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Abstract. In this paper we use a class of stochastic functional Kolmogorov-
type model with jumps to describe the evolutions of population dynamics.
By constructing a special Lyapunov function, we show that the stochas-
tic functional differential equation associated with our model admits a

unique global solution in the positive orthant, and, by the exponential
martingale inequality with jumps, we discuss the asymptotic pathwise
estimation of such a model.
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1. Introduction

Predator-prey behavior is a very common biological interaction in nature.
To describe such behavior, one of the most general mathematical models is the
n-dimensional Kolmogorov-type system on Rn

dX(t) = diag(X1(t), · · · , Xn(t))f(X(t))dt,

where X = (X1, · · · , Xn)
T , f = (f1, · · · , fn)T , Xi(t) represents the population

size of species i at time t and fi(X(t)) denotes the inherent net growth rate of
the i-th species, depending on the population size of each species.

From the practical point of view, the most realistic model should include
some hereditary characteristics such as after-effect, time-lag and time-delay
appearing in the variables, where functional differential equations give a math-
ematical formulation for such systems. Tang and Kuang [13] discussed the
permanence of n-species Kolmogorov-type functional differential system

(1.1) dXi(t) = Xi(t)fi(Xt)dt, i = 1, · · · , n.
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Stochastic functional population dynamics with jumps 724

For more details on the asymptotical stability, periodic solution, extinction and
permanence of (1.1), we refer the reader to, e.g., [6, 12,13].

However, the deterministic models assume that parameters in the systems
are all deterministic and irrespective of environmental fluctuations, while, from
the biological point of view, there are some limitations in mathematical model-
ing of ecological systems. Moreover, population dynamics in the real world
is affected inevitably by environmental noise. Wu and Hu [16] stochasti-
cally perturbed system (1.1) and discussed the following stochastic functional
Kolmogorov-type population dynamics

dX(t) = diag(X1(t), · · · , Xn(t))[F (Xt)dt+G(Xt)dW (t)].

We should also point out that Mao, Marion, and Renshaw [9] formulated a
proper starting point to investigate stochastic n-dimensional Lotka-Volterra
system, and revealed that the environmental noise can suppress a potential
population explosion. For some recent progress with respect to stochastic delay
population dynamics and hybrid Lotka-Volterra ecosystems, we refer to, e.g.,
[2, 11,15,17,18].

Furthermore, the population may suffer sudden environmental shocks, e.g.,
earthquakes, hurricanes, epidemics, etc. However, model (1.1) cannot explain
the phenomena above. To explain these phenomena, introducing a jump pro-
cess into underlying population dynamics is one of the important methods. So
in this paper we introduce the following stochastic functional Kolmogorov-type
population dynamics with jumps
(1.2){

dX(t) = diag(X1(t), · · · , Xn(t))
[
F (Xt)dt+

∫
Y H(Xt− , u)Ñ(dt,du)

]
X0 = ξ ∈ Db

F0
([−τ, 0];Rn

+)

to describe the evolutions of population dynamics.
We will first introduce some definitions and notation. Let (Ω,F , {Ft}t≥0,

P) be a probability space, where F is a σ-algebra on the outcome space Ω,P
is a probability measure on the measurable space (Ω,F), and {Ft}t≥0 is a
filtration of sub-σ-algebra of F , where the usual conditions are satisfied, i.e.,
(Ω,F ,P) is a complete probability space, and F0 contains all P-null sets and
Ft = Ft+ :=

∩
s>t Fs. Recall that a path X : [−τ, 0] → Rn is called càdlàg if it

is right-continuous having finite left-hand limits, where τ ∈ (0,∞) is referred
to as the delay or memory. Let D := D([−τ, 0];Rn) stand for the family of
all Rn-valued càdlàg paths on [−τ, 0], endowed with the Skorokhod topology.
For a càdlàg function X : [−τ,∞) → Rn and t ≥ 0, let Xt ∈ D be such
that Xt(θ) = X(t + θ), θ ∈ [−τ, 0]. Db

F0
([−τ, 0];Rn

+) means the family of
all bounded, F0-measurable, D([−τ, 0];Rn

+)-valued random variables, where

Rn
+ := {x = (x1, · · · , xn)

T ∈ Rn|xi > 0}. For (1.2), N(dt,du) is a real-valued
Poisson counting measure with characteristic measure λ on measurable subset
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Y of [0,∞) such that
∫
Y(1∧ u2)λ(du) < ∞, Ñ(dt,du) := N(dt, du)− λ(du)dt,

F : D([−τ, 0];Rn) → Rn and H : D([−τ, 0];Rn)× Y → Rn.
For population dynamics with jumps, we refer to Bao et al. [3] and Bao and

Yuan [4], where both F and H are independent of the past history, and, in
particular, are linear in [3].

In reference to the existing results in the literature, our contributions are as
follows:

• We use stochastic functional Kolmogorov-type model with jumps to
describe the evolutions of population dynamics, which suffer sudden
environmental shocks;

• We show by the classical Lyapunov function argument that stochas-
tic functional differential equation associated with our model admits a
unique global solution in the positive orthant. In particular, our estab-
lished theory also demonstrates that jump processes can also be applied
to suppress solution explosion for functional differential equations.

• We verify by the exponential martingale inequality with jumps that
population size is at most of polynomial growth almost surely.

2. Global positive solution

Since the vector X = (X1, X2, · · · , Xn)
T denotes the population sizes of the

n interacting species, it is natural to require the solution of (1.2) not only to
be positive but also not to explode in finite time. Therefore, in this section we
intend to claim that (1.2) has a unique global solution in the positive orthant.

Throughout the paper, we impose the following assumptions.

(H1) There exists Lk > 0 such that

|F (φ)− F (ϕ)|2 +
∫
Y
|H(φ, u)−H(ϕ, u)|2λ(du) ≤ Lk∥φ− ϕ∥2∞,

where φ, ϕ ∈ D([−τ, 0];Rn) with ∥φ∥∞ ∨ ∥ϕ∥∞ ≤ k.
(H2) Hi(φ, u) > −1 for φ ∈ D([−τ, 0];Rn

+), u ∈ Y and i = 1, · · · , n.
Since the coefficients don’t satisfy linear growth condition or weak coercivity

condition, e.g., [14, Theorem 2.3], though they satisfy local Lipschitz condition,
the solutions of (1.2) may explode in finite time. Khasminskii [5, Theorem
4.1, p. 85] gave a Lyapunov function argument, which is a powerful test for
nonexplosion of solutions and generalized to delay SDEs in, e.g., [7, 8] . In the
sequel, we shall follow similar arguments to those of [5,7,8] to show that (1.2)
has a unique global positive solution {X(t)}t≥0 under appropriate conditions.

To this end, we further assume that, for some p ∈ (0, 1) and any φ ∈
D([−τ, 0];Rn

+), there exist α1, α2, β1, β2, γ1, γ2, δj > 0, j = 1, · · · , 5, where
α1 ≥ α2, β1 > β2, γ1 ≥ γ2 and β1 > max{p, α1, γ1}, and probability mea-
sures ρ1, ρ2, ρ3 on [−τ, 0] such that
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(H3) |F (φ)| ≤ δ1

(
1 + |φ(0)|α1 +

∫ 0

−τ
|φ(θ)|α2ρ1(dθ)

)
;

(H4) Ji(φ, p) :=
∫
Y[(1+Hi(φ, u))

p− 1−pHi(φ, u)]λ(du) ≤ δ2− δ3|φ(0)|β1 +

δ4
∫ 0

−τ
|φ(θ)|β2ρ2(dθ);

(H5) J̄i(φ, p) :=
∫
Y [Hi(φ, u)− ln(1 +Hi(φ, u))]λ(du) ≤ δ5

(
1 + |φ(0)|γ1 +∫ 0

−τ
|φ(θ)|γ2ρ3(dθ)

)
.

Theorem 2.1. Under (H1)-(H5), for any initial condition ξ ∈ Db
F0

([−τ, 0];Rn
+), (1.2) has a unique global solution {X(t)}t≥0 ∈ Rn

+ a.s.

Proof. Since both the drift term and the jump-diffusion term associated with
(1.2) are locally Lipschitzian, for any initial condition ξ ∈ Db

F0
([−τ, 0];Rn

+),
(1.2) admits by a standard truncation argument, e.g., [10, Theorem 3.4, p. 56],
a unique local solution X(t), t ∈ [0, τe), where τe is the explosion time defined
by τe := inf{t > 0 : |X(t)| = ∞}. To show that X(t) is not only positive but
also global, for some k0 > 0 such that ∥ξ∥∞ < k0 and each k > k0, define a
stopping time

τk := inf{t ∈ (0, τe) : Xi(t) /∈ (1/k, k), for some i = 1, 2, · · · , n}.

Due to the fact that τk is increasing as k ↑ ∞, the limit τ∞ := limk→∞ τk
exists and τ∞ ≤ τe a.s. Thus, to show that the local solution X(t) on the time
interval [0, τe) is positive and global, it is sufficient to verify τ∞ = ∞. Define
the standard Lyapunov function

(2.1) V (x) :=

n∑
i=1

(xp
i − 1− p lnxi), x ∈ Rn

+, p ∈ (0, 1).

For arbitrary T > 0, applying the Itô formula yields that

EV (X(τk ∧ T )) = V (X(0)) + E
∫ τk∧T

0

LV (Xt)dt,

where, for φ ∈ D([−τ, 0];Rn
+),

LV (φ) := p
n∑

i=1

(φp
i (0)− 1)Fi(φ) +

n∑
i=1

Ji(φ, p)φ
p
i (0) + p

n∑
i=1

J̄i(φ, p).

Recall the fundamental inequalities

(2.2) n(1− q
2 )∧0|x|q ≤

n∑
i=1

xq
i ≤ n(1− q

2 )∨0|x|q, x ∈ Rn
+, ∀q > 0,

and

(2.3) xκy1−κ ≤ κx+ (1− κ)y, x, y ∈ R+, κ ∈ (0, 1).
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Thus, (H3), (H4)and (H5), together with (2.2) and (2.3), give that for any
t ≤ τk ∧ T

∫ t

0

LV (Xs)ds ≤ p

∫ t

0

n∑
i=1

(Xp
i (s) + 1)|F (Xs)|ds

+

∫ t

0

n∑
i=1

(
δ2 − δ3|X(s)|β1 + δ4

∫ 0

−τ

|X(s+ θ)|β2ρ2(dθ)
)
Xp

i (s)ds

+ nδ5

∫ t

0

(
1 + |X(s)|γ1 +

∫ 0

−τ

|X(s+ θ)|γ2ρ3(dθ)
)
ds

≤ C

∫ t

0

(1 + |X(s)|p)
(
1 + |X(s)|α1 +

∫ 0

−τ

|X(s+ θ)|α2ρ1(dθ)
)
ds

+

∫ t

0

C|X(s)|p +

n∑
i=1

(
− δ3|X(s)|β1+δ4

∫ 0

−τ

|X(s+ θ)|β2ρ2(dθ)
)
Xp

i (s)ds

+ nδ5

∫ t

0

(
1 + |X(s)|γ1 +

∫ 0

−τ

|X(s+ θ)|γ2ρ3(dθ)
)
ds

(2.4)

≤
∫ t

0

{
− δ3|X(s)|p+β1 + C(1 + |X(s)|p + |X(s)|γ1

+ |X(s)|p+α1 + |X(s)|p+β2)
}
ds =:

∫ t

0

J̃(s)ds,

where we have also utilized∫ t

0

∫ 0

−τ

|X(s+ θ)|βρ(dθ)ds ≤
∫ 0

−τ

|X(θ)|βdθ +
∫ t

0

|X(s)|βds

for any constant β > 0 and some probability measure ρ. On the other hand,
since the leading term of polynomial J̃(s) is negative, there exists K > 0 such

that J̃(s) ≤ K. Hence it follows that

(2.5) EV (X(τk ∧ T )) ≤ V (X(0)) +KT.

Define for each u > 0

µ(u) := inf{V (x) : xi ≥ u or xi ≤
1

u
for some i = 1, 2, · · · , n}.

Note that µ(u) → ∞ as u → ∞. Then we obtain from (2.5) that

µ(k)P(τk ≤ T ) ≤ E(V (X(τk))Iτk≤T ) ≤ EV (X(τk ∧ T )) ≤ V (X(0)) +KT.

Letting k → ∞ yields

P(τ∞ ≤ T ) = 0.

Since T is arbitrary, we must have

P(τ∞ = ∞) = 1

and (1.2) admits a unique global solution {X(t)}t≥0 ∈ Rn
+. □
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Next we construct an example to demonstrate that Theorem 2.1 is applica-
ble.

Example 2.2. Consider a stochastic population dynamics model with jumps
on R

dX(t) = X(t)
[
(a+ bXα(t) + cXα(t− τ))dt

+

∫ ∞

0

{
|X(t−)|β +

∫ 0

−τ

|X((t+ θ)−)|γdθ
}
uÑ(dt, du)

]
,

(2.6)

where a, b, c ∈ R, α, γ > 1, β > α∨γ,
∫∞
0

(1∨u)λ(du) < ∞, and
∫∞
0

u2λ(du) <
∞. For arbitrary φ ∈ D([−τ, 0];R+) and u ∈ (0,∞), let

F (φ) := a+ bφα(0) + cφα(−τ) and H(φ, u) :=
(
|φ(0)|β +

∫ 0

−τ

|φ(θ)|γdθ
)
u.

Then (2.6) can be written in the framework of (1.2). By the elementary
inequality (a + b)2 ≤ 2a2 + 2b2, for any ∥φ∥∞ ∨ ∥ϕ∥∞ ≤ k, we get that there
exists Lk > 0 such that

|F (φ)− F (ϕ)|2 +
∫ ∞

0

|H(φ, u)−H(ϕ, u)|2λ(du)

= |b(φα(0)− ϕα(0)) + c(φα(−τ)− ϕα(−τ))|2

+

∫ ∞

0

∣∣∣∣u(|φ(0)|β − |ϕ(0)|β) + u

∫ 0

−τ

(|φ(θ)|γ − ϕ(θ)|γ)dθ
∣∣∣∣2 λ(du)

≤ 2b2|φα(0)− ϕα(0)|2 + 2c2|φα(−τ)− ϕα(−τ)|2

+ 2

∫ ∞

0

u2λ(du)|φβ(0)− ϕβ(0)|2 + 2

∫ ∞

0

u2λ(du)

∣∣∣∣∫ 0

−τ

(|φ(θ)|γ − ϕ(θ)|γ)dθ
∣∣∣∣2

≤ Lk∥φ− ϕ∥2∞.

So (H1) holds. It is trivial to see that (H2) is true due to u ∈ (0,∞), and
(H3) holds with δ1 = |a|∨|b|∨|c|, α1 = α2 = α and ρ1 being the Dirac measure
on the point −τ . Moreover, for arbitrary φ ∈ D([−τ, 0];R+) and p ∈ (0, 1),
observe by the elemental inequality (a+ b)κ ≤ aκ + bκ, a, b ≥ 0, κ ∈ (0, 1), that

J(φ, p) :=

∫ ∞

0

{(1 +H(φ, u))p − 1− pH(φ, u)}λ(du)

=

∫ ∞

0

{(
1 +

(
|φ(0)|β +

∫ 0

−τ

|φ(θ)|γdθ
)
u
)p

− 1− p
(
|φ(0)|β +

∫ 0

−τ

|φ(θ)|γdθ
)
u
}
λ(du)

≤
∫ ∞

0

{(
|φ(0)|pβ +

(∫ 0

−τ

|φ(θ)|γdθ
)p)

up − p
(
|φ(0)|β +

∫ 0

−τ

|φ(θ)|γdθ
)
u
}
λ(du).
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By virtue of β > γ > 0, we choose δ ∈ (1, β/γ). Applying the Young inequality
(2.3) and the Hölder inequality leads to

(∫ 0

−τ

φγ(θ)dθ
)p

=
((∫ 0

−τ

φγ(θ)dθ
)δ)p/δ

≤ ετ1/δ−1
(∫ 0

−τ

φγ(θ)dθ
)δ

+ C

≤ ε

∫ 0

−τ

φδγ(θ)dθ + C, ε ∈ (0, 1).

Hence

J(φ, p) ≤ −p

∫ ∞

0

uλ(du)|φ(0)|β +

∫ ∞

0

(1 + Cup)λ(du) +

∫ ∞

0

upλ(du)|φ(0)|pβ

+ ε

∫ ∞

0

upλ(du)

∫ 0

−τ

φδγ(θ)dθ,

and therefore (H4) follows. Note that for x > 0, we have ln(1 + x) > 0, thus

J̄(φ, p) :=

∫ ∞

0

[H(φ, u)− ln(1 +H(φ, u))]λ(du)

=

∫ ∞

0

{(
|φ(0)|β +

∫ 0

−τ

|φ(θ)|γdθ
)
u

− ln

[
1 +

(
|φ(0)|β +

∫ 0

−τ

|φ(θ)|γdθ
)
u

]}
λ(du)

≤
∫ ∞

0

uλ(du)|φ(0)|β +

∫ ∞

0

uλ(du)

∫ 0

−τ

|φ(θ)|γdθ.

Then (H5) follows due to β > γ.

Note that (H4) excludes the case β2 = β1. For such case, we replace (H4)
by the following one: There exist β > α1 ∨ γ1, δ

′
2, δ

′
3, δ

′
4 > 0 with δ′3 > δ′4 and

probability measure ρ′2 on [−τ, 0] such that for φ ∈ D([−τ, 0];Rn
+)

(H4′)
∫
Y[(1+Hi(φ, u))

p−1−pHi(φ, u)]λ(du) ≤ δ′2−δ′3φ
β
i (0)+δ′4

∫ 0

−τ
φβ
i (θ)ρ

′
2(dθ).

Theorem 2.3. Under (H1)-(H3), (H4′) and (H5), for any initial condition
ξ ∈ Db

F0
([−τ, 0];Rn

+), (1.2) has a unique global solution {X(t)}t≥0 ∈ Rn
+ a.s.

Proof. Since the proof is very similar to that of Theorem 2.1, we here only give
an outline to point out the corresponding differences. Note from (2.2) and (2.3)
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that

n∑
i=1

∫ t

0

(
− δ′3X

p+β
i (s) + δ′4X

p
i (s)

∫ 0

−τ

Xβ
i (s+ θ)ρ2(dθ)

)
ds

≤
n∑

i=1

∫ t

0

(
− δ′3X

p+β
i (s) +

pδ′4
p+ β

Xp+β
i (s)

)
ds+

βδ′4
p+ β

n∑
i=1

∫ t

0

∫ 0

−τ

Xp+β
i (s+ θ)ρ2(dθ)ds

≤
n∑

i=1

∫ t

0

(
− δ′3X

p+β
i (s) +

pδ′4
p+ β

Xp+β
i (s)

)
ds+

βδ′4
p+ β

n∑
i=1

∫ 0

−τ

∫ t

−τ

Xp+β
i (s)dsρ2(dθ)

≤ −(δ′3 − δ′4)

∫ t

0

n∑
i=1

Xp+β
i (s)ds+

βδ′4
p+ β

∫ 0

−τ

n∑
i=1

Xp+β
i (s)ds

≤ −(δ′3 − δ′4)

∫ t

0

|X(s)|p+βds+ C.

Then, following the argument of (2.4) we derive from (H3), (H4′) and (H5)
that ∫ t

0

LV (Xs)ds

≤ p

∫ t

0

n∑
i=1

(Xp
i (s) + 1)|F (Xs)|ds

+

∫ t

0

n∑
i=1

(
δ′2 − δ′3X

β
i (s) + δ′4

∫ 0

−τ

Xβ
i (s+ θ)ρ2(dθ)

)
Xp

i (s)ds

+ nδ5

∫ t

0

(
1 + |X(s)|γ1 +

∫ 0

−τ

|X(s+ θ)|γ2ρ3(dθ)
)
ds

≤
∫ t

0

{
− (δ′3 − δ′4)|X(s)|p+β + C(1 + |X(s)|p + |X(s)|γ1 + |X(s)|p+α1)

}
ds.

The desired assertion follows by carrying out a similar argument of the second
half part of Theorem 2.1. □

Remark 2.1. Following the argument of Theorem 2.1 and taking the Young
inequality (2.3) into consideration, we can also deduce that, for any initial
condition ξ ∈ Db

F0
([−τ, 0];Rn

+), (1.2) has a unique global solution {X(t)}t≥0 ∈
Rn

+ a.s. under the assumptions: for φ ∈ D([−τ, 0];Rn
+)

|F (φ)| ≤ δ1
(
1 +

m∑
i=1

|φ(0)|α1i +

∫ 0

−τ

m∑
i=1

|φ(θ)|α2iρ1i(dθ)
)
;∫

Y
[(1 +Hi(φ, u))

p − 1− pHi(φ, u)]λ(du)

≤ δ2 − δ3|φ(0)|β1 + δ4

∫ 0

−τ

m∑
i=1

|φ(θ)|β2iρ2i(dθ);
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Y
[Hi(φ, u)− ln(1 +Hi(φ, u))]λ(du)

≤ δ5
(
1 +

m∑
i=1

|φ(0)|γ1i +

∫ 0

−τ

m∑
i=1

|φ(θ)|γ2iρ3i(dθ)
)
,

wherem ∈ N, α1i, α2i, β2i, γ1i, α2i, δ1, · · · , δ5 > 0, β1 > (max{α1i}∨max{α2i}∨
max{β2i} ∨max{γ1i} ∨max{γ2i}) and ρ1i, ρ2i, ρ3i are probability measures on
[−τ, 0].

Remark 2.2. By the argument of Theorem 2.1 and that of [4, Theorem 2.2],
under some appropriate conditions Theorem 2.1 can also be generalized to
population model

dX(t) =

diag(X1(t), · · · , Xn(t))
[
F (Xt)dt+G(Xt)dW (t) +

∫
Y
H(Xt− , u)Ñ(dt,du)

]
,

where W is an m-dimensional Brownian motion.

Remark 2.3. Theorem 2.1 and Theorem 2.3 demonstrate that Lévy noise can
also be applied to suppress solution explosion for functional differential equa-
tions. Therefore we can utilize jump processes to investigate stabilization prob-
lems for functional differential equations, which will be reported in the forth-
coming paper.

3. Pathwise analysis

Theorem 3.1. Let (H1)-(H5) hold. Assume further that there exist δ6 > 0
and κ ∈ (0, β1) such that

(3.1)

∫
Y
[(lnQ(φ, u))2 +Q(φ, u)]λ(du) ≤ δ6

(
1 + |φ(0)|κ +

∫ 0

−τ

|φ(θ)|κdθ
)
,

where, for p ∈ (0, 1) and φ ∈ D([−τ, 0];Rn
+),

Q(φ, u) :=
n∑

i=1

(1 +Hi(φ, u))
pφp

i (0)
/ n∑

i=1

φp
i (0).

Then the solution X(t), t ≥ 0, of (1.2) has the property

(3.2) lim sup
t→∞

ln(|X(t)|)
t

≤ 0, a.s.

Proof. Observe from Theorem 2.1 that (1.2) admits a unique global positive
solution. Let

V (x) :=
n∑

i=1

xp
i , x ∈ Rn

+.
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By the Itô formula

et lnV (X(t)) = lnV (ξ(0)) +

∫ t

0

es
{
lnV (X(s)) +

p

V (X(s))

n∑
i=1

Xp
i (s)Fi(Xs)

+

∫
Y

(
lnQ(Xs, u)−

p

V (X(s))

n∑
i=1

Xp
i (s)Hi(Xs, u)

)
λ(du)

}
ds

+

∫ t

0

∫
Y
es lnQ(Xs− , u)Ñ(ds,du).

(3.3)

Applying the exponential martingale inequality with jumps, e.g., [1, Theorem
5.2.9, p. 291], for any α, ν, T > 0, we have

P
{
ω : sup

0≤t≤T

{∫ t

0

∫
Y
es lnQ(Xs− , u)Ñ(ds, du)

− 1

α

∫ t

0

∫
Y

(
Qαes(Xs, u)− 1− αes lnQ(Xs, u)

)
λ(du)ds

}
≥ ν

}
≤ e−αν .

Choose T = k, α = εe−k and ν = 2ε−1ek ln k, where k ∈ N, ε ∈ (0, 1/2), in the
above equation. Since

∑∞
k=1 k

−2 < ∞, we can deduce from the Borel-Cantelli
lemma that there exists a measurable subset Ω0 ⊆ Ω with P(Ω0) = 1 such that
for any ω ∈ Ω0 we can find an integer k0(ω) > 0 such that

∫ t

0

∫
Y
es lnQ(Xs− , u)Ñ(ds, du)

≤ 2ε−1ek ln k +
1

εe−k

∫ t

0

∫
Y

(
Qεes−k

(Xs, u)− 1− εes−k lnQ(Xs, u)
)
λ(du)ds,

(3.4)

where 0 ≤ t ≤ k and k ≥ k0(ω). Hence, for ω ∈ Ω0, 0 ≤ t ≤ k and k ≥ k0(ω),

et lnV (X(t)) ≤ lnV (ξ(0)) + 2ε−1ek ln k

+

∫ t

0

es
{
lnV (X(s)) +

p

V (X(s))

n∑
i=1

Xp
i (s)Fi(Xs)

+

∫
Y

(
lnQ(Xs, u)−

p

V (X(s))

n∑
i=1

Xp
i (s)Hi(Xs, u)

)
λ(du)

}
ds

+
1

εe−k

∫ t

0

∫
Y

(
Qεes−k

(Xs, u)− 1− εes−k lnQ(Xs, u)
)
λ(du)ds

=: lnV (ξ(0)) + 2ε−1ek ln k + J1(t) + J2(t) + J3(t).

(3.5)

Recall the inequalities

lnx ≤ x− 1, x > 0,

and

(3.6) (a+ b)θ ≤ aθ + bθ, a, b > 0, θ ∈ (0, 1).
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Then, by the Hölder inequality, (2.2) and (H3) it follows that

J1(t) ≤
∫ t

0

es
{
V (X(s)) +

p

V (X(s))

( n∑
i=1

X2p
i (s)

)1/2( n∑
i=1

F 2
i (Xs)

)1/2}
ds

≤
∫ t

0

es
{
V (X(s)) +

p

V (X(s))

n∑
i=1

Xp
i (s)|F (Xs)|

}
ds

=

∫ t

0

es
{
V (X(s)) + p|F (Xs)|

}
ds

≤
∫ t

0

es
{
n1−p/2|X(s)|p + pδ

(
1 + |X(s)|α1 +

∫ 0

−τ

|X(s+ θ)|α2ρ1(dθ)
)}

ds.

(3.7)

Next, applying the inequality lnx ≤ x− 1 and using (H4), we deduce that

J2(t) =

∫ t

0

∫
Y
es
{
logQ(Xs, u)−Q(Xs, u) + 1

+Q(Xs, u)−
p

V (X(s))

n∑
i=1

Xp
i (s)Hi(Xs, u)− 1

}
λ(du)ds

≤
∫ t

0

∫
Y
es
{
Q(Xs, u)−

p

V (X(s))

n∑
i=1

Xp
i (s)Hi(Xs, u)− 1

}
λ(du)ds

=

∫ t

0

es

V (X(s))

{ n∑
i=1

∫
Y
((1 +Hi(Xs, u))

p − 1− pHi(Xs, u))λ(du)
}
Xp

i (s)ds

≤
∫ t

0

es

V (X(s))

{ n∑
i=1

(
δ2 − δ3|X(s)|β1 + δ4

∫ 0

−τ

|X(s+ θ)|β2ρ2(dθ)
)}

Xp
i (s)ds

≤
∫ t

0

es
{
δ2 − δ3|X(s)|β1 + δ4

∫ 0

−τ

|X(s+ θ)|β2ρ2(dθ)
}
ds.

(3.8)

Furthermore, in the light of a Taylor’s series expansion

J3(t) =
εe2s−k

2

∫ t

0

∫
Y
(lnQ(Xs, u))

2Qη(Xs, u)λ(du)ds

=
εe2s−k

2

∫ t

0

∫
Y
{(lnQ(Xs, u))

2Qη(Xs, u)}1{0<Q≤1}λ(du)ds

+
εe2s−k

2

∫ t

0

∫
Y
({lnQ(Xs, u))

2Qη(Xs, u)}1{Q≥1}λ(du)ds,

(3.9)

where η lies between 0 and ε. On the other hand, for η ∈ (0, 1
2 ) note that

Qη ≤ 1 whenever 0 < Q < 1, and that Qη ≤ Q
1
2 with Q ≥ 1. Hence, by the

inequality

(3.10) lnx ≤ 4(x
1
4 − 1), x ≥ 1,
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we get from (3.9) that

J3(t) ≤
εe2s−k

2

∫ t

0

∫
Y
{(lnQ(Xs, u))

2 + 16Q(Xs, u)}λ(du)ds

≤ 8δ6εe
2s−k

∫ t

0

{
1 + |X(s)|κ +

∫ 0

−τ

|X(s+ θ)|κdθ
}
ds.

(3.11)

Substituting (3.7), (3.8) and (3.11) into (3.5) gives that for any ω ∈ Ω0,
0 ≤ t ≤ k and k ≥ k0(ω)

et lnV (X(t)) ≤ lnV (ξ(0)) + 2ε−1ek ln k

+

∫ t

0

es
{
n1−p/2|X(s)|p + pδ

(
1 + |X(s)|α1

+

∫ 0

−τ

|X(s+ θ)|α2ρ1(dθ)
)

+ δ2 − δ3|X(s)|β1 + δ4

∫ 0

−τ

|X(s+ θ)|β2ρ2(dθ)

+ 8δ6ε
(
1 + |X(s)|κ +

∫ 0

−τ

|X(s+ θ)|κdθ
)}

ds

≤ lnV (ξ(0)) + 2ε−1ek ln k + Cet

for some C > 0, where in the last step we have used the fact that the polynomial
in the integrator is bounded since the leading term of the polynomial is negative.
Thus, for any ω ∈ Ω0, k − 1 ≤ t ≤ k and k ≥ k0(ω),

1

ln t
lnV (X(t)) ≤ 1

ln t
{C + e−t lnV (ξ(0)) + 2ε−1ek−t ln k}.

Taking k ↑ ∞ and using (2.2) yields that

(3.12) lim sup
t→∞

ln(|X(t)|)
ln t

≤ 2e

pε
, a.s.

Then the desired assertion (3.2) follows by letting ε ↑ 1
2 and noting that

limt→∞
ln t
t = 0. □

Remark 3.1. From (3.12), we conclude that the population size is at most of
polynomial growth almost surely.
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Remark 3.2. For Example 2.2, by (2.3), (3.10) and the nonnegative property
of H(φ, u), we get that

∫ ∞

0

{(lnQ(φ, u))2 +Q(φ, u)}λ(du)

≤
∫ ∞

0

{16Q
1
2 (φ, u) +Q(φ, u)}λ(du)

≤ C

∫ ∞

0

{1 +Q(φ, u)}λ(du)

≤ C

∫ ∞

0

{1 + (1 +H(φ, u))p}λ(du)

= C

∫ ∞

0

{
1 +

[
1 +

(
|φ(0)|β +

∫ 0

−τ

|φ(θ)|γdθ
)
u

]p}
λ(du),

where C > 0 is some constant. By the elemental inequality (a + b)κ ≤ aκ +
bκ, a, b ≥ 0, κ ∈ (0, 1), we have

∫ ∞

0

{(lnQ(φ, u))2 +Q(φ, u)}λ(du)

≤ C

∫ ∞

0

{
1 +

[
|φ(0)|pβ +

(∫ 0

−τ

|φ(θ)|γdθ
)p]

up
}
λ(du).

By virtue of β > γ > 0, we choose δ ∈ (1, β/γ]. Applying the Young inequality
(2.3) and the Hölder inequality leads to

(∫ 0

−τ

φγ(θ)dθ
)p

=
((∫ 0

−τ

φγ(θ)dθ
)δ)p/δ

≤ ετ1/δ−1
(∫ 0

−τ

φγ(θ)dθ
)δ

+ C

≤ ε

∫ 0

−τ

φδγ(θ)dθ + C, ε ∈ (0, 1).

Hence

∫ ∞

0

{(lnQ(φ, u))2 +Q(φ, u)}λ(du)

≤ C

∫ ∞

0

(1 + up)λ(du) + C

∫ ∞

0

upλ(du)|φ(0)|pβ + εC

∫ ∞

0

upλ(du)

∫ 0

−τ

φδγ(θ)dθ,

and therefore (3.1) follows.
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Remark 3.3. Note from (H4′), the Hölder inequality and (3.6) that∫ t

0

1

V (X(s))

{ n∑
i=1

∫
Y
((1 +Hi(Xs, u))

p − 1− pHi(Xs, u))λ(du)
}
Xp

i (s)ds

≤
∫ t

0

1

V (X(s))

{
δ′2V (X(s))− δ′3|X(s)|p+β

+ δ′4

∫ 0

−τ

V (X(s))

n∑
i=1

Xβ
i (s+ θ)ρ′2(dθ)

)}
ds

≤
∫ t

0

{
δ′2 −

δ′3
V (X(s))

|X(s)|p+β + δ′4

∫ 0

−τ

n∑
i=1

Xβ
i (s+ θ)ρ′2(dθ)

)}
ds

≤
∫ t

0

{
δ′2 + δ′4n

1−p/2

∫ 0

−τ

|X(θ)|βdθ − δ′3 − δ′4n
2−p

n1−p/2
|X(s)|β

}
ds.

Then, if δ′3 > δ′4n
2−p, following the argument of Theorem 3.1, we conclude

that (3.2) still holds under (H1)-(H3), (H4′), (H5) and (3.1).

Remark 3.4. In this paper we discuss the existence and uniqueness of global
positive solution for a class of functional stochastic population dynamical sys-
tems with jumps and carry out the corresponding pathwise analysis. However,
for model (1.2), even for the case independent of after-effect, the extinction
problem remains as an interesting open problem currently under investigation.
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