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1. Introduction and results

We assume that the reader is familiar with Nevanlinna’s theory of mero-
morphic functions (for references, see [5, 15]). The uniqueness of meromorphic
functions in the complex plane C is an important subject in the value dis-
tribution theory (see [16]). We say that two meromorphic functions f and g

share the value a ( a ∈ Ĉ = C
∪
{∞} ) in X ⊂ C provided that in X, we have

f(z) = a if and only if g(z) = a. We will state whether a shared value is by
CM (counting multiplicities) or by IM (ignoring multiplicities).

In 1926, Nevanlinna [14] proved the following well-known five value theorem.
Theorem A ( [14]). Let f and g be two nonconstant meromorphic functions
in the complex plane C, aj ∈ C (j=1,2,3,4,5) be five distinct values. If f and
g share the values aj (j=1,2,3,4,5) IM in C, then f ≡ g .

After his very work, the uniqueness theory of meromorphic functions in C
attracted many investigations (for references, see [16]). For the uniqueness
of meromorphic functions in the unit disc, refer to [4]. In [19], J.H. Zheng
suggested first time to investigate the uniqueness of meromorphic functions in
a precise subset of C and posed the following question.

Question 1.1. Under what conditions, must two meromorphic functions on
X(̸= C) be identical?
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It is an interesting topic how to extend some important uniqueness results in
the complex plane to an angular domain. In 2003, J. H. Zheng firstly took into
account the uniqueness of meromorphic functions sharing values in an angular
domain and extended five value theorem in the complex plane to an angular
domain (see [19,20]).
Theorem B ( [21]). Let f and g be two nonconstant meromorphic functions
in an angular domain Ω(α, β) = {z : α < arg z < β} (0 < β − α < 2π), and

lim sup
r→∞

Tα,β(r, f)

log r
= ∞.

If f and g share five distinct values aj (j=1,2,3,4,5) IM in Ω(α, β), then f ≡ g.
The Nevanlinna five distinct value theorem has been extended in [11,17] to

the case of five IM shared small functions; see the following result.
Theorem C ( [11, 17]). Let f and g be two nonconstant meromorphic func-
tions in complex plane C, and αj (j=1,2,3,4,5) be five distinct small func-
tions with respect to f and g. If f and g share αj (j=1,2,3,4,5) IM in C,
then f(z) ≡ g(z).

Also, we may raise the following natural question:

Question 1.2. What is the analogous result for Theorem C in one angular
domain?

In [12], H. F. Liu and Z. Q. Mao firstly extended five small functions theorem
in the complex plane to an angular domain.
Theorem D ([12]). Let f and g be two nonconstant meromorphic functions
in an angular domain Ω(α, β)(0 < β − α < 2π) such that

lim sup
r→∞

Tα,β(r, f)

log r
= ∞

and let αj (j = 1, 2, 3, 4, 5) be five distinct small functions with respect to f and
g in Ω(α, β). If f and g share αj (j = 1, 2, 3, 4, 5) IM in Ω(α, β), then f ≡ g.

However, all the above cases take place in simply connected domains. Thus it
is very interesting to consider the uniqueness theory of meromorphic functions
in doubly connected domains.

Here we shall mainly study the uniqueness of meromorphic functions in
doubly connected domains of the complex plane C. By the Doubly Connected
Mapping Theorem [1] each doubly connected domain is conformally equivalent
to an annulus {z : r < |z| < R}, 0 ≤ r < R ≤ +∞. We consider only
two cases: r = 0, R = +∞ simultaneously and 0 < r < R < +∞. In the
latter case, the homothety z 7→ z√

rR
reduces the given domain to the annulus

{z : 1
R0

< |z| < R0}, where R0 =
√

R
r . Thus, in both cases every annulus is

invariant with respect to the inversion z 7→ 1
z . Hence in this paper, we consider

the uniqueness of meromorphic functions on the annulus Λ = {z : 1
R0

< |z| <
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R0}, where 1 < R0 ≤ +∞. We denote by S a subset of distinct elements in
C = C

∪
{∞}. For a function f meromorphic in Λ, we define

E(S, f) =
∪
a∈S

{z ∈ Λ : f(z)− a = 0, counting multiplicity},

E(S, f) =
∪
a∈S

{z ∈ Λ : f(z)− a = 0, ignoring multiplicity}.

The Nevanlinna characteristic T0(r, f) of a meromorphic function f on the
annulus Λ shall be introduced in the next section.

Let f be a nonconstant meromorphic function on the annulus Λ = {z : 1
R0

<

|z| < R0}, where 1 < R0 ≤ +∞. The function f is called a transcendental or
admissible meromorphic function on the annulus Λ provided that

lim sup
r→∞

T0(r, f)

log r
= ∞, 1 ≤ r < R0 = +∞

or

lim sup
r→R0

T0(r, f)

− log(R0 − r)
= ∞, 1 ≤ r < R0 < +∞.

In 2009, T. B. Cao, H. X. Yi and H. Y. Xu [2] proved a general theorem on
the multiple values and uniqueness of meromorphic functions in the annulus Λ.
Theorem E ([2]). Let f and g be two transcendental or admissible meromor-
phic functions on the annulus Λ = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞.

Let aj(j = 1, 2, 3, 4, 5) be five distinct complex numbers in Ĉ. If E(aj , f) =

E(aj , g) for j = 1, 2, 3, 4, 5, then f(z) ≡ g(z).
Let f and α be two meromorphic functions on the annulus Λ = {z : 1

R0
<

|z| < R0}. α is called a small function with respect to f on the annulus Λ
if T0(r, α) = o(T0(r, f)) as r → ∞, possibly outside a set E of finite linear
measure for R0 = +∞ or T0(r, α) = o(T0(r, f)), as r → R0 possibly outside a
set E with

∫
E
dr/(R0 − r) < ∞ for R0 < +∞.

The following is the question we consider in this paper.

Question 1.3. Do f and g coincide if E(aj , f) = E(aj , g) for j = 1, 2, 3, 4, 5
on the annulus Λ, where aj (j = 1, 2, 3, 4, 5) are five distinct small functions
with respect to f and g.

Dealing with the above question, we obtain the following results which give
an affirmative answer to Question 1.3.

Theorem 1.1. Let f and g be two transcendental or admissible meromorphic
functions on the annulus Λ = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Let

αj(j = 1, 2, 3, 4, 5) be five distinct small functions with respect to f and g on

the annulus Λ. If E(αj , f) = E(αj , g) for j = 1, 2, 3, 4, 5, then f(z) ≡ g(z).



On uniqueness of meromorphic functions 716

We complete the proof of Theorem 1.1 with the help of the method in Yi
[17, 18] and Liu and Mao [12, 13]. These papers investigate the uniqueness of
meromorphic functions sharing small functions in the complex plane or in the
angular domains.

2. Preliminaries and some lemmas

Let f be a meromorphic function on the annulus Λ = {z : 1
R0

< |z| < R0},
where 1 < R0 ≤ +∞. We recall the classical notations of Nevanlinna theory
as follows:

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ, T (r, f) = N(r, f) +m(r, f),

where log+ x = max{log x, 0}, and n(t, f) is the counting function of poles of
function f in {z : |z| ≤ t}. Here we give the notations of the Nevanlinna theory
on annuli. Let

N1(r, f) =

∫ 1

1
r

n1(t, f)

t
dt, N2(r, f) =

∫ r

1

n2(t, f)

t
dt,

m0(r, f) = m(r, f) +m(
1

r
, f)− 2m(1, f),

N0(r, f) = N1(r, f) +N2(r, f),

where n1(t, f) and n2(t, f) are the counting functions of poles of function f in
{z : t < |z| ≤ 1} and {z : 1 < |z| ≤ t}, respectively. Set

N0(r,
1

f−a ) = N1(r,
1

f−a ) +N2(r,
1

f−a )

=
∫ 1

1
r

n1(t,
1

f−a )

t dt+
∫ r

1

n2(t,
1

f−a )

t dt.

in which each zero of the function f − a is counted only once. The Nevanlinna
characteristic of f on the annulus Λ is defined by

T0(r, f) = m0(r, f) +N0(r, f).

Throughout, we denote by S(r, ∗) quantities satisfying
(i) in the case R0 = ∞,

S(r, ∗) = O(log(rT0(r, ∗)))
for r ∈ (1,+∞) except for the set △r such that

∫
△r

rλ−1 < +∞;

(ii) if R0 < ∞, then

S(r, ∗) = O(log(
T0(r, ∗)
R0 − r

))

for r ∈ (1, R0) except for the set △′
r such that

∫
△′

r

dr
(R0−r)λ−1 < +∞;
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Thus for an admissible meromorphic function on the annulus Λ, S(r, f) =
o(T0(r, f)) holds for all 1 ≤ r < R0 except for the set △r or the set △′

r

mentioned above, respectively.

Lemma 2.1 ( [7, 9]). Let f be a nonconstant meromorphic function on the
annulus Λ = {z : 1

R0
< |z| < R0}, where 1 ≤ r < R0 ≤ +∞. Then

(i) T0(r, f) = T0(r,
1
f ),

(ii) max{T0(r, f1 · f2), T0(r,
f1
f2
), T0(r, f1 + f2)} ≤ T0(r, f1)

+T0(r, f2) +O(1).

By Lemma 2.1, the first fundamental theorem on the annulus Λ is immedi-
ately obtained.

Lemma 2.2 ( [7, 9] The first fundamental theorem). Let f be a nonconstant
meromorphic function on the annulus Λ = {z : 1

R0
< |z| < R0}, where 1 ≤ r <

R0 ≤ +∞. Then

T0(r,
1

f − a
) = T0(r, f) +O(1)

for every fixed a ∈ C.

Lemma 2.3 ( [8, 9] The lemma of the logarithmic derivative). Let f be a
nonconstant meromorphic function on the annulus Λ = {z : 1

R0
< |z| < R0},

where 1 ≤ r < R0 ≤ +∞. Then

m0(r,
f (k)

f
) ≤ S(r, f)

for every k ∈ N.

Khrystiyanyn and Kondratyuk also obtained the second fundamental theo-
rem on the annulus Λ. We show here the reduced form due to Cao, Yi and
Xu.

Lemma 2.4 ([2] The second fundamental theorem). Let f be a nonconstant
meromorphic function on the annulus Λ = {z : 1

R0
< |z| < R0}, where 1 ≤ r <

R0 ≤ +∞. Let a1, a2, . . . , aq be q distinct complex numbers in Ĉ. Then

(q − 2)T0(r, f) <

q∑
j=1

N0(r,
1

f − aj
) + S(r, f).

Lemma 2.5 ([3]). Let f be a nonconstant meromorphic function on the annulus
Λ, P1(f) and P2(f) be two mutually prime polynomials in f with degrees m and
n respectively. Then

T0(r,
P1(f)

P2(f)
) = max{m,n}T0(r, f) + S(r, f).



On uniqueness of meromorphic functions 718

Lemma 2.6. Let f be a nonconstant meromorphic function on the annulus
Λ = {z : 1

R0
< |z| < R0}, where 1 ≤ r < R0 ≤ +∞. Let βj(j=1,2,3) be small

functions with respect to f on the annulus Λ. Then

T0(r, f) ≤
3∑

j=1

N0(r,
1

f − βj
) + S(r, f) + o(T0(r, f)).

Proof. Set

F (z) =
f(z)− β1(z)

f(z)− β2(z)
· β3(z)− β2(z)

β3(z)− β1(z)
.

Then combining Lemma 2.4 and Lemma 2.5, we obtain the result. □
Lemma 2.7 ( [10]). Let g : (0,∞) → R and h : (0,∞) → R be monotone
nondecreasing functions such that g(r) ≤ h(r) outside an exceptional set E of
finite linear measure. Then for any α > 1, there exists r0 such that g(r) ≤
h(αr) for all r > r0.

Lemma 2.8 ( [6]). Let h1(r) and h2(r) be monotonically increasing and real
valued functions on [0, R0) such that h1(r) ≤ h2(r) possibly outside an excep-
tional set E ⊂ [0, R0), for which

∫
E
dr/(R0 − r) < ∞. Then there exists a

constant b ∈ (0, R0) such that if s(r) = 1− b(1− r), then h1(r) ≤ h2(s(r)) for
all r ∈ [0, R0).

3. Proof of Theorem 1.1.

The idea of the proof is from [17,18] and [12,13].
Suppose that f ̸≡ g. Set

(3.1) L(w) =
ω − α1

ω − α2
· α3 − α2

α3 − α1
.

Let F (z) = L(f(z)), G(z) = L(g(z)), βj = L(αj), (j = 1, · · · , 5). By (3.1) and
Lemma 2.5, we get β1 = 0, β2 = ∞, β3 = 1, β4 ̸≡ 0,∞, 1, β5 ̸≡ 0,∞, 1, β4 ̸≡
β5, and β1, · · · , β5 are small functions with respect to F and G. By the as-
sumption of Theorem 1.1 and (3.1), we know that F and G share 0, 1,∞ IM .
Then by the second fundamental theorem on Λ, we get

T0(r, F ) ≤ N0(r,
1

F
) +N0(r,

1

F − 1
) +N0(r, F ) + S(r, F )

≤ N0(r,
1

G
) +N0(r,

1

G− 1
) +N0(r,G) + S(r, F )(3.2)

≤ 3T0(r,G) + S(r, F ).

Similarly, we have

(3.3) T0(r,G) ≤ 3T0(r, F ) + S(r,G).

Hence by (3.2) and (3.3), we get

(3.4) S(r, F ) = S(r,G).
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We claim that at least three among N0(r,
1

F−βj
)(j = 1, 2, 3, 4, 5) are not

equal to S(r, F ) + o(T0(r, F )). Otherwise, by Lemma 2.6, we get

(3.5) T0(r, F ) ≤ S(r, F ) + o(T0(r, F )).

By (3.5) and Lemma 2.7 and Lemma 2.8, we get

lim sup
r→∞

T0(r, f)

log r
< ∞, 1 ≤ r < R0 = +∞,

or

lim sup
r→R0

T0(r, f)

− log(R0 − r)
< ∞, 1 ≤ r < R0 < +∞.

which contradicts f is transcendental or admissible.
Without loss of generality, we assume that

(3.6) N0(r,
1

F − β5
) ̸= S(r, F ) + o(T0(r, F )).

Set

(3.7) H =
F ′(β

′

4G− β4G
′)(F −G)

F (F − 1)G(G− β4)
− G′(β

′

4F − β4F
′)(F −G)

G(G− 1)F (F − β4)
.

Then by (3.7), we get

(3.8) H =
(F −G)H1

F (F − 1)(F − β4)G(G− 1)(G− β4)
,

where
(3.9)

H1 = F ′(β
′

4G− β4G
′)(G− 1)(F − β4)−G′(β

′

4F − β4F
′)(F − 1)(G− β4)

= β
′

4FF ′G2 − β
′

4FF ′G− β4(β4 − 1)FF ′G′ − β4β
′

4F
′G2 + β4β

′

4F
′G

−β
′

4F
2GG′ + β

′

4FGG′ + β4(β4 − 1)F ′GG′ + β4β
′

4F
2G′ − β4β

′

4FG′.

Noting that f ̸≡ g, by (3.1), we have

(3.10) F ̸≡ G.

We discuss the following two cases.
Case 1. H ≡ 0. By (3.7) and (3.10), we get

(3.11)
F ′(β

′

4G− β4G
′)

(F − 1)(G− β4)
≡ G′(β

′

4F − β4F
′)

(G− 1)(F − β4)
.

If β4 is a constant, then by β4 ̸= 1 and (3.11), we get F ≡ G, which contradicts
(3.10). So β4 is not a constant. By (3.11), we get

F ′(β
′

4G− β4G
′)

G′(β
′
4F − β4F ′)

− 1 ≡ (F − 1)(G− β4)

(G− 1)(F − β4)
− 1.
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Hence we get

(3.12)
F ′ −G′

F −G
≡ (1− β4)G

′(β
′

4F − β4F
′)

β
′
4G(G− 1)(F − β4)

+
G′

G
.

By (3.6), we know that there is a point z0 such that z0 is a common zero of

F − β5 and G− β5, but is not a zero or a pole of β4, β
′

4, β5, β5 − 1, β5 − β4. It
is obvious that z0 is a pole of the left side of (3.12), and not a pole of the right
side of (3.12), which is a contradiction.

Case 2. H ̸≡ 0. By (3.7), we get

H =
F ′

F − 1
· β

′

4G− β4G
′

G(G− β4)
− (

F ′

F − 1
− F ′

F
) · β

′

4G− β4G
′

G− β4
(3.13)

−(
G′

G− 1
− G′

G
) · β

′

4F − β4F
′

F − β4
+

G′

G− 1
· β

′

4F − β4F
′

F (F − β4)
.

Since

(3.14)
β

′

4G− β4G
′

G(G− β4)
=

G′

G
− G′ − β

′

4

G− β4
,

β
′

4G− β4G
′

G− β4
= β

′

4 −
β4(G

′ − β
′

4)

G− β4
,

then by Lemma 2.3 and (3.4), we get

m0(r,
β

′

4G− β4G
′

G(G− β4)
) ≤ m0(r,

G′

G
) +m0(r,

G′ − β
′

4

G− β4
)(3.15)

= S(r, F ) + o(T0(r, F )),

m0(r,
β

′

4G− β4G
′

G− β4
) ≤ m0(r, β

′
4) +m0(r,

β4(G
′ − β

′

4)

G− β4
)(3.16)

= S(r, F ) + o(T0(r, F )).

Combining (3.13),(3.15) and (3.16), we get

m0(r,H) = S(r, F ) + o(T0(r, F )).(3.17)

Next we estimate N0(r,H). By (3.7), we know that the poles of H only
possibly occur from the zeros of F,G, F −1, G−1, F −β4 and G−β4, the poles
of F,G and β4. Let E0 be the set of all zeros, 1-points and poles of β4. We
discuss the following four subcases.

Subcase 1. Suppose that z1 is a zero of F with multiplicity m1 and G
with multiplicity n1, but z1 ̸∈ E0. Then by (3.9), we know that z1 is a zero of
H1 with multiplicity at least m1 + n1 − 1. Noting that z1 is a zero of F − G
with multiplicity min{m1, n1}, by (3.8), we deduce that z1 is not a pole of H.

Subcase 2. Suppose that z2 is a pole of F with multiplicity m2 and G
with multiplicity n2, but z2 ̸∈ E0. Then by (3.9), we know that z2 is a pole of
H1 with multiplicity at most 2m2 +2n2 − 1. Noting that z2 is a pole of F −G
with multiplicity at most max{m2, n2}, by (3.8), we deduce that z2 is not a
pole of H.
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Subcase 3. Suppose that z3 is a zero of F − 1 with multiplicity m3 and
G− 1 with multiplicity n3, but z3 ̸∈ E0. Noting that z3 is a zero of F −G with

multiplicity min{m3, n3}, a simple pole of F ′

F−1 and G′

G−1 , by (3.7), we deduce
that z3 is not a pole of H.

Subcase 4. Suppose that z4 is a zero of F −β4 with multiplicity m4 and
G − β4 with multiplicity n4, but z4 ̸∈ E0. By (3.14), we know that z4 is a

simple pole of
β
′
4G−β4G

′

G(G−β4)
and

β
′
4F−β4F

′

F (F−β4)
. Noting that z4 is a zero of F − G, by

(3.7), we deduce that z1 is not a pole of H.
From the above, we get

N0(r,H) = o(T0(r, F )).(3.18)

Thus by (3.17) and (3.18), we get

T0(r,H) = S(r, F ) + o(T0(r, F )).(3.19)

Since F and G share β5 IM , by (3.7) and (3.19), we get

N̄0(r,
1

F − β5
) ≤ N0(r,

1

H
) ≤ S(r, F ) + o(T0(r, F )),

which contradicts (3.6). Theorem 1.1 is now completely proved.
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