
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 41 (2015), No. 3, pp. 665–675

.

Title:

.

On weakly Fs-quasinormal subgroups of finite groups

.

Author(s):

.

Y. Mao, X. Chen and W. Guo

.

Published by Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 41 (2015), No. 3, pp. 665–675
Online ISSN: 1735-8515

ON WEAKLY Fs-QUASINORMAL SUBGROUPS OF FINITE

GROUPS

Y. MAO, X. CHEN∗ AND W. GUO

(Communicated by Ali Reza Ashrafi)

Abstract. Let F be a formation and G a finite group. A subgroup H

of G is said to be weakly Fs-quasinormal in G if G has an S-quasinormal
subgroup T such that HT is S-quasinormal in G and (H ∩ T )HG/HG ≤
ZF(G/HG), where ZF(G/HG) denotes the F-hypercenter of G/HG. In

this paper, we study the structure of finite groups by using the concept
of weakly Fs-quasinormal subgroup.
Keywords: F-hypercenter, weakly Fs-quasinormal subgroups, Sylow sub-
groups, p-nilpotence, supersolubility.
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1. Introduction

Throughout this paper, all groups considered are finite. G always denotes
a group, π denotes a set of primes and p denotes a prime. Let |G|p denote
the order of Sylow p-subgroups of G. For any subgroup H of G, we use HG

and HG to denote the largest normal subgroup of G contained in H and the
smallest normal subgroup of G containing H, respectively.

A class of groups F is called a formation if it is closed under taking homo-
morphic images and subdirect products. A formation F is called saturated if
G ∈ F whenever G/Φ(G) ∈ F. Also, a formation F is said to be S-closed if ev-
ery subgroup of G belongs to F whenever G ∈ F. The F-residual of G, denoted
by GF, is the smallest normal subgroup of G with quotient in F. We use U,
Up and Np to denote the formations of all supersoluble groups, p-supersoluble
groups and p-nilpotent groups, respectively.

For a class of groups F, a chief factor L/K of G is said to be F-central
in G if L/K ⋊ G/CG(L/K) ∈ F. A normal subgroup N of G is called F-
hypercentral in G if either N = 1 or every chief factor of G below N is F-
central in G. Let ZF(G) denote the F-hypercentre of G, that is, the product
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of all F-hypercentral normal subgroups of G. All unexplained notation and
terminology are standard, as in [3, 6, 14].

Recall that a subgroupH ofG is said to be quasinormal (resp. S-quasinormal)
in G if H permutes with every subgroup (resp. Sylow subgroup) of G. Let F be
a formation. Recently, Huang [12] introduced the concept of Fs-quasinormal
subgroup: a subgroup H of G is said to be Fs-quasinormal in G if G has a nor-
mal subgroup T such that HT is S-quasinormal in G and (H ∩ T )HG/HG ≤
ZF(G/HG). Also, Miao and Li [15] introduced the concept of F-quasinormal
subgroup: a subgroup H of G is said to be F-quasinormal in G if G has a quasi-
normal subgroup T such that HT is quasinormal in G and (H ∩ T )HG/HG ≤
ZF(G/HG). By using these two concepts, the authors obtained some interest-
ing results on the structure of finite groups. As a continuation of the above
ideas, we introduce the following weaker concept.

Definition 1.1. Let F be a formation. A subgroup H of G is said to be weakly
Fs-quasinormal in G if G has an S-quasinormal subgroup T such that HT is
S-quasinormal in G and (H ∩ T )HG/HG ≤ ZF(G/HG).

Note that not only the concepts of Fs-quasinormal subgroup and F-quasinor-
mal subgroup, but also many other subgroup embedding properties are gen-
eralized by our concept (see Section 4 below). In this paper, we study the
properties of weakly Fs-quasinormal subgroups, and derive some criteria for a
finite group to be p-nilpotent or supersoluble in terms of weakly Fs-quasinormal
subgroups.

2. Preliminaries

Lemma 2.1. [7, Lemma 2.1] Let F be a non-empty saturated formation, H ≤
G and N ⊴G. Then:

(1) ZF(G)N/N ≤ ZF(G/N).
(2) If F is S-closed, then ZF(G) ∩H ≤ ZF(H).

Lemma 2.2. Let H,K ≤ G and N ⊴G.
(1) If H is S-quasinormal in G, then H is subnormal in G.
(2) If H is S-quasinormal in G, then HN/N is S-quasinormal in G/N .
(3) If N ≤ H, then H/N is S-quasinormal in G/N if and only if H is

S-quasinormal in G.
(4) If H is S-quasinormal in G, then H ∩K is S-quasinormal in K.
(5) If H is S-quasinormal in G, then H/HG is nilpotent.
(6) If H is a p-group, then H is S-quasinormal in G if and only if Op(G) ≤

NG(H).
(7) If H and K are S-quasinormal in G, then H ∩K is S-quasinormal in

G.

Proof. See [2, Lemma 1.2.7, Theorem 1.2.14, Lemma 1.2.16 and Theorem
1.2.19]. □
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Lemma 2.3. Let H ≤ K ≤ G and N ⊴G. Then:
(1) If H is weakly Fs-quasinormal in G such that (|H|, |N |) = 1, then HN/N

is weakly Fs-quasinormal in G/N .
(2) H/N is weakly Fs-quasinormal in G/N if and only if H is weakly Fs-

quasinormal in G.
(3) If F is S-closed and H is weakly Fs-quasinormal in G, then H is weakly

Fs-quasinormal in K.

Proof. (1) SinceH is weakly Fs-quasinormal in G, G has an S-quasinormal sub-
group T such thatHT is S-quasinormal inG and (H∩T )HG/HG ≤ ZF(G/HG).
It is easy to see that HN ∩ TN = (H ∩ T )N for (|H|, |N |) = 1. By Lemma
2.2(2), TN/N and HTN/N are S-quasinormal in G/N . Since (H∩T )HG/HG ≤
ZF(G/HG), (H ∩ T )(HN)G/(HN)G ≤ ZF(G/(HN)G) by Lemma 2.1(1). This im-
plies that (HN/N ∩ TN/N)(HN/N)G/N/
(HN/N)G/N ≤ ZF((G/N)/(HN/N)G/N ). HenceHN/N is weakly Fs-quasinor-
mal in G/N .

(2) First suppose that H/N is weakly Fs-quasinormal in G/N . Then G/N
has an S-quasinormal subgroup T/N such that (H/N)(T/N) is S-quasinormal
inG/N and ((H/N)∩(T/N))(H/N)G/N/(H/N)G/N ≤ ZF((G/N)/(H/N)G/N ).
It follows that T and HT are S-quasinormal in G by Lemma 2.2(3) and
(H ∩ T )HG/HG ≤ ZF(G/HG). Hence H is weakly Fs-quasinormal in G. Now
assume that H is weakly Fs-quasinormal in G. Then a similar argument as in
(1) shows that H/N is weakly Fs-quasinormal in G/N .

(3) As H is weakly Fs-quasinormal in G, G has an S-quasinormal subgroup
T such that HT is S-quasinormal in G and (H ∩ T )HG/HG ≤ ZF(G/HG).
Then T ∩ K and H(T ∩ K) are S-quasinormal in K by Lemma 2.2(4). By
Lemma 2.1(2), (H ∩ T )HG/HG ≤ ZF(G/HG) ∩ (K/HG) ≤ ZF(K/HG), and
so (H ∩ T )HK/HK ≤ ZF(K/HK) by Lemma 2.1(1). Therefore, H is weakly
Fs-quasinormal in K. □

Lemma 2.4. [5, Main Theorem] Suppose that G has a Hall π-subgroup and
2 /∈ π. Then all the Hall π-subgroups are conjugate in G.

Recall that a group G is called π-closed if G has a normal Hall π-subgroup.
Moreover, a group G is said to be a Cπ-group if G has a Hall π-subgroup and
any two Hall π-subgroups of G are conjugate in G.

Lemma 2.5. [8, Corollary 3.7] Let P be a p-subgroup of G. Suppose that
G is a Cπ-group with p /∈ π. If every maximal subgroup of P has a π-closed
supplement in G, then G is π-closed.

The next lemma is clear.

Lemma 2.6. Let p be a prime divisor of |G| with (|G|, p− 1) = 1.
(1) If G has cyclic Sylow p-subgroups, then G ∈ Np.
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(2) If N is a normal subgroup of G such that |N |p ≤ p and G/N ∈ Np, then
G ∈ Np.

Lemma 2.7. [17, Lemma 2.16] Let F be a saturated formation containing U.
Suppose that N ⊴G such that G/N ∈ F. If N is cyclic, then G ∈ F.

3. Main results

Lemma 3.1. Let P be a Sylow p-subgroup of G, where p is a prime divisor
of |G| with (|G|, p − 1) = 1. If every maximal subgroup of P either is weakly
(Up)s-quasinormal or has a p-nilpotent supplement in G, then G ∈ Np.

Proof. Suppose that the result is false and letG be a counterexample of minimal
order. Then:

(1) Op′(G) = 1.
If Op′(G) > 1, then by Lemma 2.3 (1), G/Op′(G) satisfies the hypothesis of

the lemma. The choice of G implies that G/Op′(G) ∈ Np, and so G ∈ Np, a
contradiction.

(2) G is soluble.
Assume that G is not soluble. Then p = 2 by the Feit-Thompson theorem.

If O2(G) > 1, then G/O2(G) satisfies the hypothesis of the lemma by Lemma
2.3 (2). The choice of G implies that G/O2(G) ∈ N2. Thus G is soluble. This
contradiction shows that O2(G) = 1. If every maximal subgroup of P has a
2-nilpotent supplement in G, then G has a Hall 2′-subgroup. By Lemma 2.4, G
is a C2′ -group, and so G ∈ N2 by Lemma 2.5, which is impossible. Therefore,
P has a maximal subgroup P1 that is weakly (U2)s-quasinormal in G. Then
G has an S-quasinormal subgroup T such that P1T is S-quasinormal in G and
(P1 ∩ T )(P1)G/(P1)G ≤ ZU2(G/(P1)G). Clearly, (P1)G ≤ O2(G) = 1. Then we
have that P1∩T ≤ ZU2(G). Since O2(G) = O2′(G) = 1 by (1), ZU2(G) = 1, and
so P1∩T = 1. This implies that |T |2 ≤ 2. Then by Lemma 2.6(1), T ∈ N2, and
consequently T ≤ O2′,2(G) = 1 by Lemma 2.2(1). Thus P1 is S-quasinormal
in G. By Lemma 2.2(1) again, P1 ≤ O2(G) = 1, and so |G|2 ≤ 2. It follows
that G is soluble, a contradiction.

(3) G has a unique minimal normal subgroup N , G/N ∈ Np and G = N⋊M ,
where M is a maximal subgroup of G. Moreover, N = Op(G) and |N | > p.

Let N be a minimal normal subgroup of G. Then by (1) and (2), N is an
elementary abelian p-group. By Lemma 2.3(2), the hypothesis of the lemma
still holds for G/N . By the choice of G, G/N ∈ Np. Evidently, N is the unique
minimal normal subgroup of G and Φ(G) = 1. Thus there exists a maximal
subgroup M of G such that G = N ⋊M . Since CG(N)∩M = 1, N = CG(N),
and thereby N = Op(G). If |N | = p, then by Lemma 2.6(2), G ∈ Np, a
contradiction. Hence |N | > p.

(4) Final contradiction.
Let P1 be any maximal subgroup of P such that N ≰ P1. Then P = P1N ,

(P1)G = 1 and P1 > 1 by (3). Suppose that P1 is weakly (Up)s-quasinormal in
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G. Then G has an S-quasinormal subgroup T such that P1T is S-quasinormal
in G and P1 ∩ T ≤ ZUp(G). If ZUp(G) > 1, then N ≤ ZUp(G) by (3), and so
|N | = p, which is impossible. Thus ZUp(G) = 1. Then P1 ∩ T = 1, and we
can conclude that |T |p ≤ p. If T = 1, then P1 is S-quasinormal in G. By (3)
and Lemma 2.2(6), N ≤ (P1)

G = (P1)
P = P1. This contradiction shows that

T > 1. By Lemma 2.6(1), T ∈ Np. Let Tp′ be the normal p-complement of T .
Then Tp′ is subnormal in G by Lemma 2.2(1), and so Tp′ ≤ Op′(G) = 1 by (1).
This implies that T is a group of order p. Then P1T is a Sylow p-subgroup
of G. By (3) and Lemma 2.2(1), P = P1T = Op(G) = N . Consequently,
N ≤ TG = TP = T by (3) and Lemma 2.2(6), and so |N | = p, which contradicts
(3). Therefore, P1 has a p-nilpotent supplement in G. Since G = N ⋊M and
M ∈ Np by (3), every maximal subgroup of P has a p-nilpotent supplement in
G. Note that G is a Cp′ -group because G is p-soluble. Then by Lemma 2.5,
G ∈ Np. The final contradiction ends the proof. □

Theorem 3.2. Let p be a prime divisor of |G| with (|G|, p− 1) = 1 and E be
a normal subgroup of G such that G/E ∈ Np. If E has a Sylow p-subgroup P
such that every maximal subgroup of P either is weakly (Up)s-quasinormal or
has a p-nilpotent supplement in G, then G ∈ Np.

Proof. By Lemmas 2.3(3) and 3.1, E ∈ Np. Let Ep′ be the normal p-complement
of E. Then Ep′ ⊴ G. Suppose that Ep′ > 1. Then by Lemma 2.3(1), we see
that G/Ep′ satisfies the hypothesis of the theorem. Hence G/Ep′ ∈ Np by
induction on |G|, and so G ∈ Np. We may, therefore, assume that Ep′ = 1.
Then E = P is a p-group. Let V/P be the normal p-complement of G/P . By
Schur-Zassenhaus Theorem, there exists a Hall p′-subgroup Vp′ of V such that
V = P ⋊ Vp′ . Since V ∈ Np by Lemmas 2.3(3) and 3.1, V = P × Vp′ . This
induces that Vp′ is the normal p-complement of G. Consequently, G ∈ Np. □

Lemma 3.3. Let P be a Sylow p-subgroup of G, where p is a prime divisor
of |G|. If NG(P ) ∈ Np and every maximal subgroup of P either is weakly
(Up)s-quasinormal or has a p-nilpotent supplement in G, then G ∈ Np.

Proof. If p = 2, then obviously, G ∈ N2 by Lemma 3.1. So we only need to
prove the lemma in the case that p > 2. Suppose that the result is false and
let G be a counterexample of minimal order. Then:

(1) Op′(G) = 1.
Suppose that Op′(G) > 1. Since NG/Op′ (G)(POp′(G)/Op′(G)) = NG(P )

Op′(G)/Op′(G) ∈ Np, G/Op′(G) satisfies the hypothesis of the lemma by
Lemma 2.3(1). The choice of G implies that G/Op′(G) ∈ Np, and thereby
G ∈ Np, a contradiction.

(2) If P ≤ H < G, then H ∈ Np.
By Lemma 2.3(3), H satisfies the hypothesis of the lemma, and so H ∈ Np

by the choice of G.
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(3) G is p-soluble.
Since G /∈ Np, then there exists a non-trivial characteristic subgroup L of

P such that NG(L) /∈ Np by [4, Chap. 8, Theorem 3.1]. If L ⋬ G, then P ≤
NG(L) < G, and so NG(L) ∈ Np by (2), which is impossible. Thus L⊴G. This
implies that Op(G) > 1. Since NG/Op(G)(P/Op(G)) = NG(P )/Op(G) ∈ Np,
G/Op(G) satisfies the hypothesis of the lemma by Lemma 2.3(2). The choice
of G induces that G/Op(G) ∈ Np, and thereby G is p-soluble.

(4) G has a unique minimal normal subgroup N , G/N ∈ Np and G = N⋊M ,
where M is a maximal subgroup of G. Moreover, N = Op(G) and |N | > p.

LetN be a minimal normal subgroup ofG. Then by (1) and (3), N ≤ Op(G).
Since NG/N (P/N) = NG(P )/N ∈ Np, the hypothesis of the lemma holds for
G/N by Lemma 2.3(2), and so G/N ∈ Np by the choice of G. It is easy to
see that N = Op(G) is the unique minimal normal subgroup of G and G has a
maximal subgroup M such that G = N ⋊M . If |N | = p, then by Lemma 2.7,
G ∈ Up. As Op′(G) = 1, P⊴G by [2, Lemma 2.1.6], and thus G = NG(P ) ∈ Np,
a contradiction. Hence |N | > p.

(5) Final contradiction.
Let P1 be any maximal subgroup of P such that N ≰ P1. Then by (4),

we have that P = P1N , (P1)G = 1 and P1 > 1. Assume that P1 is weakly
(Up)s-quasinormal in G. Then G has an S-quasinormal subgroup T such that
P1T is S-quasinormal in G and P1 ∩ T ≤ ZUp(G). It follows from (4) that
ZUp(G) = 1. Otherwise |N | = p, a contradiction. Then P1 ∩ T = 1, and so
|T |p ≤ p. If T = 1, then P1 is S-quasinormal in G. By (4) and Lemma 2.2(6),
N ≤ (P1)

G = (P1)
P = P1, which is impossible. Thus T > 1. If TG > 1, then

N ≤ T by (4), and so |N | = p, a contradiction. Hence TG = 1. By Lemma
2.2(5), T is nilpotent. Since T is subnormal in G by Lemma 2.2(1), T is a group
of order p, because Op′(G) = 1 by (1). Then P1T is a Sylow p-subgroup of G.
By (4) and Lemma 2.2(1), P = P1T = Op(G) = N . Thus N ≤ TG = TP = T
by (4) and Lemma 2.2(6), and so |N | = p, which contradicts (4). Therefore,
P1 has a p-nilpotent supplement in G. Since G = N ⋊M and M ∈ Np by (4),
every maximal subgroup of P has a p-nilpotent supplement in G. Then by (3)
and Lemma 2.5, G ∈ Np. This is the final contradiction. □

Theorem 3.4. Let p be a prime divisor of |G| and E be a normal subgroup of
G such that G/E ∈ Np. If E has a Sylow p-subgroup P such that NG(P ) ∈ Np

and every maximal subgroup of P either is weakly (Up)s-quasinormal or has a
p-nilpotent supplement in G, then G ∈ Np.

Proof. By Lemmas 2.3(3) and 3.3, E ∈ Np. Let Ep′ be the normal p-complement
of E. Clearly, Ep′ ⊴G. Suppose that Ep′ > 1. Then by Lemma 2.3(1), G/Ep′

satisfies the hypothesis of the theorem. By induction on |G|, we have that
G/Ep′ ∈ Np, and so G ∈ Np. Hence we may assume that Ep′ = 1. Then
E = P is a p-group. Therefore, G = NG(P ) ∈ Np. □
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Theorem 3.5. Suppose that for every prime divisor p of |G| and every non-
cyclic Sylow p-subgroup P of G, every maximal subgroup of P either is weakly
(Up)s-quasinormal or has a p-supersoluble supplement in G. Then G ∈ U.

Proof. Suppose that the theorem is false and let G be a counterexample of
minimal order. Then:

(1) G is a Sylow tower group of supersoluble type.
Let q be the smallest prime dividing |G| and Q a Sylow q-subgroup of G. If

Q is cyclic, then G ∈ Nq by Lemma 2.6(1). Now suppose that Q is non-cyclic.
Since G satisfies the hypothesis of Lemma 3.1, G ∈ Nq too. Then by Lemma
2.3(1), we can deduce that G is a Sylow tower group of supersoluble type by
analogy.

(2) Let r be the largest prime dividing |G| and R a Sylow r-subgroup of G.
Then R is the unique minimal normal subgroup of G, G/R ∈ U and G = R⋊M ,
where M is a maximal subgroup of G. Moreover, R = F (G) and R is non-
cyclic.

By (1), G is soluble and R⊴G. Let N be any minimal normal subgroup of G.
Then N is elementary abelian. By Lemmas 2.3(1) and 2.3(2), the hypothesis
of the theorem holds for G/N , and so the choice of G implies that G/N ∈ U.
Clearly, N is the unique minimal normal subgroup of G and Φ(G) = 1. It
follows that N ≤ R and G has a maximal subgroup M such that G = N ⋊M .
Since CG(N) ∩ M = 1, N = CG(N), and thereby N = F (G). This induces
that R = N . If R is cyclic, then by Lemma 2.7, G ∈ U, which is impossible.
Thus R is non-cyclic.

(3) Final contradiction.
Let R1 be any maximal subgroup of R. Then by (2), (R1)G = 1 and R1 > 1.

Suppose that R1 is weakly (Ur)s-quasinormal in G. Then we can derive a
contradiction as in step (5) of the proof of Lemma 3.3. Hence R1 has a r-
supersoluble supplement in G, say K. Since R∩K⊴G, by (2), either R∩K = 1
or R ≤ K. In the former case, R1 ∩K = 1, and so R = R1, a contradiction.
In the latter case, G = K ∈ Ur. Then |R| = r, a contradiction too. The proof
is thus completed. □

Lemma 3.6. Let P be a Sylow p-subgroup of G, where p is a prime divisor
of |G| with (|G|, p − 1) = 1. If every cyclic subgroup of P of order p or 4
(when P is a non-abelian 2-group) either is weakly (Up)s-quasinormal or has a
p-nilpotent supplement in G, then G ∈ Np.

Proof. Suppose that the result is false and letG be a counterexample of minimal
order. Let M be any maximal subgroup of G. By Lemma 2.3(3), it is easy to
see that the hypothesis of the lemma still holds on M . Hence M ∈ Np by the
choice of G, and so G is a minimal non-p-nilpotent group. In view of [14, Chap.
IV, Satz 5.4] and [3, Chap. VII, Theorem 6.18], G is a minimal non-nilpotent
group; G = P⋊Q, where Q is a Sylow q-subgroup of G with q ̸= p; P/Φ(P ) is a
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chief factor of G; the exponent of P is p or 4 (when P is a non-abelian 2-group).
If P/Φ(P ) ≤ ZUp(G/Φ(P )), then G/Φ(P ) ∈ Up, and thereby G ∈ Up. Since
(|G|, p− 1) = 1, G ∈ Np, which is impossible. Thus P/Φ(P ) ≰ ZUp(G/Φ(P )),
and so |P/Φ(P )| > p.

Let x ∈ P\Φ(P ), H = ⟨x⟩ and V = HΦ(P ). Then |H| = p or 4 (when P
is a non-abelian 2-group) and H < P . Since P/Φ(P ) is a chief factor of G,
HG ≤ Φ(P ). First suppose that H is weakly (Up)s-quasinormal in G. Then
G has an S-quasinormal subgroup T such that HT is S-quasinormal in G and
(H∩T )HG/HG ≤ ZUp(G/HG). By Lemma 2.2(7), we may assume that T ≤ P .
Also, by Lemma 2.1(1), (H∩T )Φ(P )/Φ(P ) ≤ P/Φ(P )∩ZUp(G/Φ(P )) = 1, and

so T < P . It follows from Lemma 2.2(6) that TG = TP < P . Since P/Φ(P ) is
a chief factor of G, T ≤ TG ≤ Φ(P ). Thus V = HTΦ(P ) is S-quasinormal in
G. By Lemma 2.2(6) again, we have that P = V G = V P = V . Hence P = H,
a contradiction. Now suppose that H has a p-nilpotent supplement K in G.
Then (P ∩K)Φ(P )⊴G. Since P/Φ(P ) is a chief factor of G, (P ∩K)Φ(P ) = P
or Φ(P ). If P ≤ K, then K = G, and so G ∈ Np, which is impossible. Thus
P ∩K ≤ Φ(P ). This implies that P = H(P ∩K) = H, which is also impossible.
The proof is thus finished. □
Theorem 3.7. Let p be a prime divisor of |G| with (|G|, p− 1) = 1 and E be
a normal subgroup of G such that G/E ∈ Np. If E has a Sylow p-subgroup P
such that every cyclic subgroup of P of order p or 4 (when P is a non-abelian
2-group) either is weakly (Up)s-quasinormal or has a p-nilpotent supplement in
G, then G ∈ Np.

Proof. The conclusion follows by a similar argument as in Theorem 3.2 and
using Lemma 3.6 instead of Lemma 3.1. □
Theorem 3.8. Let E be a normal subgroup of G such that G/E ∈ U. Suppose
that for every prime p dividing |E| and every non-cyclic Sylow p-subgroup P
of E, every cyclic subgroup of P of order p or 4 (when P is a non-abelian
2-group) either is weakly (Up)s-quasinormal or has a p-supersoluble supplement
in G, then G ∈ U.

Proof. Suppose that the result is false and letG be a counterexample of minimal
order. A similar discussion as in the proof of Lemma 3.6 shows that G is a
minimal non-supersoluble group. In view of [1, Theorem 12] and [3, Chap.
VII, Theorem 6.18], G is a soluble group that has a normal Sylow p-subgroup,
say Gp; Gp = GU; Gp/Φ(Gp) is a chief factor of G; the exponent of Gp is
p or 4 (when Gp is a non-abelian 2-group). Since G/E ∈ U, we have that
Gp ≤ E. If |Gp/Φ(Gp)| = p, then by Lemma 2.7, G/Φ(Gp) ∈ U, and so G ∈ U,
which is impossible. Thus |Gp/Φ(Gp)| > p. This implies that Gp/Φ(Gp) ≰
ZUp(G/Φ(Gp)).

Let x ∈ Gp\Φ(Gp) and H = ⟨x⟩. Then |H| = p or 4 (when Gp is a non-
abelian 2-group) and H < Gp. Suppose that H is weakly (Up)s-quasinormal
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in G. Then we can get a contradiction similarly as in the proof of Lemma
3.6. Now consider that H has a p-supersoluble supplement K in G. Then
(Gp∩K)Φ(Gp)⊴G. Since Gp/Φ(Gp) is a chief factor of G, (Gp∩K)Φ(Gp) = Gp

or Φ(Gp). If Gp ≤ K, then K = G, and so G ∈ Up. This induces that
Gp ≤ ZU(G), and therefore G ∈ U, a contradiction. Thus Gp ∩ K ≤ Φ(Gp).
Then Gp = H(Gp ∩K) = H, a contradiction too. The theorem is proved. □

4. Some applications

Let F be a formation. In Section 1, we observe that all Fs-quasinormal and
F-quasinormal subgroups of G are weakly Fs-quasinormal in G. Besides, recall
that a subgroup H of G is said to be c-normal [18] in G if G has a normal
subgroup T such that G = HT and H ∩T ≤ HG. A subgroup H of G is called
Fn-supplemented [19] in G if G has a normal subgroup T such that G = HT
and (H ∩ T )HG/HG ≤ ZF(G/HG). A subgroup H of G is said to be Fh-
normal [9] in G if G has a normal subgroup T such that HT is a normal Hall
subgroup of G and (H ∩T )HG/HG ≤ ZF(G/HG). A subgroup H of G is called
Fn-normal [10] in G if G has a normal subgroup T such that HT is normal in
G and (H∩T )HG/HG ≤ ZF(G/HG). It is easy to see that all above-mentioned
subgroups of G are also weakly Fs-quasinormal in G.

Therefore, many results in former literatures can be viewed as special cases
of our theorems in Section 3, and we list some of them below:

Corollary 4.1. [11, Theorem 3.4] Let p be the smallest prime dividing |G|
and P be a Sylow p-subgroup of G. If every maximal subgroup of P is c-normal
in G, then G ∈ Np.

Corollary 4.2. [9, Theorem 5.1] Let p be a prime divisor of |G| with (|G|, p−
1) = 1 and P be a Sylow p-subgroup of G. Then G ∈ Np if and only if every
maximal subgroup of P is Uh-normal in G.

Corollary 4.3. [10, Theorem 4.2] Let p be a prime divisor of |G| with (|G|, p−
1) = 1 and P be a Sylow p-subgroup of G. Then G ∈ Np if and only if every
maximal subgroup of P not having a p-nilpotent supplement in G is Un-normal
in G.

Corollary 4.4. [13, Theorem 3.2] Let p be a prime divisor of |G| with (|G|, p−
1) = 1. Assume that G has a normal subgroup N such that G/N ∈ Np and
for every maximal subgroup M of each Sylow p-subgroup of N which is not
(Np)s-quasinormal in G, M has a p-nilpotent supplement in G. Then G ∈ Np.

Corollary 4.5. [15, Lemma 2.7] Let p be the smallest prime divisor of |G|
and P be a Sylow p-subgroup of G. Then G ∈ Np if and only if every maximal
subgroup of P having no p-nilpotent supplement in G is Np-quasinormal in G.
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Corollary 4.6. [11, Theorem 3.1] Let p be an odd prime dividing |G| and P
be a Sylow p-subgroup of G. If NG(P ) ∈ Np and every maximal subgroup of P
is c-normal in G, then G ∈ Np.

Corollary 4.7. [9, Theorem 5.2] Let p be a prime divisor of |G| and P be a
Sylow p-subgroup of G. Then G ∈ Np if and only if NG(P ) ∈ Np and every
maximal subgroup of P is Uh-normal in G.

Corollary 4.8. [10, Theorem 4.3] Let p be a prime divisor of |G| and P be
a Sylow p-subgroup of G. Then G ∈ Np if and only if NG(P ) ∈ Np and every
maximal subgroup of P not having a p-nilpotent supplement in G is Un-normal
in G.

Corollary 4.9. [18, Theorem 4.1] Suppose that P1 is c-normal in G for every
Sylow subgroup P of G and every maximal subgroup P1 of P . Then G ∈ U.

Corollary 4.10. [19, Corollary 3.8] G ∈ U if and only if every maximal
subgroup of every non-cyclic Sylow subgroup of G is Un-supplemented in G.

Corollary 4.11. [16, Lemma 3.8] Let p be the smallest prime dividing |G| and
P be a Sylow p-subgroup of G. If the subgroups of P of order p or order 4 are
c-normal in G, then G ∈ Np.

Corollary 4.12. [13, Theorem 3.3] Let p be a prime divisor of |G| with (|G|, p−
1) = 1. Assume that G has a normal subgroup N such that G/N ∈ Np and for
every cyclic subgroup L of order p or 4 of N which is not (Np)s-quasinormal
in G, L has a p-nilpotent supplement in G. Then G ∈ Np.

Corollary 4.13. [18, Theorem 4.2] Suppose that ⟨x⟩ is c-normal in G for
every element x of G with prime order or order 4. Then G ∈ U.

Corollary 4.14. [9, Corollary 3.6] G ∈ U if and only if every cyclic subgroup
of G of prime order or order 4 is Uh-normal in G.
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