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2 Almeida
ertain re
ursively enumerable set of �nite semigroups, solving the mem-bership problem in the pseudovariety it generates, that is given a �nitesemigroup, to determine whether it is a homomorphi
 image of some sub-semigroup of some �nite dire
t produ
t of members of the set. While,even for some naturally 
onstru
ted sets it is known that the answer isnegative, there are many positive examples, and even 
lasses of exampleswhi
h 
an be treated more or less uniformly.In the following se
tions, we introdu
e and motivate more extensivelythe general problem, the pro�nite method, and how it has been used toobtain positive results. This survey is meant as a qui
k introdu
tion tothe subje
t and not as an exhaustive 
overage of results to date. As thisarea of resear
h is quite a
tive, perhaps it is does not even make senseto try to elaborate an exhaustive survey, as it will probably already beoutdated at the time it is made available. It is hoped that, nevertheless,it will be of use both to resear
hers with an interest in the area as wellto those already initiated or even parti
ipating in the joint endeavor ofdevelopment of the subje
t.The reader seaking further details and bibliography on the subje
t isreferred to the books [44, 4℄, respe
tively for an elementary and moreadvan
ed introdu
tions to the theory of pseudovarieties and its appli
a-tions. For the pro�nite approa
h, see [19, 64, 18, 10, 9, 50℄. More spe
i�
referen
es will be given in the remainder of the text.2. Semigroups via automataFinite automata 
an be viewed as simple re
ognition devi
es for for-mal languages. In this paper, A will always denote a �nite alphabet, thatis a �nite set whose members are 
alled letters. The set of all �nite wordson the alphabet A is denoted A∗. By a word we simply mean a �nite se-quen
e of letters, normally written 
onse
utively, in the form a1a2 · · · an.We in
lude in A∗ the empty sequen
e, denoted 1. Under the operationof 
on
atenation of sequen
es, a1 · · · am · b1 · · · bn = a1 · · · anb1 · · · bn, theset A∗ is the free monoid on the set A in the sense that every mappingfrom A∗ to a monoid M extends uniquely to a homomorphism A→M .The set A∗ \{1} is denoted A+ and is similarly the free semigroup on A.By an A-automaton, we mean a �nite dire
ted (multi)graph whoseedges are labeled by the elements of A and whose verti
es are 
alled



De
idability and tameness in the theory of �nite semigroups 3states, in whi
h subsets of initial and �nal states are distinguished. Thelanguage re
ognized by su
h an automaton A is the set L(A) of all wordswhi
h are obtained by 
on
atenating the su

essive labels of the edges insome (dire
ted) path from an initial to a terminal state. An automatonis 
alled deterministi
 if it has a unique initial state and there are no twoedges leaving from the same state with the same label. An A-automatonis 
omplete if, for every state q and every letter a ∈ A there is an outgoingedge from q labeled a.For example, 
onsider the {a, b}-automaton des
ribed by the followingdiagram
1 2

a

bwhere an in
oming arrow whi
h does not start at a state means that thestate where it ends is an initial state and dually for terminal states. Thelanguage re
ognized by it is L = (ab)∗a, where, in general, with an abuseof notation whi
h pervades the literature, for a language K ⊆ A∗, K∗denotes the submonoid of A∗ generated by K. Similarly, for K ⊆ A+,
K+ denotes the subsemigroup of A+ generated by L. In other words,in our example, L 
onsists of all words alternating a's and b's, whi
hstart and end with a. The automaton in this example is minimum in thesense that it is the unique (up to isomorphism) deterministi
 (perhapsin
omplete) automaton re
ognizing L with a minimum number of states.Note that, if Q is the set of states of an A-automaton A, then ea
hletter de�nes a binary relation on the set Q whose members are the pairs
(p, q) su
h that there is an edge from p to q labeled a. The mapping thusde�ned extends uniquely to a homomorphism ϕ : A+ → BQ into thesemigroup of binary relations on Q, under the 
omposition of relations.The image ϕ(A+) is 
alled the transition semigroup of A and denoted
T (A). In 
ase A is deterministi
, the a
tion of the alphabet A on Q is bypartial transformations. If, further, the automaton is 
omplete then thea
tion is by full transformations. In 
ase A is deterministi
, the language
L(A) 
onsists pre
isely of those transformations whi
h map the uniqueinitial state to some �nal state. In parti
ular, L(A) = ϕ−1ϕ(L(A)), aproperty that is expressed by saying that the homomorphism ϕ re
og-nizes L. If A is the minimum automaton of the language L then therelation kerϕ = {(u, v) : u, v ∈ A+, ϕ(u) = ϕ(v)} is the largest 
on-gruen
e on A+ whi
h saturates L, in the sense that L is a union of its



4 Almeida
lasses. The transition semigroup T (A) ≃ A+/ kerϕ is then the unique(up to isomorphism) smallest semigroup S for whi
h there exists a ho-momorphism ψ : A+ → S that re
ognizes L. It is 
alled the synta
ti
semigroup of the language L and it is denoted Synt(L). In general, givenan automaton re
ognizing a 
ertain language, one may apply the powerset 
onstru
tion to determinize the automaton and then a minimizationpro
edure to 
ompute the minimum automaton of the language. Hen
e,the synta
ti
 semigroup of su
h a language is e�e
tively 
omputable.Kleene proved in 1956 that a language is re
ognized by some (�nite)
A-automaton if and only if it may be expressed in terms of the languages
∅ and {a} (a ∈ A) by using only the operations _∪_ , _·_ , and _+ [35℄.Su
h an expression is 
alled a rational expression for the language, whi
hin 
ase it admits one is 
alled a rational language. The above dis
ussionshows that every rational language is re
ognized by a homomorphismonto a �nite semigroup. The 
onverse is easily established by 
onsideringthe Cayley graph of the semigroup with respe
t to the alphabet.Two remarkable examples of appli
ation of the synta
ti
 semigroupare the following two theorems. We say that a semigroup S is aperiodi
if all its subgroups (that is subsemigroups whi
h are groups) are trivial.Theorem 2.1 (S
hützenberger [54℄). A rational language L ⊆ A+ maybe expressed in terms of the languages ∅ and {a} (a ∈ A) by using onlythe operations _ ∪ _ , A+ \ _ , and _ · _ if and only if its synta
ti
semigroup is aperiodi
.By a subword of a word a1a2 · · · am we mean a word of the form
ai1 · · · air , with 1 ≤ i1 < · · · < ir ≤ m and r ≥ 0. Call a language
L ⊆ A+ pie
ewise testable if there exists a positive integer n and a set
P su
h that a word belongs to L if and only if all its subwords of lengthat most n belong to P .Say that two elements s and t of a semigroup S are J-equivalent (in S),and write s J t if they are fa
tors of ea
h other. Similarly, we write s R tif s and t are left fa
tors of ea
h other and s L t if s and t are rightfa
tors of ea
h other.Theorem 2.2 (Simon [55℄). A rational language L ⊆ A+ is pie
ewisetestable if and only if its synta
ti
 semigroup is J-trivial.



De
idability and tameness in the theory of �nite semigroups 5These two results translate 
ombinatorial�expressability�problems
on
erning rational languages to algebrai
 properties of their synta
ti
semigroups. While testing dire
tly whether a given rational languagehas su
h a property seems a daunting task, the properties in question ofthe synta
ti
 semigroups are easily tested on
e the synta
ti
 semigrouphas been 
omputed, although there are some 
omplexity issues relatedwith the fa
t that in general the minimum automaton may be mu
h(exponentially) smaller than the synta
ti
 semigroup [58℄.Eilenberg [29℄ gave the general framework (whi
h is not to be 
onfusedwith a generalization) for su
h results that we pro
eed to des
ribe.A pseudovariety (of �nite semigroups) is a 
lass V of �nite semigroupsthat is 
losed under taking homomorphi
 images, subsemigroups, and�nite dire
t produ
ts. We in
lude the empty produ
t {1} =
∏

∅, sothat pseudovarieties are ne
essarily nonempty 
lasses. For example, the
lass G of all �nite groups, the 
lass A of all �nite aperiodi
 semigroups,the 
lass J of all �nite J-trivial semigroups, and the 
lass R of all �nite
R-trivial semigroups, are pseudovarieties.A variety of rational languages is a 
orresponden
e V whi
h asso
iateswith ea
h �nite alphabet A a Boolean algebra V(A) of languages over Asu
h that:(1) if L ∈ V(A) and a ∈ A then the languages

a−1L = {w ∈ A+ : aw ∈ L} and La−1 = {w ∈ A+ : wa ∈ L}also belong to V(A);(2) if ϕ : A+ → B+ is a homomorphism and L ∈ V(B), then
ϕ−1(L) ∈ V(A).For example, the 
orresponden
es that asso
iate with ea
h �nite alpha-bet A the set of all languages L ⊆ A+ whi
h admit a +-free expression(that is an expression as in Theorem 2.1) or whi
h are pie
ewise testableare varieties of rational languages.Theorem 2.3 (Eilenberg [29℄). Consider the 
orresponden
e that as-so
iates with ea
h pseudovariety V the variety of rational languages Vsu
h that, for a �nite alphabet A and L ⊆ A+, L ∈ V(A) if and only if

Synt(L) ∈ V. It is a bije
tion between the sets of all pseudovarieties of�nite semigroups and all varieties of rational languages.



6 AlmeidaThere have been many extensions of this result to various 
ontexts andin di�erent dire
tions. The interested reader should do a bibliographi
sear
h with the keywords Eilenberg and 
orresponden
e.Naturally, Eilenberg's 
orresponden
e also provides a translation ofoperators on varieties of rational languages to operators on pseudovari-eties of �nite semigroups. Among su
h operators, on either side, deserveparti
ular attention those that derive from natural 
onstru
tions, be iton automata, languages or semigroups. For example, the parallel 
ompo-sition of automata 
orresponds to taking the smallest variety of rationallanguages 
ontaining two given su
h varieties (whi
h is 
alled their join).On the semigroup side, we have the 
onstru
tion of the dire
t produ
twhi
h leads similarly to the join ∨ in the latti
e of pseudovarieties of�nite semigroups.The 
as
ade 
omposition of automata is similarly asso
iated with thesemidire
t produ
t of �nite semigroups and of their pseudovarieties. Thesemidire
t produ
t V ∗ W of two pseudovarieties V and W is the pseu-dovariety generated by (that is the smallest 
ontaining) all semidire
tprodu
ts of the form S ∗ T , with S ∈ V and T ∈ W. The semidi-re
t produ
t on pseudovarieties turns out to be an asso
iative operation(see [4, Se
tion 10.1℄). For a pseudovariety V, we write Vn for the n-foldsemidire
t produ
t in whi
h all fa
tors are V.Performing substitutions in rational languages is in turn asso
iatedwith the 
onstru
tion of the semigroup P(S) of subsets of a given semi-group S, in whi
h the produ
t of two subsets X and Y is given by
XY = {xy : x ∈ X, y ∈ Y }. The 
orresponding operator on pseudova-rieties is known as the power operator. It asso
iates with ea
h pseudova-riety V the pseudovariety PV generated by all semigroups of the form
P(S) with S ∈ V. See [44, 4℄.Certain naturally de�ned hierar
hies of rational languages also moti-vate strongly the study of the Mal'
ev produ
t V©m W, whi
h is de�nedto be the pseudovariety generated by all �nite semigroups S for whi
hthere exists a homomorphism ϕ : S → T into some semigroup T ∈ Wsu
h that ϕ−1(e) ∈ V for every idempotent e ∈ T .Note that all the above examples of operators on pseudovarieties arede�ned in terms of generators. This raises the 
entral de
ision problemfor a pseudovariety V, namely the membership problem:Given a �nite semigroup S, determine whether S ∈ V.We say that a pseudovariety is de
idable if its membership problem ad-mits an algorithmi
 solution.



De
idability and tameness in the theory of �nite semigroups 7It turns out that none of the above operators on pseudovarieties pre-serves de
idability [1, 23℄. Yet, in many useful instan
es, one obtainsde
idable pseudovarieties. This raises the question of whether one 
an�nd fairly general 
onditions under whi
h a pseudovariety that is ob-tained by applying the natural operators is de
idable.Here are a 
ouple of examples of spe
i�
 open problems of our generalkind.
• Krohn and Rhodes [38℄ proved that every �nite semigroup divides(that is, it is a homomorphi
 image of a subsemigroup of) an al-ternating wreath produ
t of �nite permutation groups and �niteaperiodi
 transformation semigroups. The minimum number ofgroup fa
tors is 
alled the Krohn-Rhodes 
omplexity of the �nitesemigroup. In terms of pseudovarieties, the 
omplexity of S isthe least n ≥ 0 su
h that S ∈ A ∗ (G ∗A)n. Is the Krohn-Rhodes
omplexity 
omputable? This is equivalent to asking whetherea
h of the pseudovarieties A ∗ (G ∗ A)n is de
idable.
• It turns out that PJ is the pseudovariety 
orresponding to thelevel two of the Straubing-Thérien (
on
atenation) hierar
hy of

+-free rational languages (see [46℄). Is PJ de
idable?
3. Pro�nite semigroupsA topologi
al semigroup is a semigroup S endowed with a topologysu
h that the basi
 semigroup multipli
ation S × S → S is 
ontinuous.A 
ompa
t semigroup is a topologi
al semigroup in whi
h the topology is
ompa
t, a property in whi
h we in
lude the Hausdor� separation axiom.In parti
ular, �nite semigroups are viewed as 
ompa
t semigroups underthe dis
rete topology.We say that a topologi
al semigroup S is A-generated if a mapping

ϕ : A→ S is given su
h that ϕ(A) generates a dense subsemigroup of S.Given a 
lass C of topologi
al semigroups, we say that a semigroup Sis residually in C if, for every two distin
t points s, t ∈ S, there existsa 
ontinuous homomorphism ϕ : S → T into some member T ∈ C su
hthat ϕ(s) 6= ϕ(t). In 
ase C is the 
lass of all �nite semigroups, we thensimply say that S is residually �nite.



8 AlmeidaA pro�nite semigroup is a 
ompa
t semigroup whi
h is residually �-nite. Equivalently, a pro�nite semigroup is a 
ompa
t totally dis
on-ne
ted semigroup [43℄. More generally, if V is a pseudovariety of �nitesemigroups, then by a pro-V semigroup we mean a 
ompa
t semigroupwhi
h is residually in V. Equivalently, a pro-V semigroup is a proje
tive(or inverse) limit of semigroups from V.Considering only representatives up to isomorphism, the A-generatedsemigroups from V form a dire
ted system, where ϕ : A → S is largerthan ψ : A→ T if there exists a homomorphism (whi
h must be unique)
h : S → T su
h that h ◦ ϕ = ψ. The proje
tive limit of this system isdenoted ΩAV and is the most general A-generated pro-V semigroup, inthe sense that it 
omes naturally equipped with a generating mapping
ι : A→ ΩAV and, for every mapping ϕ : A→ S into a pro-V semigroup
S, there exists a unique 
ontinuous homomorphism ϕ̂ : ΩAV → S su
hthat the following diagram 
ommutes:

A
ι //

ϕ
!!C

C

C

C

C

C

C

C

C

ΩAV

ϕ̂

��
SFor this reason, ΩAV is 
alled the free pro-V semigroup on A.The above diagram suggests a way of de�ning a natural interpretationof ea
h w ∈ ΩAV as an A-ary operation wS : SA → S: given an argument

ϕ ∈ SA, that is a fun
tion ϕ : A → S, de�ne wS(ϕ) = ϕ̂(w). Thisinterpretation is easily seen to 
ommute with 
ontinuous homomorphismsbetween pro-V semigroups h : S → T in the sense that the followingdiagram 
ommutes:
SA

wS //

h◦_
��

S

h

��

TA
wT // TOperations with this property are 
alled A-ary impli
it operations. One
an show that they are all obtained by natural interpretation of membersof ΩAV. Sin
e pro-V semigroups are proje
tive limits of semigroupsfrom V, ea
h w ∈ ΩAV is 
ompletely determined by the impli
it operation

(wS)S∈V.Given a �nite semigroup S, s ∈ S, and k ∈ Z, the sequen
e (sn!+k)n,whi
h is only de�ned for n su�
iently large, is eventually 
onstant, that



De
idability and tameness in the theory of �nite semigroups 9is it 
onverges in S. It follows that, if instead S is a pro�nite semigroup,then the sequen
e still 
onverges. The limit is denoted sω+k. In parti
-ular, sω = sω+0 is an idempotent, and sω−1 is the inverse of sω+1 in themaximal subgroup of S 
ontaining sω. Here are some properties of theseoperations:
• if k > ℓ then sω+k = sω+ℓsk−ℓ;
• sω+ksω+ℓ = sω+k+ℓ;
• (sω+k)ω+ℓ = sω+kℓ;
• if k > 0 then (sω−1)k = sω−k.Let S be the pseudovariety of all �nite semigroups. If A = {a}, then

aω+k is a well-de�ned element of ΩAS and therefore determines a unaryimpli
it operation. It is an easy exer
ise to show that the 
orresponden
e
s 7→ sω+k is pre
isely the interpretation of this impli
it operation onea
h pro�nite semigroup. Elements of ΩAS are sometimes also 
alledpro�nite words or pseudowords sin
e A+ embeds naturally in ΩAS as adense subsemigroup.A pseudoidentity is a formal equality u = v with u and v in some ΩAS.We say that a pro�nite semigroup S satis�es the pseudoidentity u = vand write S |= u = v if uS = vS . For a set Σ of pseudoidentities, denoteby [[Σ]] the 
lass of all �nite semigroups whi
h satisfy all pseudoidentitiesfrom Σ. It is immediate to show that su
h a 
lass is a pseudovariety andReiterman [49℄ proved that every pseudovariety is of this form. In otherwords, pseudovarieties may always be des
ribed by some set of de�ningpseudoidentities, also known as a basis of pseudoidentities. Here are someexamples of bases of pseudoidentities:

G = [[xω = 1]] (as an abbreviation of xωy = yxω = y)
A = [[xω+1 = xω]]

J = [[(xy)ω+1 = (yx)ω]]More examples of impli
it operations may be obtained using the fol-lowing result from [10℄. Re
all that, for a topologi
al spa
e X, on afun
tion spa
e S ⊆ XX , there are several natural topologies. The point-wise 
onvergen
e topology is the subspa
e topology of the produ
t spa
e
XX . The 
ompa
t-open topology has as basis of open sets the sets ofthe form {f ∈ S : f(K) ⊆ U}, where K ⊆ X is a 
ompa
t subset and
U ⊆ X is an open subset. In general, these two topologies are di�erent.



10 AlmeidaTheorem 3.1. If S is a �nitely generated pro�nite semigroup, then itsmonoid of 
ontinuous endomorphisms End(S) is a pro�nite semigroupwith respe
t to the pointwise 
onvergen
e topology, whi
h 
oin
ides withthe 
ompa
t-open topology, so that the evaluation mapping (f, s) 7→ f(s)is 
ontinuous.Let ϕ ∈ End(Ω{x}S) send x to xp. Then the impli
it operation xpω
=

ϕω(x) = limϕn!(x) = limxpn! may be used to de�ne the pseudovarietyof all �nite p-groups: Gp = [[xpω
= 1]].Let ϕ ∈ End(Ω{x,y}S) send x to [x, y] = xω−1yω−1xy and �x y. Then

[x, ωy] = ϕω(x) = limϕn!(x) = [x, n!y], where the iterated �
ommutator�is de�ned re
ursively by [x, 1y] = [x, y] and [x, n+1y] = [[x, ny], y]. Theimpli
it operation [x, ωy] may be used to de�ne the pseudovariety of all�nite nilpotent groups: Gnil = [[ [x, ωy] = 1]] [65℄.Let ϕ ∈ End(Ω{x,y}S) send x to xy and y to yx, that is the extensionof the usual Thue-Morse transformation to the pro�nite world. Then theimpli
it operation τ(x, y) = ϕω(x) is su
h that B(Gnil ∗ G2) = [[τ(x, y) =
τ(y, x)]] 
onsists of all �nite semigroups S su
h that(1) for every s ∈ S, there is at most one element t ∈ S su
h that

sts = s and tst = t;(2) every subgroup in S is an extension of a nilpotent group by a2-group.This follows from results of �ir²ov [63℄ (see [7℄).Let ϕ ∈ End(Ω{x,y,z}S) send x to [yxyω−1, zxzω−1] and �x y and z.Let w(x, y, z) = ϕω(x). Then Gsol = [[w(xω−2yω−1x, x, y) = 1]] is thepseudovariety of all �nite solvable groups [24℄. An alternative des
rip-tion of the same pseudovariety is as follows [25℄. Let ϕ ∈ End(Ω{x,y}S)send x to [yω−1xω−1y, x] and �x y. Let v(x, y) = ϕω(x). Then Gsol =
[[ v(x, y) = 1]]. 4. The role of pro�nite methodsAlthough pseudovarieties are de�ned by pseudoidentities, it is not
lear how to use them to obtain de
idability results. A di�
ulty in thisdire
tion is that the free pro�nite semigroup ΩAS is un
ountable evenfor |A| = 1. Yet many natural algebrai
 properties admit des
riptions



De
idability and tameness in the theory of �nite semigroups 11in terms of pseudoidentities whi
h involve only very simple elements of
ΩAS. In spite of the examples at the end of the pre
eding se
tion, mostoften one only uses elements of the subalgebra Ωκ

AS generated by A withrespe
t to the algebrai
 operations of multipli
ation and _ω−1.Here are some examples of results in this dire
tion. Even though thepseudovarieties J∨G and A∨ G are not �nitely based [62℄, the former isknown to be de
idable [12, 56℄, while for the latter this remains an openproblem. Both proofs of the de
idability result, whi
h follow similarlines, depend on two main ingredients: a stru
ture theorem for ΩAJ [2℄and a form of �tameness� for G [22℄. The sense of the word tameness inthis 
ontext is explained in Se
tion 5.Another famous result is the following: the pseudovariety PG is de-
idable. More pre
isely, it admits a simple algebrai
 
hara
terization,namely as the 
lass BG of all �nite semigroups S su
h that, for everyelement s, there exists at most one t ∈ S su
h that sts = s and tst = t.This 
ombines the work of several resear
hers [40, 31, 22℄. There areessentially no known general de
idability results 
on
erning the poweroperator.For the Mal'
ev produ
t, the following result is sometimes quite useful.Theorem 4.1 ([48℄). If V = [[Σ]] then V©m W is de�ned by the pseu-doidentities of the form u(w1, . . . , wn) = v(w1, . . . , wn) where the iden-tity u(x1, . . . , xn) = v(x1, . . . , xn) belongs to Σ, w1, . . . , wn ∈ ΩAS, and
W |= w1 = · · · = wn = w2

n.To test whether a given �nite semigroup S belongs to V©m W by usingthe basis of pseudoidentities given by Theorem 4.1 we need to be ableto �gure out for s1, . . . , sn ∈ S, and a given evaluation ϕ : A → S, ifthere is a solution modulo W (w1, . . . , wn) of the system of equations
x1 = · · · = xn = x2

n (that is W |= w1 = · · · = wn = w2
n) su
h that

ϕ̂(wi) = si (i = 1, . . . , n). More generally, for a 
lass of arbitary �nitesystems of equations, if there is an algorithm to solve this problem, thenwe say that W is hyperde
idable with respe
t to the 
lass in question.A general de
idability result about Mal'
ev produ
ts may now be easilyderived from Theorem 4.1.



12 AlmeidaTheorem 4.2. If V is de
idable and W is hyperde
idable with respe
tsystems of equations of the form x1 = · · · = xn = x2
n then V©m W isde
idable.There is a similar but in
omplete approa
h to semidire
t produ
ts,based on ideas of J. Rhodes (late 1960's), whi
h were developed andformalized by Tilson [61℄. Small 
ategories (and, more generally, semi-groupoids, 
ategories without the requirement of lo
al identities) areviewed as generalizations of monoids and semigroups. A similar theoryof pseudovarieties has been developed for su
h stru
tures. The pro�niteapproa
h also extends to this 
ontext, in
luding des
riptions by pseu-doidentities [33, 20℄. The variables in pseudoidentities must now 
omefrom a set with a non-trivial stru
ture, namely they are edges on a �nitedire
ted graph. The two sides of a pseudoidentity be
ome 
oterminalpro�nite paths over su
h a graph. A pseudovariety of semigroupoids has�nite vertex rank if it admits a basis of pseudoidentities for whi
h there isa bound on the number of verti
es of the �nite dire
ted graphs on whi
hthey are written; otherwise, we say that it has in�nite vertex rank.A semigroup S may be viewed as a semigroupoid with a single (virtual)vertex whose edges are the elements of S. The smallest pseudovarietyof semigroupoids 
ontaining a given pseudovariety V of semigroups is
alled the global of V and is denoted gV. The largest pseudovariety ofsemigroupoids whose semigroups are the members of a pseudovariety Vof semigroups 
onsists of all semigroupoids whose lo
al semigroups (thatis the semigroups of all loops at some vertex) belong to V; it is 
alled thelo
al of V and is denoted ℓV. A pseudovariety V of semigroups is lo
al if

gV = ℓV. Note that, if V = [[Σ]] is lo
al, then gV is also de�ned by thepseudoidentities from Σ, now viewed as pseudoidentities over one-vertexgraphs, be
ause su
h pseudoidentities 
learly de�ne ℓV.Many globals of pseudovarieties of semigroups have been 
omputed.Here is a sample of them.
• The pseudovarieties A, R, all nontrivial pseudovarieties V ⊆ G[59℄, DS [34℄, and DA [5℄, DG (announ
ed by J. Ka¤ourek, in2005) are all lo
al.
• For the trivial pseudovariety I = [[x = y]], we have

g I = [[x = y; •
x

++

y
33 • ]]
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onsist just of semigroupoids with only oneedge.
• For Com = [[xy = yx]],

gCom = [[xyz = zyx; •
x,z

++ •
y

kk ]] [60℄.
• The known proofs of the following result are 
onsidered quitedi�
ult:
gJ = [[(xy)ωxt(zt)ω = (xy)ω(zt)ω; •

x,z
++ •

y,t

kk ]] [36, 37, 3℄.
• For m ≥ 2 and k ≥ 1 (or k = ω), g [[xy = yx, xk+m = xm]] hasin�nite vertex rank [11℄.
• For n ≥ 1, g(A ∗ (G ∗ A)n

) has in�nite vertex rank [51℄.Ba
k to semidire
t produ
ts of pseudovarieties, for whose 
al
ulation
ategories, semigroupoids, and globals were �rst introdu
ed in the theoryof �nite semigroups, we have the following basis theorem. For a dire
tedgraph Γ, and an edge e ∈ Γ, we denote by α(e) and ω(e) respe
tivelythe start and end verti
es of e.Theorem 4.3 ([20℄). If gV = [[Σ]], where Σ is a set of semigroupoidpseudoidentities over �nite graphs with a uniform bound on the num-ber of verti
es then V ∗ W is de�ned by the pseudoidentities of the form
t u(w1, . . . , wn) = t v(w1, . . . , wn) su
h that the semigroupoid pseudoiden-tity (

u(x1, . . . , xn) = v(x1, . . . , xn); Γ
)belongs to Σ, '&%$ !"#p

u(x1,...,xn)
''

v(x1,...,xn)

77'&%$ !"#q , γ : Γ →

ΩAS is a 
ontinuous graph homomorphism, γ(xi) = wi, γ(p) = t, and
W |= γ(α(xi))wi = γ(ω(xi)).Just as in the 
ase of Mal'
ev produ
ts, one may then prove the fol-lowing result. The system of equations asso
iated with a �nite digraph
Γ takes the elements (verti
es and edges) of Γ as variables and has anequation xy = z for ea
h edge y from the vertex x to the vertex z.Theorem 4.4 ([6℄). If gV is de
idable and of �nite vertex rank, and
W is hyperde
idable with respe
t to systems of equations asso
iated with�nite graphs, then V ∗ W is de
idable.



14 AlmeidaThe need for the �nite vertex rank hypothesis in Theorem 4.4 
omingfrom the boundedness hypothesis of Theorem 4.3 is rather unfortunate,although no 
ounter-example is known to Theorem 4.3 with that hy-pothesis dropped. A re
ent more general basis theorem for whi
h no
ounterpart similar to Theorem 4.3 seems to have yet been found is thefollowing.Theorem 4.5 ([50℄). Let V and W be pseudovarieties of semigroups andlet gV = [[Σ]]. Then V ∗ W is de�ned by all pseudoidentities of the form
tu = tv over �nite alphabets A su
h that, for ea
h A-generated semigroup
T ∈ W, there exist (π = ρ; Γ) ∈ Σ, ��������p

π
**

ρ

44 ��������q , and a labeling γ : Γ → ΩASsu
h that γ(p) = t, γ̂(π) = u, γ̂(ρ) = v, and T |= γ(α(e))γ(e) = γ(ω(e)for every edge e ∈ Γ. 5. TamenessTo obtain a
tual algorithms for hyperde
idability is usually a veryhard task. Steinberg and the author [16, 17℄ suggested a di�erent ap-proa
h, namely to prove a stronger property! Indeed, the di�
ulty in abrute for
e approa
h is that there are too many (un
ountably many) 
an-didates for solutions modulo V of a given system of equations. Supposethat if there is a solution modulo V of a given �nite system of equa-tions in ΩAS, then there is also one in Ωσ
AS, where σ is some 
ountableimpli
it signature, meaning a set of impli
it operations whi
h in
ludesbinary multipli
ation. Then at least the above di�
ulty disappears. Andindeed one obtains a stronger property than hyperde
idability.We say that a pseudovariety V is (σ-)tame with respe
t to a 
lass Cof systems of equations if the following 
onditions hold:

• (σ-redu
ibility) for every system in C, over a �nite set X of vari-ables, and asso
iated 
lopen 
onstraints Kx ⊆ ΩAS (x ∈ X), ifthere is a solution X → ΩAS modulo V, then there is a solution
X → Ωσ

AS modulo V;
• V is re
ursively enumerable, meaning that there is some Tur-ing ma
hine whi
h outputs su

essively all representatives of theisomorphism 
lasses of members of V and nothing else;
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• the word problem for Ωσ

AV is algorithmi
ally solvable.We say that V is 
ompletely (σ-)tame if V is σ-tame with respe
t to the
lass of all �nite systems of equations in the signature σ.Among the properties that 
ompose tameness, redu
ibility is oftenthe most di�
ult to prove although sometimes the word problem is alsoquite 
ompli
ated. It is out of the s
ope of this survey to give a pre
iseidea of any nontrivial proof of tameness. We pro
eed rather to mentionsome important tameness resullts.
• The pseudovariety G is κ-tame with respe
t to systems of equa-tions asso
iated with �nite digraphs. This is a reformulation[16℄ of a 
elebrated theorem of Ash [22℄ whi
h has already beenmentioned several times in this survey. It follows from results ofCoulbois and Khélif [27℄ that G is not 
ompletely κ-tame.
• The pseudovariety J is 
ompletely κ-tame. This is trivial sin
e

J is κ-full (see Se
tion 6) and ΩAJ = Ωκ
AJ. A proof of hyper-de
idability of J whi
h does not depend on this fa
t and whi
ha
tually tries to exhibit a reasonable algorithm turns out to berather 
ompli
ated [21℄.

• The pseudovariety Gp is tame but not κ-tame [8℄. The author'sproof of this result, based on several other works [53, 39, 57℄, ledhim to explore 
onne
tions with dynami
al systems, the suitablesignature that has been found being a 
ountably in�nite signaturewhi
h is 
onstru
ted by iteration of impli
it operations.
• The pseudovariety LSl of all �nite semigroups S whose subsemi-groups of the form eSe, with e ∈ S idempotent, are 
ommutativeand 
onsist only of idempotents, is κ-tame [26℄.
• The pseudovariety R is 
ompletely κ-tame [13℄.It remains as open problems to �nd a signature with respe
t to whi
h

G is 
ompletely tame, and to determine whether A is 
ompletely κ-tame(the word problem for Ωκ
AA has been solved by M
Cammond [41℄ and

κ-tameness for A has been announ
ed by J. Rhodes in the late 1990'sbut remains unpublished). A more general question is whether V and
W both tame (with respe
t to some suitable signatures and 
lasses ofsystems of equations) implies that V ∗ W is also tame. Note that, sin
etameness, even with respe
t to the single equation x = y, implies de
id-ability, an a�rmative answer to this question would provide a solutionto the Krohn-Rhodes 
omplexity problem, provided A and G do have thesuitable tameness properties.



16 Almeida6. Computing 
losures of rational languagesWe introdu
e in this se
tion another related problem.One 
an easily show that the indu
ed topology on Ωσ
AV, as a subspa
eof ΩAV, is its pro-V topology, that is the smallest topology whi
h renders
ontinuous all homomorphisms of σ-algebras Ωσ

AV → S with S ∈ V.Given L ⊆ Ωσ
AV, denote by clσ,V(L) its 
losure in the pro-V topologyof Ωσ

AV. A general problem whi
h has shown to be rather importantin some instan
es is the following: given a rational subset L ⊆ Ωκ
AV,
ompute clσ,V(L), or at least de
ide whether a given w ∈ Ωσ

AV belongsto clσ,V(L). Often, A+ →֒ Ωκ
AV and L is just a rational language of A+.The histori
al sour
e of this question is the following. Given a �nitesemigroup S and an onto homomorphism ϕ : A+ → S, 
onsider the set

KG(S) of all s ∈ S su
h that, for every homomorphism ψ : A+ → G intoa �nite group G, s ∈ ϕ(ψ−1(1)). Then it is easy to show that S ∈ V©m Gif and only ifKG(S) ∈ V. An alternative 
hara
terization has been notedby Pin [45℄:
KG(S) = {s ∈ S : 1 ∈ clG

(

ψ(ϕ−1(s))
)

⊆ Ωκ
AG}.The Rhodes �type II� 
onje
ture stated thatKG(S)∪{1} is the smallestsubsemigroup of S1 whi
h 
ontains the idempotents and, if it 
ontains sand aba = a or bab = b, then it also 
ontains asb. The 
onje
ture wasthe motivation for Ash's work and in fa
t it is proved in [22℄, that is, itis a (simple) 
onsequen
e (in a sense a parti
ular 
ase) of the tamenessof G. Pin and Reutenauer [47℄ proved that it su�
es to establish that theprodu
t of �nitely many �nitely generated subgroups of the free groupis 
losed in the pro-G topology. In fa
t, it turns out that this property isformally equivalent to the type II 
onje
ture [30℄. It was proved dire
tlyand independently in this form by Ribes and Zalesski�� [52℄ using pro�nitegroup theory.Consider now the natural proje
tion

pV : ΩAS → ΩAV

a ∈ A 7→ aWe say that a pseudovariety V is σ-full if, for every �nite set A and forevery rational language L ⊆ A+, the set pV(clS(L)) is 
losed in Ωσ
AV.For example, G [28℄, J (this is an exer
ise, taking into a

ount knowledgeof ΩAJ), R and A (re
ently proved by the author with J. C. Costa andM. Zeitoun) are all κ-full.
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idability and tameness in the theory of �nite semigroups 17The property of σ-fullness allows us to obtain a simpli�ed formulationof σ-redu
ibility whi
h we pro
eed to present. Consider a system Σ ofequations over a �nite set X of variables with 
onstraints of the form Lx(x ∈ X), where ea
h Lx is a rational language. We say that ϕ : X →
ΩAV is a solution (of the system satisfying the 
onstraints) if

• ϕ(x) ∈ Lx (∀x ∈ X)
• ϕ̂(u) = ϕ̂(v) (∀(u = v) ∈ Σ)If a pseudovariety V is σ-full then it is σ-redu
ible for a system of equa-tions over a �nite set X of variables if and only if, for every 
hoi
e

Lx (x ∈ X) of rational languages, if the system with the Lx as 
on-straints admits a solution ϕ : X → ΩAV then it also admits a solution
ψ : X → Ωσ

AV. In parti
ular, if V is σ-full and ΩAV = Ωσ
AV, then V istrivially σ-redu
ible.It is thus worthwhile to understand the topologi
al 
losure operation,at least for rational languages, within stru
tures of the form Ωσ

AV. Wepro
eed to des
ribe a natural pro
edure for 
omputing 
losures of rationallanguages.Suppose that A+ ⊆ Ωσ
AV. It is easy to see that, for L,K ⊆ A+:(1) if L is �nite, then clσ,V(L) = L;(2) clσ,V(L ∪K) = clσ,V(L) ∪ clσ,V(K);(3) clσ,V(L) clσ,V(K) ⊆ clσ,V(LK);(4) 〈clσ,V(L)〉σ ⊆ clσ,V(L+),where 〈X〉σ denotes the σ-subalgebra of Ωσ

AV generated by X. If bothin
lusions (3) and (4) turn out to be always equalities, then we have anatural pro
edure to �
ompute� clσ,V(L) in 
ase L ⊆ A+ is rational: wesu

essively 
ommute the topologi
al 
losure operation with the rationaloperations using the equality versions of the above formulas.Here are some examples for whi
h the natural pro
edure works.
• It follows from [47, 52℄ that the natural pro
edure works for Gwith respe
t to the signature κ.
• It is easy to see that the natural pro
edure works for J, κ.
• Together with J. C. Costa and M. Zeitoun, the author has re-
ently shown that the natural pro
edure works for both R and Aover κ.
• Ribes and Zalesski�� [53℄ also gave an algorithm to 
ompute thepro-Gp 
losure of a rational language in the free group Ωκ

AGp =
Ωκ

AG. See also [39℄ for 
omplexity issues. These results had astrong in�uen
e in the eventual proof that Gp is tame [8℄.



18 AlmeidaIn general, one may ask for whi
h pseudovarieties does the natural pro-
edure work for the signature κ. This remains an open problem.7. Conne
tion with Model TheoryWe 
on
lude this survey with a 
onne
tion with a remarkable resultin Model Theory, where an equivalent form of Ash's tameness theoremwas dis
overed independently of semigroup theory.We say that a 
lass R of relational stru
tures of the same type hasthe �nite extension property for partial automorphisms (FEPPA) if forevery �nite R ∈ R and every set P of partial automorphisms of R, ifthere exists an extension S ∈ R of R for whi
h every f ∈ P extends toa total automorphism of S, then there exists su
h an extension S ∈ Rwhi
h is �nite.By a homomorphism of relational stru
tures of the same type we meana fun
tion that preserves the given stru
tures' relations in the forwarddire
tion. For a 
lass R of relational stru
tures, let Ex
lR denote the
lass of all stru
tures S for whi
h there is no homomorphism R → Swith R ∈ R.Theorem 7.1 ([32℄). For every �nite set R of �nite stru
tures of a �niterelational language, Ex
lR satis�es the FEPPA.Herwig and Las
ar also showed that this property is formally equiva-lent to the following property of free groups. For a subgroup H of a freegroup F and elements x, y ∈ F , write x ≡H y if xH = yH.Theorem 7.2 ([32℄). Consider a �nite system of equations of one of thefollowing forms
X ≡H Y g and X ≡H g,where X and Y are variables, the H are �nitely generated subgroups ofthe free group F , and the g are elements of F . If the system has nosolution in F , then one may repla
e ea
h subgroup H by a subgroup of

F of �nite index 
ontaining H su
h that the system remains withoutsolution.
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