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1. Introduction and definitions

Let X, be the class of meromorphic functions f of the form:

(1.1) f(z)zz—lp—i— Y at (peN={12,.}),

k=1—p
which are analytic and p-valent in the punctured unit disk
D={z:2€Cand0 < |z| <1} =U\ {0},

having a pole of order p at the origin.
For a function f € X, given by (1.1) and g € ¥, defined by

1 o0
9(z) = i > bt
k=1—p

the Hadamard product (or convolution) of f and g is given by

(Fr)e) =t D it = (g 1)(2).

k=1—p
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Let the functions f and ¢ be analytic in the open unit disk
U := DU {0}. We say that the function f is said to be subordinate to g,
or (equivalently) g is said to be superordinate to f, written symbolically as

f=<g in U or f(z)<g(z) (z€U),

if there exists a Schwarz function w analytic in U, with w(0) = 0 and |w(z)| < 1
for all z € U, such that

f(z) = g(w(z)) (z€).
In particular, if the function g is univalent in U, then we have the equivalence
(cf., [7,10])
f=g & [f(0)=g(0) and [f(U)Cg(U).
Recently, Ali et al. [1] introduced and investigated the multiplier transforma-

tion I(n, \) on the class ¥, of meromorphically multivalent analytic functions
defined by the infinite series

1 = B+
NG =5+ 2 (5] at
k=1—p

(A>p;neNyg=NU{0};z D).
Obviously, we have
We now define the function fﬁ‘m by

1 S k—p+A\"
fyi\7p(2)lzz)+z<)\_p) Zk ()\>p;TLENO:NU{O};Z€]D),
k=1

and let the associated function ffl‘;;j be defined by the Hadamard product (or

convolution,):

1

w2 = Sa—gr (1> 0.2€D).

Then, analogous to I,(n, A), we here define a new multiplier transformation

THn, ) : 5, = 5,

as follows:
(1.2) T (n, M) f(2) = [ (2) * f(2).
We note that
PHF(2))
TN = £ and TR0 f() = E T
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It is easily verified from (1.2) that
(13) 2 (TN F) (2) = uZE (M) f(2) = (1 + p)TE (0, N f(2)

and
14) 2 (T +1LNf) (2) = (A= p)TE(n, A f(2) — AZE(n+ 1, ) f(2).

The definition (1.2) of the multiplier transformation Z/'(n, A) is motivated
essentially by the Liu-Srivastava operator [5,6], which has been used widely
on the space of meromorphic functions in ). The multiplier transformation
Ik (n, A) gets reduce to the familiar operators by specializing the parameters
A, p;n and p. In particular, for A = 2 and p = p = 1, the operator Z!(n, \) f(2)
reduces the operator I" f(z), introduced by Flett [2] and investigated by Urale-
gaddi and Somanatha [16,17].

Now, we introduce a new subclass of functions in 3, by making use of the
multiplier transformation Z}'(n, A) as follows.

Definition 1.1. A function f € ¥, is said to be in the class Z;\,’,‘l‘(a;A,B) if
it satisfies

p—a Zh(n,\) f(2) 1+ Bz’
neNppeN;A>p0<a<p—-1<B<A<I1;z€l).

1 (Z(Izﬁ‘(n,)\)f)’(z)+a> 1+ Az

In particular, for A = 1 and B = —1 we write X34 (a; 1, —1) = Sk (a),

where
E;}’/\(a) = {f €X,:—Re (Z (ﬁj((:7i\;;2z)(2)> >,z € TU} .

For A=p=1,B=—-1and n = 0, E;"’é(a;l,fl) is the class of p-valent
meromorphic starlike functions of order «.

Recently Srivastava et al. [14] and Patel et al. [12] obtained certain subor-
dination properties for certain subclass of multivalent meromorphic functions
defined by a linear operator. Some subordination properties of the subclass of
multivalent functions associated with the generalized multiplier transformation
have been obtained recently by the authors in [3]. Motivated by the afore-
mentioned work, we investigate the subordination properties of the multiplier
transformation Z/'(n, A) defined by (1.2) and we derive a number of sufficient
conditions for the functions belonging to the subclass E;\;ﬁ(a). We also obtain
a sharp inclusion relationship for the class E;}:ﬁ(a; A, B).

2. Preliminary lemmas

To establish our main results, we need the following lemmas.
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Lemma 2.1. [7,10] Let a fucntion h be analytic and convex (univalent) in U,
with h(0) = 1. Suppose also that the function ¢ given by

(2.1) 0(z) =14+ b1z +bgz? 4 -

is analytic in U. If

(2.2) o)+ 22 L) Ree0,c£0),

then

z
p(2) <0z = = [ h(e)dt < A,
0
where v is the best dominant of (2.2).

We denote by P() the class of functions ¢ given by (2.1) which are analytic
in U and satisfy the following inequality:

Rep(z) >, (0<vy<1,ze€l).
Lemma 2.2. [11] Let the function ¢ given by (2.1) be in the class P(vy). Then
2(1 —v)

1+ 2]
Lemma 2.3. [15] For 0 <y <y < 1,

P(y1) * P(y2) C P(v3), where ~y3=1-2(1—-7)(1 —72).
The result is the best possible.

Reyp(z) > 2y -1+ 0<vy<1,z€l).

For any complex numbers a,b, and ¢ (¢ ¢ Z; := {0,—1,-2,...}), the
Gaussian hypergeometric function is defined by

abz  ala+1)b(b+1) i

Filabez)=14 22 RETP0T )
ebi(ebiciz) =14 T+ = o
Lemma 2.4. [18] For any complex numbers a,b,c (¢ ¢ Z ), we have
1
B Y B T(b)T(c — b)
71— 1)1 — 2t) %t = ————— 3 Fi(a, b; ¢
/0 ( ) ( Z) F(C) 2 1(@, 7072)7
Rec> Rebd >0,

oFi(a,b;c;2) = (1 —2)7% oF (a,c—b;c; . i 1) , 2 ¢ (1,00),
oI (a,b;c52) = 2F1(b,a5¢52),
(b+1) 2F1(1,b;0+1;2) = (b+1) + bz o F1(1,b+ 1;0+ 2; 2),
z 9F1(1,1;2;—2) =log(1 + 2).
Lemma 2.5. [13] The function (1 — 2)¢ = e2°90=2) o =L 0 is univalent in
U if and only if o is either in the closed disk |0 — 1| < 1 or in the closed disk
lo+1] <1.
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Lemma 2.6. [9] Let A,B,3,v € C with 8 #0,|B| < 1,A # B, and suppose
that these constants satisfy

Re [B(1—A)(1-B)+~1-B’] >0
and
Re [3(1— A)(1 — B)+~|1 — B|*] -Re [B(1+ A)(1 4+ B) + 7|1 + B|?]
— [m[(B - A) +~(B-B)|" >0,
Re [B(1+ A)(1+ B) +1[1+ B*] >0
and
Re [3(1— A)(1 — B) +~|1 — B’] =Im[3(B — A) +v(B — B)] = 0.
Then the differential equation
2) 2q'(z) 1+ Az
Bq(z)+~ 1+ Bz

has a univalent solution in U given by

B+7(1 o B»)B(A-B)/B
5]0 tB+7=1(1 4+ Bt)f(A=B)/Bqt
q(z) = B+7oBAz ~
if B=0.

B [Zthti—leBAtt B’
If (z) is regular in U and satisfies
2¢'(2) - 1+ Az
Be(z)+~ 1+ Bz’

p(2) +

then
1+ Az

1+ Bz

p(z) < q(z) <
and q(z) is the best dominant.

Lemma 2.7. [8] Let q be univalent in the unit disk U and 6 and ® be analytic
in a domain D containing q(U), with ®(w) # 0, when w € q(U). Set Q(z) =
2q'(2)®(q(2)), h(z) = 0(q(2)) + Q(z) and suppose that either h is convex, or Q
is starlike univalent in U. In addition, assume that

() (5 4

If p is analytic in U, with p(0) = ¢(0),p(U) C D and
(2.3) 0(p(2)) + 2p'(2)@(p(2)) < 0(q(2)) + 24¢'(2)2(q(2)) = h(2),
then p < q, and q is the best dominant.
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Lemma 2.8. [19] Let v be a positive measure on the interval [0,1]. Let h(z,t)
be a complex-valued function defined on U x [0, 1] such that h(.,t) is analytic
in U for each t € [0,1] and h(z,.) is v-integrable on [0,1] for each z € U. In
addition, suppose that Re(h(z,t)) > 0,h(—r,t) is real and

1 1
fre <h(z,t)) = h(—r,t) (o] =7 < Lt <[0,1]).

If the function H(z) is defined by

then
1

Re(H(z)) > H(l—r) (|l <7 <1).

Lemma 2.9. [/] Let A # 0 be a real number, % >0and 0 < B < 1. Let

9(2) =1+ cp2™ + 12"+ - | be analytic in U and
aM z
<1 eN),
92) <1+ 2= (nen)
where

1=/ (1+2)

1= A+ M8+ /14 (1422

If P(2) =1+ dp2" +dpi12" ™ + -+ is analytic in U and satisfies the subordi-
nation relation

M=

g(2) {1 =X+ A1 =B)P(2)+ 8]} <1+ Mz,
then Re P(z) > 0 for z € U.

3. Subordination properties of 7/'(n, \)
Unless otherwise mentioned, we assume throughout this paper that
—1<B<A<1l,a>0,A>pneNy andp € N.

Theorem 3.1. Letnn > 0 and —1 < B; < A; <1, j = 1,2. If the functions
fj € Xp satisfy the following subordination condition:

1+ Az .
31 {0 =W L NLE) TN < T =12
then

14+ (1-29)z

{1 =nIHn+1,\)F(z) + nZk(n, N F(2)} < 1—2
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where F' = TH(n + 1, \)(f1 * f2) and

. AA-B)A—By) (1 A-p 1
(32) o=1- =it (1 22F1<1,1, L ))

The result is the best possible when By = Bs = —1.

Proof. Let the functions f; € ¥, j = 1,2, satisfy the subordination condition
(3.1). Then, by setting

1+AJZ
1—|—sz7
J=12

ji(2) = 2" {(1 = m)Zy (n + LA f5(2) + 01T} (n, A) f(2) } <

(3.3)

we have

v € P(v;), N=1"g
J

By making use of (1.4) and (3.3), we obtain

A_ - 2 z - 2
3o T+ 1) = / P ()t = 1,2.
0

Now, if we let F' = Z/'(n + 1, A\)(f1 * f2), then by using (3.4) and the fact that

Iy(n+ 1L, NF(2) = Ty (n + LAY (n + LA (fr * f2)(2))
=Zh(n+ 1L, AN fi(z) *ZH(n + 1, A) fa(2),

a simple computation shows that

)\_ —_p ? —_Pp
Th(n+ LA F(z) = =L /O 7 o t)dt,

n
where
wo(z) = 2P {(1 —n)ZH(n+ 1L, \)F(z) +nZh(n, )\)F(z)}
3.5 — rep [ a—p
(3:5) _A ; pz‘T/o t7m ey % p2)(t)dL.

Since ¢; € P(v;), j = 1,2, it follows from Lemma 2.3 that

©1 % 2 € P(vs), where ~v3=1-—2(1—71)(1—"2),
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and the bound 73 is the best possible. Hence, by using Lemma 2.2 in (3.5), we
deduce that

A—p ! -1
Re po(z) = T u 7 " "Re(pr * ¢2)(uz)du
0
1
- . 21 —
AP [ (o g 20w
n Jo 1+ ulz|
A—p [P 2 2(1 —
Sl Y S 273_1+(73>> du
n Jo 14+u

_ _ _ 1 %—1
—1_ 4(A1 Bl)(AQ Bg) 1— A p/ (2 du | = (5,
(1= B1)(1 = Bs) n Jo 1+u

where 9§ is given by (3.2).
When B; = By = —1, we consider the functions f; € ¥, (j = 1,2) which
satisfy the hypothesis (3.1) and are given by

A=p _, 2 [ a0 (14 At )
M . = p n n J = .
Zy(n+ 1,0 f5(2) ; z /Ot (1—t >dt,j 1,2
Since
(1_Z>*<1_Z>1—(1+A1)(1+A2)+ T ,
it follows from (3.5) that
A — Lo, 1+A)(1+ A
pol(z) = AP [ <1—(1+A1)(1+A2)+( A+ 2))du
n Jo 1—uz
1+A)(1+ A
:1fa+Ana+Aﬂ+(+ DL+ 4o)
(-2
X 2F1<1,1;)\_p+1; : )
n z—1
Therefore

2

as z — —1, which evidently completes our proof of Theorem 3.1. O

1 A— 1

By settingn =1,B; = —=1,4; =1 —24; j = 1,2, in Theorem 3.1, we have
the following corollary.

Corollary 3.2. If the functions f; € ¥, satisfy the following subordination
condition.:

1+ (1 — 25])2

(3.6) 2PTH(n, ) fi(2) < T j=1,2

9 ) )
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then
Re (2PZ) (n, \)F(2)) > 1 —2(1 — 61)(1 — b3)
X |:2— 2F1 <1,1,)\—p+1,;)] (Z EU)7
where F' = 1l(n + 1, \)(f1 * f2).

The next theorem gives subordination property of the multiplier transfor-
mation I{j(m A) with respect to variation of the parameter p.

Theorem 3.3. Letnn > 0 and —1 < B; < A; <1, j = 1,2. If the functions
fi € ¥y, satisfy the following subordination condition:

1+ A,z .
Zp{(]' 777)15(’”’)‘)]0](’2) +UI;+1(H7)‘)fJ(Z)} = 1 +BJZ’ J= 1727
J
then
1+ (1 — 2(51)2

2P {(1 —n)ZH(n, \)F(z) + nIZ‘,"H(n, )\)F(z)} < - ;

where F' = Tl (n, \)(f1 * f2) and

5= 1— 2 = BU(As — By) <1—; 2 Fy (171;“+1;1>>.
n

(1= B1)(1 - Bs) 2
The result is the best possible when By = Bs = —1.

Proof. The proof is similar to that of Theorem 3.1, and so it is being omitted
here. (|

In the following Theorem 3.4, we have determined the sufficient condition
for the functions zPZ}'(n, \) f(2) to be a member of the class P(p).

Theorem 3.4. If f € X, satisfy the following subordination condition:

Az
(3.7) {1 =T A f(z) + 0T (A f(2)} < i —th’
then
Re (z”II’)‘(n, /\)f(z)) >p (2€0),
where
(3.8)
A A _ k. B ,
o 5+ Q —B) (1-B)™" ok (1,1,77+1,B_1), if B#0
pw+n

The result vs the best possible.
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Proof. Let
(3.9) g(z) = 2PIh(n, N f(2) for [e€X,.

Then the function g is of the form (2.1). Differentiating (3.9) with respect to
z and using the identity (1.3), we obtain

1

(3.10) PN () = 9(2) + 229 (2).
By using (3.7), (3.9), and (3.10), we get
n_, 1+ Az
o)+ L (2) < T

Now, by applying Lemma 2.1, we have

7& _% o %_1 1+At
g(z)<Q(z)fnz /Ot (1+Bt>dt

By applying Lemma 2.4, we get

A 1-4 B
4L B>QE(LLg+L : ),ﬁB#O

1+ ——Az, if B=0.
BAn
Now, we will show that
(3.12) inf {Re Q(2): |2] <1} = Q(-1).

We have
1+ Az S 1-Ar

“11B:-1-Br

R |z| =7 < 1,

and setting

1+ Azs
s, 2) = 14+ Bzs

which is a positive measure on the closed interval [0, 1], we get

Q) = / (s, 2)dp(s),

(0<s<1) and du(s)= Hs%d&
n

so that

1
iy
(313)  Re Q(z)z/o 1_3‘::

Asr — 17 in (3.13), we obtain the assertion (3.12). Now, by using (3.11) and
(3.12), we get

du(s) = Q(—r), |el=r < 1.

Re (2T (n,A) f(2)) > p
where p is given by (3.8).
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To show the estimate (3.8) is the best possible, we consider the function

f € ¥, defined by
_1 (14 Auz
1
——|d
<1+Buz> “

3=

uo [l
IR, \) f(2) = 7/ u
nJo
For the above function, we find that

1+ Az
1 _
2P {(1 — n)Iz’f(n,)\)f(z) + 771’5“' (n,)\)f(z)} =118
and
1
1% B _q 1 —Au
PTH [ad
z p(n,/\)f(z)—>n/0u" <1—Bu)du
A A -1 CH B ;
_ B—f—g‘—B)(l—B) 2F1<1,1,77+1,B_1)» it B#0
1——F 4 if B =0.
Ht+n
as z — —1, and the proof of the Theorem 3.4 is completed. ]

In its special case when A =1 —2v, B = —1 and nn = 1, Theorem 3.4 yields
the following corollary.

Corollary 3.5. If f € X, satisfy the following condition:

1+ (1—-2y)z

LT (0, N) f(z) < T

(z € ),
then

Re (2PZ5 (n, \) f(2)) > v+ (1 —7) [ oFy (1, Lip+1; ;) - 1] (z € U).
The result is the best possible.

Theorem 3.6. If f € X, satisfy the following subordination condition:

1+ A4
(3.14) P {1 I+ L)+ TN ()} < e,
p p 1+ Bz
then
Re (2PZ4 (n, A) f(2)) > po (2 € 1),
where
A - % A—p B .
Do = E+ 1_B> 2F1<1a17 n +17B_1>7 ZfB#O
—p _
__ATP g B=0.
A=p+n ¥

The result vs the best possible.
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Proof. Let

(3.15) h(z) = 2PZh(n+ 1,\)f(2) for feX,.

Then by using the hypothesis (3.14) together with (1.4) and (3.15), we obtain
7 1+ Az

A—p 1+ Bz’

The remaining part of the proof of Theorem 3.6 is similar to that of Theorem

3.4 and hence, we omit the details. O

h(z) + 2h () =(1— mM2PLH (n 41, \) f(2) +nZh(n, \) f(z) <

For a function f € X, the integral operator F, , is defined by

F.pf(z) = g /0 =1 £ (¢)dt

_( 2F1(1,cc+ 15 2)
= =

(3.16)

> * f(z) (¢>0,z€D).
Also, it is easily verified from (3.16) that

(3.17) z (Ig(n, )\)chpf)/ (2) = cZh (n, A\ f(z) = (c+ p)I;(n, N Fepf(2).
In the next Theorem 3.7, by using the integral operator defined by (3.16), we

establish sufficient condition for the functions
2PIH(n, \)Fe.p f(2) to belong to P(p1).

Theorem 3.7. If f € ¥, and F,,f given by (3.16), satisfies the subordination
condition:

. . 1+ Az
(3.18) 2P {(1 — n)II’j (n, N F.pf(2) + nZy (n, )\)f(z)} =< ,
1+ Bz
then
Re (2PZ4 (n, \)Fep f(2)) > p1 (2 € 1),
where
A A 1 c B .
P B+Q1B>(1B) 2F1<1,1,77+17B_1>, ZfB#O
1-— A, if B=0.
c+n
The result is the best possible.
Proof. Let
(3.19) h(z) = 2PZh(n, A\ Fe p f(2)-

Then by using the hypothesis (3.18) together with (3.17) and (3.19), we obtain

c Az
=)+ SaH(2) = 2 {(1= T (0 Ve () + il ) < g

The remaining part of the proof of Theorem 3.7 is similar to that of Theorem
3.4 and hence, we omit the details. O
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Theorem 3.8. If f € ¥, and the function F, ,f defined by (3.16), satisfies

Zp+1 / 1 z
S {0 @) G @) @) < g
then
(3.20) — Re (ZPH (Z#(n, N Fup f) (z)) >p (€U
. » p Tt w,p y

where p1 is given as in Theorem 3.7. The result is the best possible.

2P+l

Proof. Upon replacing h(z) by —=; (Ig(n,)\)FMpf)/ (2) in (3.19) and using
the same technique as in the proof of the Theorem 3.4, we can prove the
assertion (3.20) of Theorem 3.8. O

Theorem 3.9. Let 0 # 6 € Cand 0 < v < p such that either |1 + 2v5| <1 or
|1 —2v6| < 1. If f € £, satisfies
1
Zy(n, N f(2)
Iy (n, A) f(2)

v

(3.21) Re < <1+ " (z €,

then
(PTE, N f(2)’ < g(z) = (1= 2)*° (2 €T)

and q s the best dominant.

Proof. Let

(3.22) 6(2) = (P, N f(2))” (2 €D)
and choose the principal branch in (3.22). We note that ¢ is analytic in U and
¢(0) = 1. Differentiating (3.22), we deduce that
L) T )

0p(z)  Ip(n, N)f(2)
Using (1.3) and (3.21) in (3.23), we get

2¢'(2) , —p+ (=272
.24 - .
(3:24) Pt 0o (2) = 1—2
Define the functions 6 and ® by 6(z) = —p, and ®(z) = 1/§z. Then 6 and O
are analytic in C\ {0} and ®(z) # 0. Letting ¢(z) = (1 — 2)??%, by Lemma 2.5,
¢ is univalent in U with q(0)=1. Since
2z

Qz) = 2 (2)®(4(2) = -1 —
is starlike univalent in U with Q(0) = 0 and Q’(0) # 0,

h(z) = %;27)2 and Re(zg((zz))> =Re((1—2)"") >0,

(3.23)
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the functions @ and h satisfy the conditions of Lemma 2.7. Thus, the assertion
of the Theorem 3.9 follows from (3.24) and Lemma 2.7. O

4. Inclusion properties of the class X% (; A, B)

Theorem 4.1. If f(z) € X4+ (o; A, B) and

(41) (H+p—a)(l-=B)—(p—a)(l-A4) >0,
then
1 (2@ (2) 1+ Az
(4.2) _p—a< N () +a><q(z)<1+Bz, (z €,
where
1 1
o) = 2= (rr-- 5i5).

1 ~(p-a)(A-B)/B

-1 1+ Btz dt, if B#+0
43) Q)= / (”Bz) o

/ P eap(—A(p — ) (t — 1)2)dt, if B=0.
0

and q(z) is the best dominant of (4.2). If, in addition to (4.1),

B 1-—
A< (ptpt @) with 0< B <1,
p—«
then
Ap+1y . A, .
(44) Ep,ﬁ (O[, A7 B) - Ep,ﬁ (O(, 1- 2,07 _1)
where

p=pia<(u+p—a)—u{zF1 (LW;HLBB_J]_I)-

The bound on p is the best possible.
Proof. Let f(z) € E;};ﬁ“(a; A, B). Define the function g by

(45) 9() = = (TN () T

and 71 = sup{r: g(z) # 0,0 < |z| < r < 1}. Then g(z) is an analytic function
in |z| < r1. By logarithmic differentiation in (4.5), it follows that the function
¢(z) given by

(4.6) 9(z) = - I,’,‘(n,’)\) 7(2) 1+ Bz

2g'(2) 1 z (I;,‘(n /\)f)/(z) ta) 14+ Az
9(z) p—a
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is analytic in |z] < 7 and ¢(0) = 1. Using the identity (1.3) in (4.6) and
logarithmic differentiation of the resulting equation yields the following:

o <d%iﬁm”ﬁ%”+a>¢@>% 0 ()
p—a\ Iy7 (nA)f(2) —(p—a)(2) +p+p—a
S AR,
14+ Bz
Hence, by using Lemma 2.6 with 5 = a —p and v = u + p — «, we find that

1 1 1+ Az
4.7 #(2) *pfa ((lH'p—a)—Q(Z)) =q(2) = 1+ B>

(2 <71),

where ¢(z) is the best dominant of (4.7) and Q(z) is given by (4.3). Since

1+ Az
-1<B<A<LI;
Re<1+Bz> >0 (-1<B<A<L1zel),
by (4.7), we have Re(¢(z)) > 0 (|z| < r1). Now (4.6) shows that g(z) is starlike
(univalent) in |z| < r1. Thus it is not possible that g(z) vanishes on |z| = 7y if
r1 < 1. So we conclude that 1 = 1, and therefore ¢(z) is analytic in U. Hence
(4.7) implies that

1+ A
B(2) < a() < 1

This proves the assertion (4.2) of Theorem 4.1.
In order to establish (4.4), we have to find the least upper bound of p (0 <
p < 1) such that

(z € ).

o)< U2 (o ey
By (4.7), we have to show that
(4.8) p = supRe(q(2)) = q(-1).
zelU

To prove (4.8), we need to show that

1 1
inf Re = .
z€U (Q(z)) Q(-1)
From (4.3), we see that, for B # 0,

Q(z) = (1+ Bz)" /01 711 =) P71+ Bzt)"dt (2 € U),

where

a=~—"——> b=y, c=p+1.
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Since ¢ > b > 0, by using Lemma 2.4, we get the following:

LOTC=b 5 (0 e —B2)

Bz
. - F b2
(4.9) I(c) 2 1(“ ’C’Bz—i—l)
Bz

= 2R (Laje—r ).
(C) 2 1( 7a'7c7Bz+1)

Bp+p+1—a)
p—«
implies that ¢ > a > 0, by using Lemma 2.4, we find from (4.9) that

Since

A<

with 0< B <1,

1
ma:Ah@@mw7

where

1+ Bz
1+ (1—1¢)Bz

L)' (1 =) !

Talc—a

h(z,t) = (0<t<1)and dv(t) =

which is a positive measure on [0,1]. For 0 < B < 1, it may be noted that
Re(h(z,t)) > 0 and h(—r,t) is real for 0 < |z| <r < 1 and ¢ € [0, 1]. Hence, by
using Lemma 2.8, we have

re(gi) 2 aim (457 <D

and

inf Re <1> = inf ! ! S
Bew) T 2a 0= T T odee QD
We note that Q(—1) # 0. Thus, by using (4.8) and (4.9), we have

_ ! o) (p—o)A-B) . B\
p—p_a<(u+p a) u{zFl(L 5 it ,
B 1-
when A < (Pt a). Further by taking
p—a
B 1—a)\™" B 1—
A—>( (ptpt a)) for the case A = (ptpt a)’
p— p—«a

and using (4.2), we get (4.4). The result is the best possible as the function
q(z) is the best dominant of (4.2). This completes the proof of the Theorem
4.1. O
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5. Sufficient conditions for the class Z;‘ﬁ (@)

Theorem 5.1. Let 1 > 0 and if f € ¥, such that 2PZH(n,\) f(2) #0, z € U,
and satisfies the following differential subordination:

(5.1)

(1 =) (PZ¢(n, A)f(z))*%j;zp“ (=T8N F(2) (PTE N £(2))

—o—1

=< 1+—Aﬁz,

where the powers are understood as the principle value, and
(p—a)n (1 + gip)

27
Mi=4q |p—(—aml+r*+(p+2)
(p =) ifo =0,
p

ifo#£0

then f € Sk ().
Proof. If o = 0, then the condition (5.1) is equivalent to
2 (T8, N f) (2)
Iy (n, N f(2)
which implies that f € Z)#(a).
Now we consider o > 0 and suppose that
(5.2) 9(2) = ("I} (n, \) f(2))

Choosing the principal value in (5.2), we note that g is of the form (2.1) and
is analytic in U. Differentiating (5.2) with respect to z, we obtain

+pl<p—a (z€0),

—0

(z € D).

g(z) + }ng’(z)

= (1—n) (T Nf(2) 7 + gzpﬂ (—Z(n, N f(2))'
X (szZﬁ‘(n,)\)f(z))

which, in view of Lemma 2.1 with ¢ = op/n, yields

op
op+n

Also, with the aid of (5.2), (5.1) can be written as follows:

g(z){l—n+n[<1—z>P(z)+;‘]}<1+Mlz

—o—1

g(z) < 1+

Aﬂz.
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where P is given by

(5.3) P(z) = Tp—a\ ZEmNf(z)

Therefore, by Lemma 2.9, we find that
Re P(z) >0 (z€U),

1 (z(I;;(n,A)f)’(Z)Jra) (0<a<p),

that is )
2 (Zp(n, N f) (2)
—Re P >a (0<a<p, zel),
TN () ( :
which completes the proof of Theorem 5.1. d

Theorem 5.2. If f € X, satisfies the following subordination condition:

(5.4) 2P {(1— )TN F() + T, N ()} < 1+ Moz,
where
nia—p) (1+2)
M2 = )
[ —mnla=p)|+Vu?+ (n+n)?
then f € X4 (a).
Proof. Let
(5.5) g(z) = 2PT(n, ) f(2).

Then the function g is of the form (2.1) and is analytic in U. From Theorem
3.4 with A = My, and B = 0, we have

1
g(z) < 14+ ——Msz,
(2) Htn
which is equivalent to
I
(5.6) lg(z) — 1| < — My =N<1 (z€0U).
Btn

By using the identity (1.3) followed by (5.5), we obtain

p,uln 2) = _(a—p) (Ol—p) P P
(5.7) z@ﬁ<,nﬂ>—(l o) Lo P(ﬁg<x

where P(z) is given by (5.3). In view of (5.7), the hypothesis (5.4) can be
written as follows:

(5.8) ‘ (1 - 77(aﬂ—p)> g(z) + WP(z)g(z) - 1' <My (2€0).

We need to show that (5.8) yields
(5.9) Re P(z) >0 (z€T).
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Suppose that this is false. Since P(0) = 1, there exists a point zp € U such
that P(zp) = ix for some x € R. Therefore, in order to show that (5.9), it is
sufficient to obtain the contradiction from the inequality

o — a—
5100 B =|(1- 2D )+ LD pagta) - 1] 2 o
If we let g(z0) = u + v, then by using (5.6) and the triangle inequality, we
obtain that

2

E? = ’(1 - ’7(au_p)> g(z0) + WP(Zo)g(Zo) -1

= (u? +v?) (nx(o;— p))2+ 211173;(5 ) + ‘(1 - 77(01:]7)) 9(z0) — 1

> (u? + %) <W(a p)>2 N 2vnx(5 —p)

e (=

2

If we let
VU(z) = E* — M}

> (u? +v?) (nm(aﬂ— p))2 . 2vnm(§ )

(s o2l v (53

7 T
then (5.10) holds true if ¥(z) > 0, for any « € U. Since
2
(u? + v?) (@) > 0, the inequality ¥(z) > 0 holds true if the discrim-
inant A < 0, that is,

A:4(n<au_p)>2{v2—(u2+v2)

(n(au—p) B ‘1 B n(a—p)‘NY

which is equivalent to
2 2
Uz{l [(n(a—p) 3 ‘17 n(a—p)‘N> L N2 (u+n)
p p p

o[-zl (]
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After a simple computation, by using (5.6) we obtain the inequality

L P
2= 1-p2 = 1-N2

(n(a—p) B ‘1 B n(a—p)‘N>2 _ N2 (u+n>2
n

g

< . ’
[ e ()
(

which yields A < 0. Therefore E > Mj, which contradicts (5.8). It follows
that Re P(z) > 0, and f € X4 (). O
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