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Abstract. In this article, we study the new streamline diffusion finite

element for treating the linear second order hyperbolic initial-boundary
value problem. We prove a posteriori L2(L2) and error estimates for this
method under minimal regularity hypothesis. Test problem of an applica-

tion of the wave equation in the laser is presented to verify the efficiency
and accuracy of the method.
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1. Introduction

Extreme a posteriori error estimates for approximate solutions of the wave
equation is a large subject, despite its importance of these problems in the
modeling of a number of physical phenomena. A posteriori error estimates
may allow the acceleration of numerical methods via adaptive schemes pow-
erful. There are various approaches to a posteriori error estimates and it
has recently successfully applied to a variety of problems by several authors
(see [2, 5, 14,19,21,23]).
Georgoulis et al. used Galerkin discretization method for linear wave equation
and obtained a posteriori error estimates in L∞(L2) norm in [14]. Johnson
in [23] proved existence solution for second order hyperbolic problems and used
discontinues Galerkin method for them and obtained a priori and a posteriori
error estimates. In [6], we applied time discontinuous Galerkin (DG) scheme
for a system of homogeneous coupled wave equations with a local damping
and obtained a posteriori L2(L2)− and L∞(L2)− error estimates. But in this
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paper, we use the new streamline diffusion method (NSDM) for solving a wave
equation when this equation isn’t homogeneous. Also, we obtain a posteriori
error estimates for this equation in L2(L2) norms.
Due to the fact that affected diffusion is added only in the characteristic direc-
tion so that internal layers are not spread, while the added diffusion removes
amplifications near boundary layers.
On the other hand, we consider the linear second order hyperbolic initial bound-
ary value problem( see [6, 12,14,16,18,23,24,26] ) as follows:

utt −∇.(a∇u) = f in Ω× (0, T ),
u(x, 0) = u0(x) for x ∈ Ω,
ut(x, 0) = u1(x) for x ∈ Ω,
u(x, t) = 0 for (x, t) ∈ ∂Ω× (0, T ].

(1.1)

Here, Ω ⊂ Rd is a bounded open polygonal domain with boundary ∂Ω and
we have u0 ∈ H1

0 (Ω),u1 ∈ L2(Ω), a is a scalar-value function in C(Ω̄) and
f ∈ L2(0, T ;L2(Ω)).
For (1.1), we use one variable changing and apply a change for dependent vari-
ables to transform (1.1) into a new problem. We apply SD-method for new
problem and obtain a posteriori error estimates. A posteriori error bound pro-
vides a computable upper bound on the error in some norm using the computed
finite element solution (see [2, 5, 20]).
In order to make use of the theory of semigroups we write the system (1.1) in
the following abstract form:

(1.2)

 wt +Aw = F in Ω× (0, T ),
w(x, 0) = w0(x) for x ∈ Ω,
w(x, t) = 0 for (x, t) ∈ ∂Ω× (0, T ].

Here, we assume v = ut for x ∈ Rd and t ∈ [0, T ], also

w(x, t) = (u(x, t), v(x, t))T , wt(x, t) = (ut(x, t), vt(x, t))
T ,

A =

(
0 −I

−∇.(a∇) 0

)
,

w0(x) = (u0(x), u1(x))
T and F (x, t) = (0, f(x, t))T ,

where, I is the identity matrix. In [6], we solved (1.2) for F = 0 based on DG
method.
But the rest of this work is organized as follows. In Sect. 2, we define slabs
for space-time domain and obtain SD-method for (1.2). In Sect. 3, we prove a
posteriori error estimates for SD-method of Sect. 2 and obtain dual problem.
In the end of Sect. 3, we define interpolation estimates for dual problem. In
Sect. 4, we complete proof for a posteriori error estimates by using definitions
in Sect. 3. Computational results are given in Sect. 5.
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2. The streamline diffusion method

In this section, we consider the new SD-method for solving (1.2) that is
based on using finite element over the space-time domain Ω × [0, T ] and the
Bézier elements.

2.1. Bézier elements. The p+ 1 Bernstein basis polynomial of degree k are
defined for t ∈ [0, T ] as

(2.1) Bi,k(t) =

(
k
i

)
ti
(T − t)k−i

Tm
, i = 0, . . . , k.

These constitute a basis for the polynomials of degree k, moreover, they are
pointwise non-negative.
The motivation for performing finite element computation using this basis
comes from the fact that a piecewise Bernestein polynomial basis can be mapped
onto a B-spline basis by invoking the Bézier extraction operator (see [9]).
This transformation enables the representation of a non-uniform rational basis
spline (NURBS) or a T-spline by using a set of Bézier elements. Therefore, we
consider a Bézier curve of degree p that it is defined by a linear combination of
k+1 Bernstein polynomial basis functions. We define the set of basis functions
as B(x) = {Bi,k(x)}k+1

i=1 , and the corresponding set of vector-valued control

points as P = {Pi}p+1
i=1 where each Pi ∈ Rd , d being the number of spatial

dimensions, and P is a matrix of dimension (k + 1)d, viz. P = {P j
i }

k+1,d
i,j=1 .

Hence, the Bézier curve can then be written as:

(2.2) Rk(t) =
k+1∑
i=1

PiBi,k(t), t ∈ [0, T ].

Also, we can repeat the Bézier curve for space as follows

(2.3) Rk(x) =
k+1∑
i=1

Pi

d∏
j=1

Bj,k(xj),

x = (x1, · · · , xd). Therefore, we can represent the discrete solution uk by a
separation of variable viz:

(2.4) uh =

M∑
k=1

Rk(x)Rk(t),

where M ∼ 1
h .
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2.2. The new Streamline Diffusion. To define this method, let 0 = t0 <
t1 < · · · < tN = T be a subdivision of the time interval [0, T ] into intervals
In = (tn, tn+1), with time steps kn = tn+1 − tn, n = 0, 1, · · · , N − 1 and
introduce the corresponding space-time slabs, i.e.,

(2.5) Sn = {(x, t) : x ∈ Ω, tn < t < tn+1},
for n = 0, 1, ..., N − 1. Further, for each n let Wn be a finite element subspace
of H1(Sn)×H1(Sn), (see [1]) and let

(2.6) Ẇn = {w ∈ Wn| w(0, t) = 0 , for t ∈ In}.
We can formulate SD-method on the slab Sn for (1.2), as follows:

for n = 0, ..., N − 1, find wn ∈ Ẇn such that

(wn
t +Awn,g + δ(gt +Ag))n + ⟨wn

+,g+⟩n(2.7)

= (F,g + δ(gt +Ag))n + ⟨wn
−,g+⟩n,

where δ = C̄h with 0 < C̄ ≤ 1 is a suitably chosen (sufficiently small, see [21])
positive constant and parameter h is defined in the below. Further, we define
the following notations for (2.7):

(w,g)n =

∫
Sn

wT · gdxdt,

⟨w,g⟩n =

∫
Ω

wT (x, tn) · g(x, tn)dx,

w+(x, t) = lim
s→0+

w(x, t+ s),

w−(x, t) = lim
s→0−

w(x, t+ s).

The terms including ⟨ , ⟩ in the above formula are jump conditions which
imposes a weakly enforced continuity condition across the slab interfaces, at
tn and is the mechanism by which information is propagated from one slab to
another. More concisely, after summing over n, we may rewrite (2.7) as follows:

Summing over n, taking all the slabs together we get the function space Ẇ =∏N−1
n=0 Ẇn. We find w ∈ Ẇ, such that

(2.8) B(w,g) = L(g),

for g ∈ Ẇ, and where the bilinear form B(., .) and the linear form L(.) are
defined by

B(w,g) =
N−1∑
n=0

(wn
t +Awn, g + δ(gt +Ag))n

+
N−1∑
n=1

⟨[wn],g+⟩n + ⟨wn
+,g+⟩0,
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and,

L(g) =
N−1∑
n=0

(F,g + δ(gt +Ag))n + ⟨w0,g+⟩0,

where,we define w = (w1,w2)
T such that for i = 1, 2

[wi] = wi,+ −wi,−, [w] = ([w1], [w2])
T .

For h > 0, we define Tn
h to be a triangulation of the slab Sn into triangles K

satisfying as usual the minimum angle condition ( see [11]), and assume that
the parameter h is represented with the maximum diameter of the triangles
K ∈ Tn

h . We introduce

Wn
h = {w ∈ [H1(Sn)]

2 : w|K ∈ [Rk(K)]2 for K ∈ Tn
h ,w(0, t) = 0 for t ∈ In},

where Rk(K) denotes the set of Bézier polynomials in K of degree less than
or equal to k and we define the function space that summing over n, taking all
the slabs together:

Wh =

N−1∏
n=0

Wn
h .

Thus (2.8) can be formulated as follows:
find wh ∈ Wh such that

(2.9) B(wh,g) = L(g),

for g ∈ Wh. Moreover, we know that the exact solution of (2.8) satisfies

B(w,g) = L(g),

for g ∈ Ẇ, and by using (2.8) and (2.9), we have the Galerkin orthogonality
relation

(2.10) B(e,g) = 0,

where e = w −wh.

3. An a posteriori error estimate for the new SD-Method

In this section, we shall consider the new SD-method for (2.9):
Find wh ∈ Wh, such that for n = 0, 1, ..., N − 1:

(3.1)
N−1∑
n=0

(wn
h,t +Awn

h , g + δ(gt +Ag))n +
N−1∑
n=1

⟨[wn
h ],g+⟩n + ⟨wn

h,+,g+⟩0

=
N−1∑
n=0

(F,g)n + ⟨w0,g+⟩0,

where g ∈ Wh and w0
h,− = 0.
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In this section, we shall introduce and analyze a posteriori estimates that are
based on Bézier techniques proposed in (2.2), (2.3) and (2.4). The approach
consists of viewing the computed solution wh as coarse-mesh approximation to
some function which is arguably a more accurate approximation to w.

In order to obtain a representation of the error, we consider the following
auxiliary problem, referred to as the linearized dual problem:
Find Φ such that

(3.2)

 L∗Φ ≡ −Φt +ATΦ = Ψ−1e in Ω× (0, T ),
Φ(0, t) = 0, for t ∈ (0, T ],
Φ(x, T ) = ΦN , for x ∈ Ω

and L∗ denotes the adjoint of the operator L defined in (1.2) and Ψ is a positive
weight function. Note that this problem is computed ”backward”, but there is a
corresponding change in sign and we obtained the dual problem with boundary
condition is different form (3.2) which is equal zero in [6]. Further, we shall
first introduce the following notation:

(3.3) ∥ w ∥Lψ2 (Ω)= (w,Ψw)
1/2
Ω .

Multiplying (3.2) by e and integrating by parts, and summing over n, we obtain
the following error representation formula:

(3.4) ∥ e ∥2
LΨ−1

2 (Ω)
= (e,Ψ−1e)Ω = (e, L∗Φ)Ω

=
N−1∑
n=0

(e,−Φt +ATΦ)n

=

N−1∑
n=0

(e,−Φt)n +

N−1∑
n=0

(e, ATΦ)n.

We have for n = 0, 1, ..., N − 1 by part integrating

(3.5)
N−1∑
n=0

(e,−Φt)n = −
N−1∑
n=0

∫
Sn

eT . Φtdxdt

= −
N−1∑
n=0

∫
Ω

eT (x, tn). Φ(x, tn)dx+

∫
Sn

eTt . Φdxdt

= −
N−1∑
n=0

∫
Ω

eT (x, tn). Φ(x, tn)dx+ (et,Φ)n.

We define e = (e1, e2)
T and Φ = (ϕ1, ϕ2)

T and obtain for n = 0, 1, ..., N − 1:

(3.6) (e, ATΦ)n =

∫
Sn

eT .ATΦdxdt
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=

∫
Sn

eT .

(
0 −∇.(a∇)
−1 0

)(
ϕ1

ϕ2

)
dxdt =

∫
Sn

(e1, e2).

(
−∇.(a∇ϕ2)

−ϕ1

)
dxdt

=

∫
Sn

(−e1∇.(a∇ϕ2)− e2ϕ1)dxdt =

∫
Sn

(a∇ϕ2∇e1 − e2ϕ1)dxdt

=

∫
Sn

(−∇.(a∇ϕ2)e1 − e2ϕ1)dxdt =

∫
Sn

(Ae)T .Φdxdt = (Ae,Φ)n.

Also, we have

J =
N−1∑
n=0

∫
Ω

eT (x, tn). Φ(x, tn)dx

= (⟨e−,Φ−⟩1 − ⟨e+,Φ+⟩0) + (⟨e−,Φ−⟩2 − ⟨e+,Φ+⟩1)
+ · · ·+ (⟨e−,Φ−⟩N−1 − ⟨e+,Φ+⟩N−2)

+(⟨e−,Φ−⟩N − ⟨e+,Φ+⟩N−1).

To continue we write Φn
− = Φn

− − Φn
+ +Φn

+, n = 1, ..., N − 1, then we obtain

−J = −⟨e−,Φ−⟩N + ⟨e+,Φ+⟩0 +
N−1∑
n=0

⟨[e],Φ+⟩n +

N−1∑
n=0

⟨e−, [Φ]⟩n.

According to (3.2), Φ(., tN = T ) = ΦN and since e0+ = w0, we get

(3.7) J =

N−1∑
n=0

⟨[wh],Φ+⟩n + ⟨e−,ΦN ⟩N .

Then in (3.4), by using (3.5), (3.6) and (3.7), we have

∥ e ∥2
LΨ−1

2 (Ω)
=

N−1∑
n=0

(et,Φ) +
N−1∑
n=0

(Ae,Φ)n −
N−1∑
n=0

⟨[wh],Φ+⟩n − ⟨e−,ΦN ⟩N

=

N−1∑
n=0

((w −wh)t +A(w −wh),Φ)n −
N−1∑
n=0

⟨[wh],Φ+⟩n − ⟨e−,ΦN ⟩N

=
N−1∑
n=0

(F −wh,t −Awh,Φ)n −
N−1∑
n=0

⟨[wh],Φ+⟩n − ⟨e−,ΦN ⟩N .

So that recalling (3.1) and using the Galerkin orthogonality (2.10), we obtain

(3.8) ∥ e ∥2
LΨ−1

2 (Ω)
=

N−1∑
n=0

(wh,t +Awh − F, Φ̂ + δ(Φ̂t +AΦ̂)− Φ)n

+

N−1∑
n=0

⟨[wh], (Φ̂− Φ)+⟩n + ⟨e−,ΦN ⟩N ≡ I + II + III,

where Φ̂ ∈ Wh is an interpolant of Φ. The idea is now to estimate Φ̂ + δ(Φ̂t +

AΦ̂) − Φ in terms of Ψ−1e using a strong stability estimates for solution Φ
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of the dual problem. In [6], we applied time discontinuous Galerkin method
for our problem and obtained δ = 0 but in this paper, we apply streamline
diffusion method for (1.2) and obtain δ ̸= 0.

We shall now consider our interpolant Φ̂ ∈ Wh in (3.8) to be the space-time
L2-projection of Φ, namely first, we define the L2-projections:

Pn : L2(Ω) → Wn
h ,

πn : L2(Sn) → Π0,n = {w ∈ L2(Sn) : w(x, .) that are constant on In, x ∈ Ω},
in space and in space time, respectively, by∫

Ω

(PnΦ)
T .wdx =

∫
Ω

ΦT .wdx, ∀w ∈ Wn
h ,

πnw |Sn=
1

kn

∫
In

w(., t)dt, ∀w ∈ Π0,n.

Then, we can define Φ̂ |Sn∈ Wn
h by letting

Φ̂ |Sn= PnπnΦ = πnPnΦ ∈ Wn
h ,

where Φ = Φ |Sn . Further, if we introduce P and π by

(PΦ) |Sn= Pn(Φ |Sn),

and

(πΦ) |Sn= πn(Φ |Sn),
respectively, then we can let Φ̂ ∈ Wh be

Φ̂ = PπΦ = πPΦ ∈ Wh.

Now, we define the residual of computed solution wh by

R0 = wh,t +Awh − F,

R1 = wn
h,+ −wn

h,−, on Sn,

R2 =
(Pn − I)wn

h,−

kn
, on Sn,

where I is the identity operator.
In the end of this section, we shall give a lemma for interpolation estimates by
the projection operators P , leaving the overall of I and II to next section.

Lemma 3.1. There is a constant C such that for residual R ∈ L2(Ω),

(3.9) | (R,Φ− PΦ)Ω |= O(h2).

Proof. We claim that O(h2) = C ∥ h2(I − P )R ∥
LΨ−1

2 (Ω)
∥ Φxx ∥LΨ

2 (Ω). For

proof see [5, 6, 20]. □
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4. The completion of the proof of a posteriori error estimates

This section is devoted to residual type a posteriori estimates. The estima-
tors as well as the exposition follow the lines found. In this section, we state
and prove a posteriori error estimates by estimating of the terms I and II in
the error representation formula (3.8). To this approach we use the stability
factors (see [3–7]) associated with discretization in time and space, defined by

(4.1) γt
e =

∥ Φt ∥LΨ
2 (Ω)

∥ e ∥
LΨ−1

2 (Ω)

and

(4.2) γx
e =

∥ Φxx ∥LΨ
2 (Ω)

∥ e ∥
LΨ−1

2 (Ω)

respectively. We now apply the result of the previous sections; using Cauchy-
Schwarz inequality in (3.8) coupled with the interpolation estimate (3.9) and
the strong stability factors (4.1) and (4.2), to derive the L2(L2) a posteriori
error estimates for the scheme (3.1).

Theorem 4.1. The error e = w−wh, where w is the solution of the continuous
problem (1.2) and wh that of (3.1), satisfies the following stability estimate:

(4.3) ∥ e ∥
LΨ−1

2 (Ω)
≤ Cγx

e ∥ h2(I − P )R0 ∥
LΨ−1

2 (Ω)

+C ∥ h2(I −A)R0 ∥
LΨ−1

2 (Ω)
γx
e

+Cγt
e ∥ knR1 ∥

LΨ−1
2 (Ω)

+γx
e ∥ h2R2 ∥

LΨ−1
2 (Ω)

+γt
e ∥ knR2 ∥

LΨ−1
2 (Ω)

+||ΦN ||LΨ
2 (Ω).

Proof. Using the notation introduced above, we may write (3.8) as

∥ e ∥2
LΨ−1

2 (Ω)
=

N−1∑
n=0

(R0, Φ̂ + δ(Φ̂t +AΦ̂)− Φ)n

+
N−1∑
n=0

⟨kn
[wh]

kn
, (Φ̂− Φ)+⟩n + ⟨e−,ΦN ⟩N = I + II + III.

We shall estimate the terms I, II and III separately. The proof of I and III
are modified version of the previous one and therefore are omitted (see [5, 6]).
The a posteriori error estimates now follows immediately after collecting the
terms and using the definition of the stability factors (4.1) and (4.2).

It remains to estimate the terms II, to this end, we need the following
notation

Φn
+(x) = Φ(x, t)−

∫ t

tn

∂

∂τ
Φ(x, τ)dτdt.



A posteriori L2(L2)-error estimates 656

So that

(4.4) knΦ
n
+(x) =

∫
In

Φ(x, t)dt−
∫
In

∫ t

tn

Φτ (x, τ)dτdt,

where Φτ = ∂Φ
∂τ and Φ̂n = Φ̂(., tn). Also, we can write

II =
N−1∑
n=0

⟨kn
[wh]

kn
, (Φ̂− Φ)+⟩n

=
N−1∑
n=0

⟨kn
[wh]

kn
, (Φ̂n − PΦ+ PΦ− Φ)+⟩n

=
N−1∑
n=0

⟨kn
[wh]

kn
, (Φ̂n − PΦ)+⟩n

+
N−1∑
n=0

⟨kn
[wh]

kn
, (PΦ− Φ)+⟩n := II1 + II2.

To estimate II1, we use (5.4) to get

II1 =
N−1∑
n=0

⟨knR1, (Φ̂n)+ − PΦ+⟩n

=
N−1∑
n=0

⟨R1, knΦ̂n − PknΦ+⟩n

=
N−1∑
n=0

⟨R1, knΦ̂n −
∫
In

PΦ(., t)dt+

∫
In

∫ t

tn

PΦτ (., τ)dτdt⟩n

=
N−1∑
n=0

∫
In

∫ t

tn

⟨R1, PΦτ (., τ)⟩ndτdt

≤∥ knR1 ∥
LΨ−1

2 (Ω)
∥ PΦt ∥LΨ

2 (Ω)

≤∥ knR1 ∥
LΨ−1

2 (Ω)
∥ Φt ∥LΨ

2 (Ω) .

As for the II2-terms we can write

II2 =
N−1∑
n=0

⟨kn
[wh]

kn
, (PΦ− Φ)+⟩n

=
N−1∑
n=0

⟨
wn

h,+ −wn
h,−

kn
, (Pn − I)knΦ+⟩n

=
N−1∑
n=0

⟨
Pnw

n
h,− −wn

h,−

kn
, (Pn − I)(

∫
In

Φ(., t)dt−
∫
In

∫ t

tn

Φτ (., τ)dτdt)⟩n
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≤
N−1∑
n=0

∫
In

⟨
(Pn − I)wn

h,−

kn
, (Pn − I)Φ(., t)⟩ndt

+
N−1∑
n=0

∫
In

∫ t

tn

⟨
(Pn − I)wn

h,−

kn
, (Pn − I)Φτ (., t)dτdt⟩n

≤∥ knR2 ∥
LΨ−1

2 (Ω)
∥ Φxx ∥LΨ

2 (Ω) + ∥ knR2 ∥
LΨ−1

2 (Ω)
∥ Φt ∥LΨ

2 (Ω) .

□

5. Numerical Implementation and realistic application

In this section, we implement the new streamline diffusion finite element
method applied to solve a one-dimensional time dependent coupling of two
hyperbolic equations. The wave equation plays the role of Newton’s laws and
conservation of energy in classical mechanics - i.e., it predicts the future behav-
ior of a dynamical system [8,15,25]. It is a wave equation in terms of the wave
function which predicts analytically and precisely the probability of events or
outcomes. Below we discuss computational aspects of the approximate solution
for (1.1) using the SD method: For n = 0, ..., N − 1, find wn ∈ Wn such that

(5.1) (wn
h,t +Awn

h ,gh + δ(gh,t +Agh))n+ < wn
h,+,gh,+ >n

=< wn
h,−,gh,+ >n +(F,gh + δ(gh,t +Agh))n.

Here δ is the SD parameter (usually δ ∼ h). We use finite element approxima-
tion on a space-time slab with the trial functions being piecewise polynomials
in space and piecewise linear in time; that is, for (x, t) ∈ Sn. We seek the
approximate solution

wn
h(x, t) =

M∑
i=1

{
φi(x)(θ1(t)w̃

n
i + θ2(t)w

n+1
i )

}
=

(
un
h(x, t) =

∑M
i=1 φi(x)(θ1(t)ũ

n
i + θ2(t)u

n+1
i )

vnh(x, t) =
∑M

i=1 φi(x)(θ1(t)ṽ
n
i + θ2(t)v

n+1
i )

)
,

(5.2)

such that φi(xj) = δij , (j = 1, ...,M) are the spatial shape functions at node
i, θ1(t) and θ2(t) are the time interpolation functions defined for Bézier curve.
Also, the nodal value of w for node i at (tn)+ and (tn+1)− are denoted by
w̃n

i and wn+1
i . Then, for each time slab, the test functions gn

h are defined as
φj(x)θ1(t) and φj(x)θ2(t), for j = 1, ..,M . We choose φi as the hat-functions

φi(x) =


x−xi−1

xi+1−xi
= x−xi−1

h , x ∈ [xi−1, xi],
xi+1−x
xi+1−xi

= xi+1−x
h , x ∈ [xi, xi+1],

0, elsewhere ,

defined on a uniform partition of Ω = [a, b].
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5.1. Numerical experimenters. We carry out experimental computations to
solve (5.1), by an AMD Opteron computer with 15 Gigabytes RAM memory
with 2.2 GHz CPU. For each slab Sn, we choose a partition of the spatial
interval into the subinterval Jn

i = (xn
i−1, x

n
i ), with hn

i = xn
i − xn

i−1. For h > 0,
small, we let Tn

h be a triangulation of the slab Sn into, a time-space triangular
elements K (cf. Fig. 1. below), satisfying a minimum angle condition (see,
e.g. [17,23]). The triangulation for Sn may be chosen independently from that
of Sn−1, but for the sake of simplicity we assume the quasi-uniformity condition.
We shall use finite element approximation on a space time slab with the trial
functions being piecewise polynomials in space and piecewise linear in time;
that is, for (x, t) ∈ Sn. In the following, we show some numerical examples:

5.1.1. Test Problem 1 (when we have the exact solution). Streamline diffusion
method is computed by given δ, h = 0.01, k = 0.0005 and in (1.1) we assume
that Ω = [π/2, 3π/2],

 utt − uxx = peqt, (x, t) ∈ (−π/2, π/2)× (0, T ),
u(x, 0) = α sin(mx), −π/2 ≤ x ≤ π/2,
ut(x, 0) = β cos(nx), −π/2 ≤ x ≤ π/2,

the exact solution of the above equation is

u(x, t) =
p

q2
(eqt − qt− 1) +

β

n
cos(nx) sin(nt) + α cos(mt) sin(mx).

We assume p = 0 and α = 0 then in the Figures 2-4, we verify numerically the
rate of convergence for Error in L2-norm of u, i.e. ∥u− uh∥L2 . The results are
given after 0, 2, 4, . . . 200 time steps . Also, the error in time or t = k×time step
for example we observe that time is between t = 0 until t = 0.0001×100 = 10−1.
Therefore, we compare the absolute error of u(x, 0)−uh(x, 0), ..., u(x, 0.0005×
time step) − uh(x, 0.0005× time step), ..., and u(x, 10−1) − uh(x, 10

−1) also,
we assume x = −1.00 × π/2,−0.99 × π/2, ..., 0, 0.01 × π/2, ..., 1.00 × π/2 (see
Figs 2, 3 and 4). Finally we show the error of SD approximation solution in
Table 1. The order of error is calculated using the following formula:

Order of error for u ≈ ln
Ehi(u)

Ehi+1(u)
,

where Ehi(u) = ∥u(x, t)−uhi(x, t)∥L2 and i = 1, 2, 3, 4, 5. The agreement of the
error estimates between theoretical analysis and numerical results show that
our method is efficient (see Table 1). The reason maybe due to that the error
order of SD method is close to 4.



659 Rostamy and Zabihi

5.1.2. Test Problem 2 (when we haven’t the exact solution). In (1.1), we con-
sider

u0(x) =

 1 + x, x ∈ [0, 1],
1− x, x ∈ [1, 2],
0, elsewhere ,

and

u1(x) =

 1 + x2, x ∈ [0, 1],
1− x2, x ∈ [1, 2],
0, elsewhere .

Also, we consider f(x) = sinx and Ω = [0, 2]. We give some results in Figures
5-8 for different a = a(x) based on DG method (see [6]) and streamline diffusion
method.

6. Conclusion

To this end, a spatial linear second order hyperbolic initial-boundary value
problem is investigated. We use the new streamline diffusion method for gener-
alizing wave equation and obtain a posteriori error estimates in L2(L2)-norm.
The posteriori error estimate is a very powerful mathematical tool in this prob-
lem by SD method. Also, the obtained results reveal that the proposed tech-
nique is very effective, convenient and quite accurate to such considered prob-
lems. Therefore, we try to obtain optimal bounds and hp-version of this method
remind challenges that deserves special attention and will be consideration else-
where.

Fig. 1: The slabs on Rectangle
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Figure 2: The behavior of error in time step for u
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Fig. 3: The behavior of error in time step for u
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Fig. 4: The behavior of error in time step for u.

Table 1. Ehi(u) and order of error for u by SD method at δ = 0.1 and k = 0.01

x h1 = 0.15 h2 = 0.10 h3 = 0.05 h4 = 0.01 h5 = 0.005

−π/2 0.231e-6 0.212e-6 0.431e-8 0.751e-8 0.321e-9
0.0 0.231e-5 0.761e-7 0.454e-7 0.983e-9 0.522e-12

+π/2 0.514e-6 0.234e-7 0.713e-10 0.761e-9 0.510e-9

order - 2.6 2.9 2.9 3.9
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Fig. 5: Error of DG method and streamline diffusion method for δ = h = 0.001, and k = 0.0005.

The results are given, first row: after 2 times (left), after 24 times (right), second row: after 76
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times (left), after 137 times (right) and three row: after 287 times (left), after 424 times (right)

when a(x) = 1.
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Fig. 6: Error of DG method and streamline diffusion method for δ = h = 0.001, and k = 0.0005.

The results are given, first row: after 2 times (left), after 24 times (right), second row: after 76

times (left), after 137 times (right) and three row: after 287 times (left), after 424 times (right)

when a(x) =
√
x.
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Fig. 7: Error of DG method and streamline diffusion method for δ = h = 0.001, and k = 0.0005.

The results are given, first row: after 2 times (left), after 24 times (right), second row: after 76

times (left), after 137 times (right) and three row: after 287 times (left), after 424 times

(right)when a(x) = x.
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Fig. 8: Error of DG method and streamline diffusion method for δ = h = 0.001, and k = 0.0005.

The results are given, first row: after 2 times (left), after 24 times (right), second row: after 76

times (left), after 137 times (right) and three row: after 287 times (left), after 424 times (right)

a(x) = x2.
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data structures based on Bézier extraction of NURBS, Internat. J. Numer. Methods

Engrg. 87 (2011), no. 1-5, 15–47.



A posteriori L2(L2)-error estimates 664

[10] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Method,

Springer-Verlag, New York, 1994.
[11] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Amesterdam, North

Holland, 1987.
[12] R. Codina, Finite element approximation of the hyperbolic wave equation in mixed form,

Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 13-16, 1305–1322
[13] F. Dubois and P. G. Lefloch, Boundary conditions for nonlinear hyperbolic systems of

conservation laws, J. Differential Equations 71 (1988), no. 1, 93–122.
[14] E. H. Gergoulis, O. Lakkis and C. Makridakis, A posteriori L∞(L2)-error bounds in

finite element approximation of the wave equation, arXiv:1003.3641v1 [math.NA] (2010),
1–17.

[15] H. Han, J. Jin and X. Wu, A finite-difference method for the one-dimensional time-
dependent Schrödinger equation on unbounded domain, Comput. Math. Appl. 50 (2005),

no. 8-9, 1345–1362.
[16] L. Haws, Symmetric Green’s functions for certain hyperbolic problems, Comput. Math.

Appl. 21 (1991), no. 5, 65–78.
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