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Abstract. Let f : A → B be a ring homomorphism and let J be an
ideal of B. In this paper, we investigate the transfer of the property

of coherence to the amalgamation A ▷◁f J . We provide necessary and
sufficient conditions for A ▷◁f J to be a coherent ring.
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1. Introduction

Throughout this paper, all rings are commutative with identity element, and
all modules are unitary. Let R be a commutative ring. We say that an ideal
is regular if it contains a regular element, i.e; a non-zerodivisor element. For a
nonnegative integer n, an R-module E is called n-presented if there is an exact
sequence of R-modules:

Fn → Fn−1 → . . . F1 → F0 → E → 0

where each Fi is a finitely generated free R-module. In particular, 0-presented
and 1-presented R-modules are, respectively, finitely generated and finitely
presented R-modules.

A ring R is coherent if every finitely generated ideal of R is finitely pre-
sented; equivalently, if (0 : a) and I ∩ J are finitely generated for every a ∈ R
and any two finitely generated ideals I and J of R. Examples of coherent
rings are Noetherian rings, Boolean algebras, von Neumann regular rings, and
Prüfer/semihereditary rings. For instance see [15].
Recall that an R-module M is called a coherent R-module if it is finitely gen-
erated and every finitely generated submodule of M is finitely presented.
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Let A and B be two rings, let J be an ideal of B and let f : A → B be a ring
homomorphism. In this setting, we can consider the following subring of A×B:

A ▷◁f J = {(a, f(a) + j)⧸a ∈ A, j ∈ J}
called the amalgamation of A with B along J with respect to f (introduced and
studied by D’Anna, Finocchiaro, and Fontana in [6,7]). This construction is a
generalization of the amalgamated duplication of a ring along an ideal (intro-
duced and studied by D’Anna and Fontana in [8–10] and denoted by A ▷◁ I).
Moreover, other classical constructions (such as the A+XB[X], A+XB[[X]],
and the D +M constructions) can be studied as particular cases of the amal-
gamation [6, Examples 2.5 & 2.6] and other classical constructions, such as
the Nagata’s idealization and the CPI extensions (in the sense of Boisen and
Sheldon [2]) are strictly related to it (see [6, Example 2.7 & Remark 2.8]).

One of the key tools for studying A ▷◁f J is based on the fact that the amal-
gamation can be studied in the frame of pullback constructions [6, Section 4].
This point of view allows the authors in [6, 7] to provide an ample description
of various properties of A ▷◁f J , in connection with the properties of A, J and
f . Namely, in [6], the authors studied the basic properties of this construction
(e.g., characterizations for A ▷◁f J to be a Noetherian ring, an integral domain,
a reduced ring) and they characterized those distinguished pullbacks that can
be expressed as an amalgamation.

This paper investigates a property of coherence in amalgamated algebra
along an ideal. Our results generate original examples which enrich the current
literature with new families of non-Noetherian coherent rings.

2. Main results

This section characterizes the amalgamated algebra along an ideal A ▷◁f J
to be a coherent ring. The main result (Theorem 2.2) examines the property
of coherence that the amalgamation A ▷◁f J might inherit from the ring A
for some classes of ideals J and homomorphisms f , and hence generates new
examples of non-Noetherian coherent rings.

Let f : A → B be a ring homomorphism, J be an ideal of B and let n
be a positive integer. Consider the function fn : An → Bn to defined by
fn((αi)

i=n
i=1 ) = (f(αi))

i=n
i=1 . Obviously, fn is a ring homomorphism and Jn is

an ideal of Bn. This allows us to define An ▷◁f
n

Jn. Moreover, let ϕ : (A ▷◁f

J)n → An ▷◁f
n

Jn defined by ϕ((ai, f(ai) + ji)
i=n
i=1 ) = ((ai)

i=n
i=1 , f

n((ai)
i=n
i=1 ) +

(ji)
i=n
i=1 ). It is easily checked that ϕ is a ring isomorphism. So (A ▷◁f J)n

and An ▷◁f
n

Jn are isomorphic as rings. Let U be a submodule of An. Then
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U ▷◁f
n

Jn := {(u, fn(u) + j) ∈ An ▷◁f
n

Jn⧸u ∈ U, j ∈ Jn} is a submodule of
An ▷◁f

n

Jn.
Next, before we announce the main result of this section (Theorem 2.2), we

make the following useful remark.

Remark 2.1. Let f : A → B be a ring homomorphism and let J be an ideal
of B. Then fn(αa) = f(α)fn(a) for all α ∈ A and a ∈ An.

Now, to the main result:

Theorem 2.2. Let f : A → B be a ring homomorphism and let J be a proper
ideal of B.

(1) If A ▷◁f J is a coherent ring, then so is A.
(2) Assume that J and f−1(J) are finitely generated ideals of f(A)+J and

A respectively. Then A ▷◁f J is a coherent ring if and only if A and
f(A) + J are coherent rings.

(3) Assume that J is a regular finitely generated ideal of f(A) + J . Then
A ▷◁f J is a coherent ring if and only if A and f(A) + J are coherent
rings and f−1(J) is a finitely generated ideal of A.

Before proving Theorem 2.2, we establish the following lemmas.

Lemma 2.3. Let f : A → B be a ring homomorphism and let J be a proper
ideal of B. Then:

(1) {0} × J (resp., f−1{J}×{0}) is a finitely generated ideal of A ▷◁f J if
and only if J (resp., f−1{J}) is a finitely generated ideal of f(A) + J
(resp., A).

(2) If A ▷◁f J is a coherent ring and f−1(J) is a finitely generated ideal of
A, then f(A) + J is a coherent ring.

Proof. (1) Assume that J :=
∑i=n

i=1 (f(A)+ J)ki is a finitely generated ideal of

f(A) + J , where ki ∈ J . It is clear that
∑i=n

i=1 (A ▷◁f J)(0, ki) ⊂ {0} × J . Let

x := (0,
∑i=n

i=1 (f(αi) + ji)ki) ∈ {0} × J , where αi ∈ A and ji ∈ J . Hence, x =∑i=n
i=1 (0, (f(αi) + ji)ki) =

∑i=n
i=1 (αi, f(αi) + ji)(0, ki) ∈

∑i=n
i=1 (A ▷◁f J)((0, ki).

Therefore, {0} × J ⊂
∑i=n

i=1 (A ▷◁f J)(0, ki) and so {0} × J =
∑i=n

i=1 (A ▷◁f

J)(0, ki). Conversely, Assume that {0} × J :=
∑i=n

i=1 (A ▷◁f J)(0, ki) is a
finitely generated ideal of A ▷◁f J , where ki ∈ J . It is readily seen that

J =
∑i=n

i=1 (f(A) + J)ki, as desired.

Assume that f−1{J} :=
∑i=n

i=1 Aki is a finitely generated ideal of A, where

ki ∈ f−1{J}. It is obvious that
∑i=n

i=1 A ▷◁f J(ki, 0) ⊂ f−1{J} × {0}. Let

x =: (
∑i=n

i=1 αiki, 0) ∈ f−1{J}×{0}, where αi ∈ A. Then x =
∑i=n

i=1 (αiki, 0) =∑i=n
i=1 (αi, f(αi))(ki, 0) ∈

∑i=n
i=1 (A ▷◁f J)(ki, 0). Therefore, f−1{J} × {0} ⊂∑i=n

i=1 (A ▷◁f J)(ki, 0) and so f−1{J} × {0} =
∑i=n

i=1 A ▷◁f J(ki, 0). Conversely,

Assume that f−1{J}×{0} :=
∑i=n

i=1 (A ▷◁f J)(ai, 0) is a finitely generated ideal
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of A ▷◁f J , where ai ∈ f−1{J}. It is easy to check that f−1{J} =
∑i=n

i=1 Aai,
as desired.

(2) Assume that A ▷◁f J is a coherent ring and f−1{J} × {0} is a finitely

generated ideal of A ▷◁f J . Then f(A) + J ∼= A▷◁fJ
f−1{J}×{0} is a coherent ring

by [15, Theorem 2.4.1], as desired. □

Lemma 2.4. Let f : A → B be a ring homomorphism, J be an ideal of B,
and let U be a submodule of An. Then:

(1) Assume that U is a finitely generated A-module and J is a finitely
generated ideal of f(A) + J . Then U ▷◁f

n

Jn is a finitely generated
(A ▷◁f J)-module.

(2) Assume that fn(U) ⊂ Jn. Then U ▷◁f
n

Jn is a finitely generated
(A ▷◁f J)-module if and only if U is a finitely generated A-module and
J is a finitely generated ideal of f(A) + J .

Proof. (1) Assume that U :=
∑i=n

i=1 Aui is a finitely generated A-module, where

ui ∈ U for all i ∈ {1, .....n} and Jn :=
∑i=n

i=1 (f(A)+J)ei is a finitely generated

(f(A) + J)-module, where ei ∈ Jn for all i ∈ {1, .....n}. We claim that U ▷◁f
n

Jn =
∑i=n

i=1 (A ▷◁f J)(ui, f
n(ui)) +

∑i=n
i=1 (A ▷◁f J)(0, ei). Indeed,

∑i=n
i=1 (A ▷◁f

J)(ui, f
n(ui)) +

∑i=n
i=1 (A ▷◁f J)(0, ei) ⊂ U ▷◁f

n

Jn since (ui, f
n(ui)) ∈ U ▷◁f

n

Jn for all i ∈ {1, .....n} and (0, ei) ∈ U ▷◁f
n

Jn for all i ∈ {1, .....n}. Conversely,
let (x, fn(x) + k) ∈ U ▷◁f

n

Jn, where x ∈ U and k ∈ Jn. Hence, x =∑i=n
i=1 αiui ∈ U , for some αi ∈ A (i ∈ {1, .....n}) and k =

∑i=n
i=1 (f(βi) + ji)ei ∈

Jn, for some βi ∈ A and ji ∈ J (i ∈ {1, .....n}). We obtain

(x, fn(x) + k) = (

i=n∑
i=1

αiui,

i=n∑
i=1

f(αi)f
n(ui)) + (0,

i=n∑
i=1

(f(βi) + ji)ei)

=

i=n∑
i=1

(αi, f(αi))(ui, f
n(ui)) +

i=n∑
i=1

(0, f(βi) + ji)(0, ei)

=

i=n∑
i=1

(αi, f(αi))(ui, f
n(ui)) +

i=n∑
i=1

(βi, f(βi) + ji)(0, ei).

Consequently, (x, fn(x) + k) ∈
∑i=n

i=1 (A ▷◁f J)(ui, f
n(ui)) +

∑i=n
i=1 (A ▷◁f

J)(0, ei) since (αi, f(αi)) ∈ (A ▷◁f J) for all i ∈ {1, .....n} and (βi, f(βi) +

ji) ∈ A ▷◁f J for all i ∈ {1, .....n} and hence U ▷◁f
n

Jn =
∑i=n

i=1 (A ▷◁f

J)(ui, f
n(ui)) +

∑i=n
i=1 (A ▷◁f J)(0, ei) is a finitely generated (A ▷◁f J)-module,

as desired.
(2) Assume that fn(U) ⊂ Jn. If U is a finitely generated A-module and J

is a finitely generated ideal of f(A) + J , then U ▷◁f
n

Jn is a finitely generated

(A ▷◁f J)-module by (1). Conversely, assume that U ▷◁f
n

Jn :=
∑i=n

i=1 (A ▷◁f
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J)(ui, f
n(ui)+ ki) is a finitely generated (A ▷◁f J)-module, where, ui ∈ U and

ki ∈ Jn for all 1 ≤ i ≤ n. It is clear that U =
∑i=n

i=1 Aui. On the other hand,

we claim that Jn =
∑i=n

i=1 (f(A) + J)(fn(ui) + ki). Indeed, let j ∈ Jn. Then

(0, j) =
∑i=n

i=1 (αi, f(αi) + ji)(ui, f
n(ui) + ki) for some αi ∈ A and ji ∈ J . So

j =
∑i=n

i=1 (f(αi)+ ji)(f
n(ui)+ki) ∈

∑i=n
i=1 (f(A)+J)(fn(ui)+ki). Thus J

n ⊂∑i=n
i=1 (f(A)+J)(fn(ui)+ki). But f

n(ui) ∈ Jn for all i = 1, ...n since fn(U) ⊂
Jn. Hence, (fn(ui) + ki) ∈ Jn ∀i and so

∑i=n
i=1 (f(A) + J)(fn(ui) + ki) ⊂ Jn.

Therefore, Jn =
∑i=n

i=1 (f(A)+J)(fn(ui)+ki) is a finitely generated (f(A)+J)-
module and so J is a finitely generated ideal of (f(A)+J), completing the proof
of Lemma 2.4. □

Lemma 2.5. Let f : A → B be a ring homomorphism, and J be an ideal of
B. Assume that J and f−1(J) are finitely generated ideals of f(A) + J and A
respectively. Then f−1{J} × {0} is a coherent (A ▷◁f J)-module provided A is
a coherent ring.

Proof. Since f−1{J}×{0} is a finitely generated (A ▷◁f J)-module, it remains
to show that every finitely generated submodule of f−1{J} × {0} is finitely
presented. Assume that A is a coherent ring and let N be a finitely generated

submodule of f−1{J}×{0}. It is clear that N = I×{0}, where I =
∑i=n

i=1 Aai
for some positive integer n and ai ∈ I. Consider the exact sequence of A-
modules:

0 → Kerv → An → I → 0 (1)

where v((αi)
i=n
i=1 ) =

∑i=n
i=1 αiai. Then Kerv = {(αi)

i=n
i=1 ∈ An⧸

∑i=n
i=1 αiai =

0}. On the other hand, it is easily verified that N =
∑i=n

i=1 A ▷◁f J(ai, 0).
Consider the exact sequence of (A ▷◁f J)-modules:

0 → Keru → (A ▷◁f J)n → N → 0 (2)

where u((αi, f(αi) + ji)
i=n
i=1 ) =

∑i=n
i=1 (αi, f(αi) + ji)(ai, 0). Then, Keru =

{(αi, f(αi) + ji)
i=n
i=1 ∈ (A ▷◁f J)n⧸

∑i=n
i=1 αiai = 0}. So Keru =

{((αi)
i=n
i=1 , f

n((αi)
i=n
i=1 ) + (ji)

i=n
i=1 ) ∈ An ▷◁f

n

Jn⧸(αi)
i=n
i=1 ∈ Kerv} and hence

Keru = Kerv ▷◁f
n

Jn. But I is a finitely presented ideal of A since A is a
coherent ring, so Kerv is a finitely generated A-module (by a sequence (1))
and hence Keru = Kerv ▷◁f

n

Jn is a finitely generated (A ▷◁f J)-module
(by lemma 2.4 (1)). Therefore, N is a finitely presented (A ▷◁f J)-module by a
sequence (2) and hence f−1{J}×{0} is a coherent A ▷◁f J-module, to complete
the proof of Lemma 2.5. □
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Lemma 2.6. Let f : A → B be a ring homomorphism, and J be an ideal of B.
If A ▷◁f J is a coherent ring and J is a regular ideal of f(A) + J , then f−1(J)
is a finitely generated ideal of A.

Proof. Assume that A ▷◁f J is a coherent ring and J contains a regular element
k. Set c = (0, k) ∈ A ▷◁f J . One can easily check that:

(0 : c) = {(a, f(a) + j) ∈ A ▷◁f J⧸(a, f(a) + j)(0, k) = 0}
= {(a, f(a) + j) ∈ A ▷◁f J⧸(f(a) + j)k = 0}
= {(a, f(a) + j) ∈ A ▷◁f J⧸f(a) + j = 0}
= {(a, 0) ∈ A ▷◁f J⧸a ∈ f−1{J}}
= f−1{J} × {0}.

Since A ▷◁f J is a coherent ring, then (0 : c) = f−1{J} × {0} is a finitely
generated ideal of A ▷◁f J . Therefore, f−1{J} is a finitely generated ideal of
A, as desired. □

Proof of Theorem 2.2

Proof. (1) If A ▷◁f J is a coherent ring, then A is a coherent ring by [15,
Theorem 4.1.5] since A is a module retract of A ▷◁f J .

(2) Assume that J and f−1(J) are finitely generated ideals of f(A)+J and
A respectively. Then A and f(A) + J are coherent rings since A ▷◁f J is a
coherent ring (by Theorem 2.2 (1) and Lemma 2.3 (2)). Conversely, assume

that A and f(A)+J are coherent rings. Since A▷◁fJ
f−1{J}×{0}

∼= f(A)+J , f(A)+J

is a coherent ring and f−1{J} × {0} is a coherent A ▷◁f J-module (by Lemma
2.5), then A ▷◁f J is a coherent ring (by [15, Theorem 2.4.1]).

(3) Follows immediately from Theorem 2.2 (2) and Lemma 2.6. This com-
pletes the proof of the main Theorem. □

The following Corollary is an immediate consequence of Theorem 2.2 (3).

Corollary 2.7. Let f : A → B be a ring homomorphism, B be an integral
domain and let J be a proper and finitely generated ideal of f(A) + J . Then
A ▷◁f J is a coherent ring if and only if A and f(A)+J are coherent rings and
f−1(J) is a finitely generated ideal of A.

The Corollary below follows immediately from Theorem 2.2 (2) which ex-
amines the case of the amalgamated duplication.

Corollary 2.8. Let A be a ring and I be a proper ideal of A.

(1) If A ▷◁ I is a coherent ring, then so is A.
(2) Assume that I is a finitely generated ideal of A. Then A ▷◁ I is a

coherent ring if and only if A is a coherent ring.

The next Corollary is an immediate consequence of Theorem 2.2 (2).
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Corollary 2.9. Let A be a ring, I be an ideal of A, B := A
I , and let f : A → B

be the canonical homomorphism (f(x) = x).

(1) Assume that J and f−1(J) are finitely generated ideals of B and A
respectively. Then A ▷◁f J is a coherent ring if and only if A and B
are coherent rings.

(2) Assume that J is a regular finitely generated ideal of B. Then A ▷◁f J
is a coherent ring if and only if A and B are coherent rings and f−1(J)
is a finitely generated ideal of A.

The aforementioned result enriches the literature with new examples of co-
herent rings which are non-Noetherian rings.

Example 2.10. Let A be a non-Noetherian coherent ring, I be a finitely gen-
erated ideal of A, f : A → B(= A

I ) be the canonical homomorphism, and let J

be a finitely generated ideal of A. Then A ▷◁f J is a non-Noetherian coherent
ring.

Proof. By Corollary 2.9, A ▷◁f J is a coherent ring since A and B are both
coherent rings and J is a finitely generated ideal of A. On the other hand,
A ▷◁f J is a non-Noetherian ring by [6, Proposition 5.6, p. 167] since A is a
non-Noetherian ring. □

Example 2.11. Let A := Z+XQ[X], where Z is the ring of integers, and Q
is the field of rational numbers. Let I := XQ[X], B := A

I (
∼= Z), f : A → B be

the canonical homomorphism and let J be a nonzero ideal of B. Then A ▷◁f J
is a non-Noetherian coherent ring.

Proof. By Corollary 2.9, A ▷◁f J is a coherent ring since A and B are both
coherent rings and J (resp., f−1(J) = n0Z+XQ[X] for some positive integer
n0) is a finitely generated ideal of B (resp., A). On the other hand, A ▷◁f J is a
non-Noetherian ring by [6, Proposition 5.6, p. 167] since A is a non-Noetherian
ring. □
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