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Abstract. A set W ⊆ V (G) is called a resolving set for G, if for each
two distinct vertices u, v ∈ V (G) there exists w ∈ W such that d(u,w) ̸=
d(v, w), where d(x, y) is the distance between the vertices x and y. The
minimum cardinality of a resolving set forG is called the metric dimension
of G, and denoted by dim(G). In this paper, it is proved that in a
connected graph G of order n which has a cycle, dim(G) ≤ n− g(G) + 2,

where g(G) is the length of the shortest cycle in G, and the equality holds
if and only if G is a cycle, a complete graph or a complete bipartite graph
Ks,t, s, t ≥ 2.
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1. Introduction

Throughout the paper, G is a finite, simple, and connected graph of order n
with vertex set V and edge set E. The distance between two vertices u and v,
denoted by d(u, v), is the length of ¡the¿ shortest path between u and v in G.
The diameter of G, denoted by diam(G) is max{d(u, v) : u, v ∈ V }. The degree
of a vertex v, deg(v), is the number of its neighbors. The notations ∼ and ≁
denote the adjacency and non-adjacency relations, respectively. The notations
Pn = (v1, v2, . . . , vn) and Cn = (v1, v2, . . . , vn, v1) are used for the path and the
cycle of order n, respectively. The number of edges in a cycle is its length. If
G has a cycle, then the length of the shortest cycle in G is called the girth of G
and denoted by g(G). For a subset S of V (G), G \ S is the induced subgraph
⟨V (G) \ S⟩. A vertex v ∈ V (G) is a cut vertex in G if G \ {v} has at least
two components. If G ̸= K2 has no cut vertex, then G is called a 2-connected
graph.

For an ordered set W = {w1, w2, . . . , wk} ⊆ V (G) and a vertex v of G, the
k-vector

r(v|W ) := (d(v, w1), d(v, w2), . . . , d(v, wk))
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is called the metric representation of v with respect to W . The set W is called a
resolving set for G if distinct vertices have different representations. A resolving
set for G with minimum cardinality is called a metric basis, and its cardinality
is the metric dimension of G, denoted by dim(G). It is obvious that to see
whether a given set W is a resolving set, it is sufficient to consider the vertices
in V (G)\W , because w ∈ W is the unique vertex of G for which d(w,w) = 0.

In [14], Slater introduced the idea of a resolving set and used a locating set
and the location number for a resolving set and the metric dimension, respec-
tively. He described the usefulness of these concepts when working with U.S.
Sonar and Coast Guard Loran stations. Independently, Harary and Melter [8]
discovered the concept of the location number as well and called it the metric
dimension. For more results related to these concepts see [3–5, 7, 10, 11]. The
concept of a resolving set has various applications in diverse areas including
coin weighing problems [13], network discovery and verification [2], robot nav-
igation [11], mastermind game [4], problems of pattern recognition and image
processing [12], and combinatorial search and optimization [13].

Chartrand et al. ‘ [6]’ obtained the following bound for the metric dimension
in terms of the order and the diameter.
Theorem 1.1. ‘ [6]’ If G is a connected graph of order n, then dim(G) ≤
n− diam(G).

Ten years later, Hernando et al. [9] characterized all graphs G of order n
and metric dimension n− diam(G). Also, Bagheri et al. [1] provided an upper
bound for dim(G) in terms of the domination number and order of G and
characterized all graphs that attain this bound. The main goal of this paper is
to prove that for a connected graph G of order n and girth g(G)

dim(G) ≤ n− g(G) + 2

and characterize all graphs such that this bound is tight for them. In fact, it is
proved that cycles, complete and complete bipartite graphs are all graphs with
dim(G) = n− g(G) + 2. To prove the main results the following known results
are needed. It is obvious that for a graph G of order n, 1 ≤ dim(G) ≤ n − 1.
Chartrand et al. [6] characterized all graphs of order n and metric dimension
n− 1.

Theorem 1.2. [6] Let G be a graph of order n. Then dim(G) = n− 1 if and
only if G = Kn.

They also characterized all graphs of order n and metric dimension n− 2.

Theorem 1.3. [6] Let G be a graph of order n ≥ 4. Then dim(G) = n − 2
if and only if G = Ks,t (s, t ≥ 1), G = Ks ∨ Kt (s ≥ 1, t ≥ 2), or G =
Ks ∨ (Kt ∪K1) (s, t ≥ 1).

The following definition is needed to state some results in the next section.
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Definition 1.4. An ear of a graph G is a maximal path whose internal ver-
tices are of degree 2 in G. An ear decomposition of G is a decomposition
G0, G1, . . . , Gk such that G0 is a cycle and for each i, 1 ≤ i ≤ k, Gi is an ear
of G0 ∪G1 ∪ . . . ∪Gi.

Whitney [15] proved the following important characterization for 2-connected
graphs.

Theorem 1.5. [15] A graph is 2-connected if and only if it has an ear decom-
position. Moreover, every cycle in a 2-connected graph is the initial cycle in
some ear decomposition.

2. Main results

The aim of this section is to find an upper bound for the metric dimension
in terms of the order and the girth of a graph and to characterize all graphs
which attain this bound. This bound is presented in the next theorem.

Theorem 2.1. Let G be a graph of order n. If G has a cycle, then dim(G) ≤
n− g(G) + 2.

Proof. Let g(G) = g and Cg = (v1, v2, . . . , vg, v1) be a shortest cycle in G.
Since {v1, v2} is a metric basis of Cg, V (G) \ {v3, . . . , vg} is a resolving set for
G of size n− g(G) + 2. Therefore, dim(G) ≤ n− g(G) + 2. □

There are several families that the bound n− g(G) + 2 is much better than
the bound in Theorem 1.1 for their metric dimension. The trivial example is a
cycle. Also, Moore graphs have diameter d and girth 2d+ 1, hence

n− g(G) + 2 = n− 2d+ 1 ≤ n− d.

Note that, dim(Kn) = n− 1 = n− g(Kn) + 2, dim(Cn) = 2 = n− g(Cn) + 2,
and for r, s ≥ 2, dim(Kr,s) = r+ s− 2 = n− g(Kr,s)+2. Therefore, the bound
in Theorem 2.1 is tight for these graphs. In the remainder of this section, it is
proved that these are all graphs that this bound is tight for them. First some
required results are presented.

Proposition 2.2. Let v be a cut vertex in a graph G. Then each resolving
set for G is disjoint from at most one component of G \ {v}. Moreover, if W
is a resolving set for G which is not disjoint from at least two components of
G \ {v}, then W \ {v} is a resolving set for G.

Proof. Let H and K be two components of G \ {v} and W be a resolving set
for G. If W ∩ V (H) = W ∩ V (K) = ∅, then let x ∈ V (H) and y ∈ V (K) such
that x ∼ v and y ∼ v. Therefore, for each w ∈ W ,

d(x,w) = d(x, v) + d(v, w) = 1 + d(v, w) = d(y, v) + d(v, w) = d(y, w),

which contradicts the assumption that W is a resolving set for G. Thus W is
disjoint from at most one component of G \ {v}.
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To prove the secound part, let h ∈ W ∩V (H) and k ∈ W ∩V (K). If W \{v}
is not a resolving set for G, then there exist vertices a, b ∈ V (G) such that
d(a, v) ̸= d(b, v) and for each w ∈ W \ {v}, d(a,w) = d(b, w).
If a, b /∈ V (H), then

d(a, h) = d(a, v) + d(v, h) ̸= d(b, v) + d(v, h) = d(b, h).

This gives d(a, h) ̸= d(b, h), which is a contradiction.
If a ∈ V (H) and b /∈ V (H), then

d(b, v) + d(v, h) = d(b, h) = d(a, h) ≤ d(a, v) + d(v, h).

Hence d(b, v) < d(a, v), because d(a, v) ̸= d(b, v). On the other hand,

d(a, v) + d(v, k) = d(a, k) = d(b, k) ≤ d(a, v) + d(v, k).

Therefore d(a, v) < d(b, v), which is impossible.
If a, b ∈ V (H), then

d(a, k) = d(a, v) + d(v, k) ̸= d(b, v) + d(v, k) = d(b, k),

¡t¿hat is d(a, k) ̸= d(b, k). These contradictions imply thatW \{v} is a resolving
set for G. □

Corollary 2.3. Let u be a vertex of degree 1 in a graph G and v be the neighbour
of u. If W is a resolving set for G, then (W ∪ {u}) \ {v} is also a resolving set
for G.

Proof. Let W be a resolving set for G. Clearly W ∪ {u} is also a resolving
set for G. Note that v is a cut vertex of G and ⟨{u}⟩ is a component of
G \ {v}. If W ∩ (V (G) \ {u, v}) ̸= ∅, then by Proposition 2.2, (W ∪ {u}) \ {v}
is also a resolving set for G. If W ⊆ {u, v}, then by Proposition 2.2, G \ {v}
has exactly two components. On the other hand, for each x ∈ V (G) \ {u},
r(x|{u, v}) = (a, a − 1), for some integer a ≥ 1. Since {u, v} is a resolving
set for G, the first coordinates of the metric representation of all vertices in
V (G) \ {u} are different from each other. Therefore, {u} = (W ∪ {u}) \ {v} is
also a resolving set for G. □

The following proposition states that all graphs G of order n with metric
dimension n− g(G) + 2 are 2-connected.

Proposition 2.4. Let G be a graph of order n which has a cycle. If dim(G) =
n− g(G) + 2, then G is 2-connected.

Proof. Suppose on the contrary, that v is a cut vertex of G. Let Cg =
(v1, v2, . . . , vg, v1) be the shortest cycle in G. Since v is a cut vertex, there
exists a component H of G \ {v}, such that V (Cg) ⊆ V (H) ∪ {v}. Since every
pair of adjacent vertices is a basis in a cycle, W = V (G) \ {v3, . . . , vg} is ¡a¿
resolving set for G of size dim(G). Note that, W intersects at least two compo-
nents of G\{v}. Therefore, by Proposition 2.2, W \{v} is a resolving set for G
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and hence v /∈ W ; otherwise |W \ {v}| = dim(G) − 1. Thus, v ∈ {v3, . . . , vg},
say v = vi, 3 ≤ i ≤ g. But B = V (G) \ {v1, . . . , vi−2, vi+1, . . . , vg} is a basis
of G which contains v = vi and intersects at least two components of G \ {v}.
Thus, by Proposition 2.2, B \ {v} is a resolving set for G of size smaller than
dim(G). This contradiction implies that G is a 2-connected graph. □
Theorem 2.5. Let G be a graph of order n which has a cycle. Then dim(G) =
n − g(G) + 2 if and only if G is a cycle Cn, complete graph Kn, n ≥ 3, or
complete bipartite graph, Kr,s, r, s ≥ 2.

Proof. It is easy to see that if G is a cycle Cn, complete graph Kn, n ≥ 3, or
complete bipartite graph, Kr,s, r, s ≥ 2, then dim(G) = n− g(G) + 2. Now let
dim(G) = n− g(G)+ 2 and Cg = (v1, v2, . . . , vg, v1) be the shortest cycle in G.
By Proposition 2.4, G is a 2-connected graph. Therefore, by Theorem 1.5, G
has an ear decomposition with initial cycle Cg. Assume that Cg, G1, G2, . . . , Gk

be an ear decomposition of G with initial cycle Cg. If G = Cg, then G is a
cycle. If G ̸= Cg and G1 = (x0, x1, . . . , xt), then x0, xt ∈ V (Cg). We claim
that in this case g ≤ 4.

Without loss of generality one can assume that x0 = vi and xt = vj , where
1 ≤ i < j ≤ g. Since Cg is a shortest cycle in G, j − i ≤ t and g + i− j ≤ t. If
t ≤ 2, then j − i ≤ 2 and g + i− j ≤ 2. Thus g ≤ 4.

If t ≥ 3, then the set

W = V (G) \ {x2, v1, v2, . . . , vi−1, vi+2, . . . , vg}
is not a resolving set for G, because |W | = dim(G)− 1. Therefore, there exist
vertices a, b ∈ V (G) \ W such that r(a|W ) = r(b|W ). Since {vi, vi+1} is a
basis for Cg and the distances in Cg and G are the same, W ∩ V (Cg) resolves
Cg. Consequently, x2 ∈ {a, b}, say x2 = a, and b ∈ V (Cg) \ {vi, vi+1}. Hence,
d(b, x1) = d(a, x1) = 1, because x1 ∈ W . Note that x1 is adjacent to vertices
x0, x2 and b. Since b /∈ {x0, x2}, x1 is of degree at least 3 in Cg ∪G1. Thus x1

is adjacent to at least two vertices of Cg, say vi and vr. Therefore d(vi, vr) ≤ 2.
Since Cg is a shortest cycle and x1 is not on Cg, g ≤ 4.

If g = 3, then dim(G) = n − 3 + 2 = n − 1 and by Theorem 1.2, G = Kn.
If g = 4, then dim(G) = n − 4 + 2 = n − 2 and by Theorem 1.3, G is Kr,s,

Kr ∨Ks, or Kr ∨ (Ks ∪K1). But Kr,s, r, s ≥ 2 is the only graph among these
graphs whose girth is 4. □
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