\{J\} \times \{0\}, \text{ where } \alpha_i \in A.$ Then $x = \sum_{i=1}^{i=n} (\alpha_i k_i, 0) = \sum_{i=1}^{i=n} (\alpha_i, f(\alpha_i))(k_i, 0) \in \sum_{i=1}^{i=n} (A \bowtie^f J)(k_i, 0).$ Therefore, $f^{-1}\{J\} \times \{0\} \subset \sum_{i=1}^{i=n} (A \bowtie^f J)(k_i, 0) \text{ and so } f^{-1}\{J\} \times \{0\} = \sum_{i=1}^{i=n} A \bowtie^f J(k_i, 0).$ Conversely, Assume that $f^{-1}\{J\} \times \{0\} := \sum_{i=1}^{i=n} (A \bowtie^f J)(a_i, 0)$ is a finitely generated ideal

627

of $A \bowtie^f J$, where $a_i \in f^{-1}{J}$. It is easy to check that $f^{-1}{J} = \sum_{i=1}^{i=n} Aa_i$, as desired.

(2) Assume that $A \bowtie^f J$ is a coherent ring and $f^{-1}\{J\} \times \{0\}$ is a finitely generated ideal of $A \bowtie^f J$. Then $f(A) + J \cong \frac{A \bowtie^f J}{f^{-1}\{J\} \times \{0\}}$ is a coherent ring by [15, Theorem 2.4.1], as desired.

Lemma 2.4. Let $f : A \to B$ be a ring homomorphism, J be an ideal of B, and let U be a submodule of A^n . Then:

- (1) Assume that U is a finitely generated A-module and J is a finitely generated ideal of f(A) + J. Then $U \bowtie^{f^n} J^n$ is a finitely generated $(A \bowtie^f J)$ -module.
- (2) Assume that $f^n(U) \subset J^n$. Then $U \bowtie^{f^n} J^n$ is a finitely generated $(A \bowtie^f J)$ -module if and only if U is a finitely generated A-module and J is a finitely generated ideal of f(A) + J.

Proof. (1) Assume that $U := \sum_{i=1}^{i=n} Au_i$ is a finitely generated A-module, where $u_i \in U$ for all $i \in \{1, ..., n\}$ and $J^n := \sum_{i=1}^{i=n} (f(A) + J)e_i$ is a finitely generated (f(A) + J)-module, where $e_i \in J^n$ for all $i \in \{1, ..., n\}$. We claim that $U \bowtie^{f^n} J^n = \sum_{i=1}^{i=n} (A \bowtie^f J)(u_i, f^n(u_i)) + \sum_{i=1}^{i=n} (A \bowtie^f J)(0, e_i)$. Indeed, $\sum_{i=1}^{i=n} (A \bowtie^f J)(u_i, f^n(u_i)) + \sum_{i=1}^{i=n} (A \bowtie^f J)(0, e_i) \subset U \bowtie^{f^n} J^n$ since $(u_i, f^n(u_i)) \in U \bowtie^{f^n} J^n$ for all $i \in \{1, ..., n\}$ and $(0, e_i) \in U \bowtie^{f^n} J^n$ for all $i \in \{1, ..., n\}$. Conversely, let $(x, f^n(x) + k) \in U \bowtie^{f^n} J^n$, where $x \in U$ and $k \in J^n$. Hence, $x = \sum_{i=1}^{i=n} \alpha_i u_i \in U$, for some $\alpha_i \in A$ $(i \in \{1, ..., n\})$ and $k = \sum_{i=1}^{i=n} (f(\beta_i) + j_i)e_i \in J^n$, for some $\beta_i \in A$ and $j_i \in J$ $(i \in \{1, ..., n\})$. We obtain

$$(x, f^{n}(x) + k) = \left(\sum_{i=1}^{i=n} \alpha_{i} u_{i}, \sum_{i=1}^{i=n} f(\alpha_{i}) f^{n}(u_{i})\right) + \left(0, \sum_{i=1}^{i=n} (f(\beta_{i}) + j_{i})e_{i}\right)$$
$$= \sum_{i=1}^{i=n} (\alpha_{i}, f(\alpha_{i}))(u_{i}, f^{n}(u_{i})) + \sum_{i=1}^{i=n} (0, f(\beta_{i}) + j_{i})(0, e_{i})$$
$$= \sum_{i=1}^{i=n} (\alpha_{i}, f(\alpha_{i}))(u_{i}, f^{n}(u_{i})) + \sum_{i=1}^{i=n} (\beta_{i}, f(\beta_{i}) + j_{i})(0, e_{i}).$$

Consequently, $(x, f^n(x) + k) \in \sum_{i=1}^{i=n} (A \bowtie^f J)(u_i, f^n(u_i)) + \sum_{i=1}^{i=n} (A \bowtie^f J)(0, e_i)$ since $(\alpha_i, f(\alpha_i)) \in (A \bowtie^f J)$ for all $i \in \{1, \dots, n\}$ and $(\beta_i, f(\beta_i) + j_i) \in A \bowtie^f J$ for all $i \in \{1, \dots, n\}$ and hence $U \bowtie^{f^n} J^n = \sum_{i=1}^{i=n} (A \bowtie^f J)(u_i, f^n(u_i)) + \sum_{i=1}^{i=n} (A \bowtie^f J)(0, e_i)$ is a finitely generated $(A \bowtie^f J)$ -module, as desired.

(2) Assume that $f^n(U) \subset J^n$. If U is a finitely generated A-module and J is a finitely generated ideal of f(A) + J, then $U \bowtie^{f^n} J^n$ is a finitely generated $(A \bowtie^f J)$ -module by (1). Conversely, assume that $U \bowtie^{f^n} J^n := \sum_{i=1}^{i=n} (A \bowtie^f I)$

Alaoui Ismaili and Mahdou

$$\begin{split} J)(u_i, f^n(u_i) + k_i) & \text{ is a finitely generated } (A \bowtie^f J) \text{-module, where, } u_i \in U \text{ and } k_i \in J^n \text{ for all } 1 \leq i \leq n. \text{ It is clear that } U = \sum_{i=1}^{i=n} Au_i. \text{ On the other hand,} \\ & \text{we claim that } J^n = \sum_{i=1}^{i=n} (f(A) + J)(f^n(u_i) + k_i). \text{ Indeed, let } j \in J^n. \text{ Then} \\ & (0, j) = \sum_{i=1}^{i=n} (\alpha_i, f(\alpha_i) + j_i)(u_i, f^n(u_i) + k_i) \text{ for some } \alpha_i \in A \text{ and } j_i \in J. \text{ So} \\ & j = \sum_{i=1}^{i=n} (f(\alpha_i) + j_i)(f^n(u_i) + k_i) \in \sum_{i=1}^{i=n} (f(A) + J)(f^n(u_i) + k_i). \text{ Thus } J^n \subset \\ & \sum_{i=1}^{i=n} (f(A) + J)(f^n(u_i) + k_i). \text{ But } f^n(u_i) \in J^n \text{ for all } i = 1, \dots n \text{ since } f^n(U) \subset J^n. \text{ Therefore, } J^n = \sum_{i=1}^{i=n} (f(A) + J)(f^n(u_i) + k_i) \text{ is a finitely generated } (f(A) + J) \text{ module and so } J \text{ is a finitely generated ideal of } (f(A) + J), \text{ completing the proof of Lemma 2.4.} \end{split}$$

Lemma 2.5. Let $f : A \to B$ be a ring homomorphism, and J be an ideal of B. Assume that J and $f^{-1}(J)$ are finitely generated ideals of f(A) + J and A respectively. Then $f^{-1}{J} \times {0}$ is a coherent $(A \bowtie^f J)$ -module provided A is a coherent ring.

Proof. Since $f^{-1}{J} \times {0}$ is a finitely generated $(A \bowtie^f J)$ -module, it remains to show that every finitely generated submodule of $f^{-1}{J} \times {0}$ is finitely presented. Assume that A is a coherent ring and let N be a finitely generated submodule of $f^{-1}{J} \times {0}$. It is clear that $N = I \times {0}$, where $I = \sum_{i=1}^{i=n} Aa_i$ for some positive integer n and $a_i \in I$. Consider the exact sequence of Amodules:

$$0 \to Kerv \to A^n \to I \to 0 \tag{1}$$

where $v((\alpha_i)_{i=1}^{i=n}) = \sum_{i=1}^{i=n} \alpha_i a_i$. Then $Kerv = \{(\alpha_i)_{i=1}^{i=n} \in A^n / \sum_{i=1}^{i=n} \alpha_i a_i = 0\}$. On the other hand, it is easily verified that $N = \sum_{i=1}^{i=n} A \bowtie^f J(a_i, 0)$. Consider the exact sequence of $(A \bowtie^f J)$ -modules:

$$0 \to Keru \to (A \bowtie^f J)^n \to N \to 0 \tag{2}$$

where $u((\alpha_i, f(\alpha_i) + j_i)_{i=1}^{i=n}) = \sum_{i=1}^{i=n} (\alpha_i, f(\alpha_i) + j_i)(a_i, 0)$. Then, $Keru = \{(\alpha_i, f(\alpha_i) + j_i)_{i=1}^{i=n} \in (A \bowtie^f J)^n / \sum_{i=1}^{i=n} \alpha_i a_i = 0\}$. So $Keru = \{((\alpha_i)_{i=1}^{i=n}, f^n((\alpha_i)_{i=1}^{i=n}) + (j_i)_{i=1}^{i=n}) \in A^n \bowtie^{f^n} J^n / (\alpha_i)_{i=1}^{i=n} \in Kerv\}$ and hence $Keru = Kerv \bowtie^{f^n} J^n$. But I is a finitely presented ideal of A since A is a coherent ring, so Kerv is a finitely generated A-module (by a sequence (1)) and hence $Keru = Kerv \bowtie^{f^n} J^n$ is a finitely generated $(A \bowtie^f J)$ -module (by lemma 2.4 (1)). Therefore, N is a finitely presented $(A \bowtie^f J)$ -module by a sequence (2) and hence $f^{-1}\{J\} \times \{0\}$ is a coherent $A \bowtie^f J$ -module, to complete the proof of Lemma 2.5.

Lemma 2.6. Let $f : A \to B$ be a ring homomorphism, and J be an ideal of B. If $A \bowtie^f J$ is a coherent ring and J is a regular ideal of f(A) + J, then $f^{-1}(J)$ is a finitely generated ideal of A.

Proof. Assume that $A \bowtie^f J$ is a coherent ring and J contains a regular element k. Set $c = (0, k) \in A \bowtie^f J$. One can easily check that:

Since $A \bowtie^f J$ is a coherent ring, then $(0:c) = f^{-1}\{J\} \times \{0\}$ is a finitely generated ideal of $A \bowtie^f J$. Therefore, $f^{-1}\{J\}$ is a finitely generated ideal of A, as desired.

Proof of Theorem 2.2

Proof. (1) If $A \bowtie^f J$ is a coherent ring, then A is a coherent ring by [15, Theorem 4.1.5] since A is a module retract of $A \bowtie^f J$.

(2) Assume that J and $f^{-1}(J)$ are finitely generated ideals of f(A) + J and A respectively. Then A and f(A) + J are coherent rings since $A \bowtie^f J$ is a coherent ring (by Theorem 2.2 (1) and Lemma 2.3 (2)). Conversely, assume that A and f(A) + J are coherent rings. Since $\frac{A \bowtie^f J}{f^{-1}\{J\} \times \{0\}} \cong f(A) + J$, f(A) + J is a coherent ring and $f^{-1}\{J\} \times \{0\}$ is a coherent $A \bowtie^f J$ -module (by Lemma 2.5), then $A \bowtie^f J$ is a coherent ring (by [15, Theorem 2.4.1]).

(3) Follows immediately from Theorem 2.2 (2) and Lemma 2.6. This completes the proof of the main Theorem. $\hfill \Box$

The following Corollary is an immediate consequence of Theorem 2.2 (3).

Corollary 2.7. Let $f : A \to B$ be a ring homomorphism, B be an integral domain and let J be a proper and finitely generated ideal of f(A) + J. Then $A \bowtie^f J$ is a coherent ring if and only if A and f(A) + J are coherent rings and $f^{-1}(J)$ is a finitely generated ideal of A.

The Corollary below follows immediately from Theorem 2.2 (2) which examines the case of the amalgamated duplication.

Corollary 2.8. Let A be a ring and I be a proper ideal of A.

- (1) If $A \bowtie I$ is a coherent ring, then so is A.
- (2) Assume that I is a finitely generated ideal of A. Then $A \bowtie I$ is a coherent ring if and only if A is a coherent ring.

The next Corollary is an immediate consequence of Theorem 2.2 (2).

Corollary 2.9. Let A be a ring, I be an ideal of A, $B := \frac{A}{I}$, and let $f : A \to B$ be the canonical homomorphism $(f(x) = \overline{x})$.

- (1) Assume that J and $f^{-1}(J)$ are finitely generated ideals of B and A respectively. Then $A \bowtie^f J$ is a coherent ring if and only if A and B are coherent rings.
- (2) Assume that J is a regular finitely generated ideal of B. Then $A \bowtie^f J$ is a coherent ring if and only if A and B are coherent rings and $f^{-1}(J)$ is a finitely generated ideal of A.

The aforementioned result enriches the literature with new examples of coherent rings which are non-Noetherian rings.

Example 2.10. Let A be a non-Noetherian coherent ring, I be a finitely generated ideal of A, $f : A \to B(=\frac{A}{I})$ be the canonical homomorphism, and let J be a finitely generated ideal of A. Then $A \bowtie^f \overline{J}$ is a non-Noetherian coherent ring.

Proof. By Corollary 2.9, $A \bowtie^f \overline{J}$ is a coherent ring since A and B are both coherent rings and J is a finitely generated ideal of A. On the other hand, $A \bowtie^f \overline{J}$ is a non-Noetherian ring by [6, Proposition 5.6, p. 167] since A is a non-Noetherian ring.

Example 2.11. Let $A := \mathbb{Z} + X\mathbb{Q}[X]$, where \mathbb{Z} is the ring of integers, and \mathbb{Q} is the field of rational numbers. Let $I := X\mathbb{Q}[X]$, $B := \frac{A}{I} \cong \mathbb{Z}$, $f : A \to B$ be the canonical homomorphism and let J be a nonzero ideal of B. Then $A \bowtie^f J$ is a non-Noetherian coherent ring.

Proof. By Corollary 2.9, $A \bowtie^f J$ is a coherent ring since A and B are both coherent rings and J (resp., $f^{-1}(J) = n_0\mathbb{Z} + X\mathbb{Q}[X]$ for some positive integer n_0) is a finitely generated ideal of B (resp., A). On the other hand, $A \bowtie^f J$ is a non-Noetherian ring by [6, Proposition 5.6, p. 167] since A is a non-Noetherian ring.

Acknowledgments

The authors would like to express their sincere thanks to the referee for his/her helpful suggestions and comments, which have greatly improved this paper.

References

- V. Barucci, D. F. Anderson and D. E. Dobbs, Coherent Mori domains and the principal ideal theorem, *Comm. Algebra* 15 (1987), no. 6, 1119–1156.
- M. B. Boisen and P. B. Sheldon, CPI-extension: Over rings of integral domains with special prime spectrum, *Canad. J. Math.* 29 (1977) 722–737.
- W. Brewer and E. Rutter, D+M constructions with general overrings, Michigan Math. J. 23 (1976), no. 1, 33–42.
- M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Prüfer conditions in an amalgamated duplication of a ring along an ideal, *Comm. Algebra* 43 (2015), no. 1, 249–261.

- D. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra 22 (1994), no. 10, 3997–4011.
- M. D'Anna, C. A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative algebra and its applications, 155–172, Walter de Gruyter, Berlin, 2009.
- M. D'Anna, C. A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, *J. Pure Appl. Algebra* 214 (2010), no. 9, 1633–1641.
- 8. M. D'Anna, A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507-519.
- M. D'Anna and M. Fontana, amalgamated duplication of a ring along a multiplicativecanonical ideal, Ark. Mat. 45 (2007), no. 2, 241–252.
- M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443–459.
- D. E. Dobbs, S. Kabbaj and N. Mahdou, n-coherent rings and modules, Commutative ring theory (Fés, 1995), 269–281, Lecture Notes in Pure and Appl. Math., 185, Dekker, New York, 1997.
- D. E. Dobbs, S. Kabbaj, N. Mahdou and M. Sobrani, When is D + M n-coherent and an (n, d)-domain? Advances in commutative ring theory (Fez, 1997), 257–270, Lecture Notes in Pure and Appl. Math., 205, Dekker, New York, 1999.
- D. E. Dobbs and I. Papick, When is D + M coherent?, Proc. Amer. Math. Soc. 56 (1976) 51–54.
- S. Gabelli and E. Houston, Coherentlike conditions in pullbacks, *Michigan Math. J.* 44 (1997), no. 1, 99–123.
- S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
- 16. S. Glaz, Finite conductor rings, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2833–2843
- S. Glaz, Controlling the Zero-Divisors of a Commutative Ring, 191–212, Lecture Notes in Pure and Appl. Math., Dekker, 231, 2003.
- J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, Inc., New York, 1988.
- S. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra 32 (2004), no. 10, 3937–3953.
- 20. N. Mahdou, On Costa's conjecture, Comm. Algebra ${\bf 29}$ (2001), no. 7, 2775–2785.
- J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.

(Karima Alaoui Ismaili) DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECH-NOLOGY OF FEZ, BOX 2202, UNIVERSITY S.M. BEN ABDELLAH FEZ, MOROCCO *E-mail address*: alaouikarima2012@hotmail.fr

(Najib Mahdou) Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco

E-mail address: mahdou@hotmail.com