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CENTRAL AND LOCAL LIMIT THEOREMS IN
MARKOV DEPENDENT RANDOM VARIABLES

A. RAHIMZADEH SANI

Communicated by Samad Hedayat

Abstract. We consider an irreducible and aperiodic Markov chain
{kn}n=0 over the finite state space E = {1, . . . , p} with positive
regular transition matrix P = {pij} and additive component {Un}
such that {Sn} = {(kn, Un)} is also a Markov chain over the state
space E1 = E × R. We prove a central and a local limit theorem
for this chain when the probability density functions of {Sn}, con-
ditional on the first and the last states of {kn}n=0, exist.

1. Introduction

The purpose of this paper is to establish a central limit theorem and a
local limit theorem for the sums of Markov dependent random variables
when they are non-lattice and defined on the real line R. The sequences
of Markov dependent random variables have been frequently considered
by different authors (see [5], [6], [7], [8], and [9]). Nagaev [7] considered
sums of random variables defined on a lattice space, which are connected
via a Markov chain, and proved a central limit theorem and a local
limit theorem for these sums. Seva [9] considered sums of the form
Sn =

∑n
k=0 f(Xk), where {Xk} is a Markov chain with a countable

state space. He then gave the Nagaev like local limit theorem for lattice
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and non-lattice real valued functions. We consider a Markov chain {kn}
on a finite state E = {1, . . . , p} with an additive component {Un} such
that {Sn} = {(kn, Un)} (as defined by (2.3)) is also a Markov chain on
E = E×R. Then we set the central limit theorem (Theorem 2.2)and the
local limit theorem (Theorem 2.3 ) for Sn conditional on the first and the
last positions of the Markov chain {kn}. Theorem 2.3 can be interpreted
as an extension of Nagaev theorem (Theorem 3.1, of [7]) from the lattice
to the non-lattice random variables.

The original idea of this paper comes from our joint work [1] on mul-
titype branching random walk, where the position of each individual
in generation n on any sample path of the process is determined by a
Markov dependent random walk. Similar to the classical proof of the
central limit and the local limit theorems for i.i.d. random variables, we
use the Fourier inversion formula to change the discussion from densities
to a study on characteristic functions. The new and the key point in
this study is that the characteristic function of smoothed Sn asymptoti-
cally behaves as the n−th power of the spectral radius (or the maximum
modulus eigenvalue given in Lemma 2.1) of the matrix of Laplace trans-
forms with complex arguments. We set Lemma 3.1 to show that the
characteristic functions of smoothed Sn conditional on the first and the
last positions of {kn} have all the required properties to develop the
theory. The proofs of Lemma 3.1 and the main results are contained in
Section 3. Section 2 gives the notations, conventions and preliminary
results being used through out the paper.

2. Notations and preliminary results

Similar to Jensen ([4], Chapter 9, Sec. 1), let {kn}n=0 be a homoge-
neous Markov chain over the finite space E = {1, . . . , p} with a positive
regular transition matrix P = {pij} and an invariant probability distri-
bution π = (π1, . . . , πp). For any i, j ∈ E, let Xij be a non-lattice
random variable with distribution function Fij(x). We reserve the nota-
tions i and j to the members of E. Define ν(.) := {νij(.)} = {pijFij(.)}.
Then ν is an stochastic kernel on E1 = E×R. Therefore, for every fixed
i ∈ E,

∑
j pij

∫
R Fij(dx) = 1. Its n-fold convolution νn∗(.) = {νn∗

ij (.)},
by the semigroup property of convolution of measures, is

νn∗
ij (dx) =

∑
k

∫
R
ν

(n−1)∗
ik (dy)νkj(dx− y). (2.1)
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Then by induction it is easy to show that, for each i, j, and n, νn∗
ij (R) =

pn
ij . We impose the following assumption:
A(1): The matrix P is positive regular in the sense that for some

positive integer n, Pn has all positive entries.
Although the assumption A(1) is equivalent to “irreduciblity and ape-

riodicity” in any finite Markov chain, we prefer to use A(1) instead, be-
cause it is more relevant with our work here. As a consequence of A(1),
there is an n0 such that for all n ≥ n0, p

n
ij > 0. Since we are dealing

with large values of n, we will always assume that n ≥ n0, and hence we
will have pn

ij > 0, even if it is not emphasized.
Analogue to [1], for fixed i, j and any complex λ = θ + iη ∈ C, we

define the complex valued Laplace transform related to Fij(.) by

ϕij(λ) =
∫

R
e−λxFij(dx), (λ ∈ C)

wherever it exists. For real λ = θ ∈ R, ϕij(θ) is a real valued continuous
Laplace transform with ϕij(0) = 1 and, for λ = iη on the imaginary axis,
ϕij(iη) becomes the characteristic function of Fij . For each λ = θ + iη,
we have |ϕij(λ)| ≤ ϕij(θ). Thus each ϕij(λ) is a well-defined and an-
alytic function on some open strip L = (−h, h) × R ⊂ C containing
the imaginary axis (see [6], Introduction). Let mij(λ) = pijϕij(λ) and
M(λ) = {mij(λ)}p×p with n-th power Mn(λ) = {mn

ij(λ)}. Using induc-
tion, it is easy to show that (see [1]),

mn
ij(λ) =

∫
R
e−λxνn∗

ij (dx). (2.2)

Let {Sn} = {(kn, Un)} be a Markov chain over the state space E =
E×R with transition densities ν(.) = {νij(.)}, in the sense that, for any
measurable set K ×A ⊂ E ,

P (Sn ∈ K ×A|S0 = (i, u0)) =
∑
k∈K

∫
A
νn∗

ik (dx− u0). (2.3)

We will always assume that P (U0 = 0) = 1 and k0 = i. To indicate
the latter assumption, we will always put an index i in the probability
and the expectation symbols. The n-th step distribution of {Sn} is
determined by νn∗

i (.) = (νn∗
i1 (.), . . . , νn∗

ip (.)). Thus we will write (2.3)
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in the form

Pi (Sn ∈ K ×A) =
∑
k∈K

∫
A
νn∗

ik (dx).

The conditional probability of Sn, conditional on kn = j, (j ∈ K), is

Pi (Sn ∈ K ×A| kn = j) =
Pi (Sn ∈ {j} ×A, kn = j)

Pi (kn = j)

=
1
pn

ij

∫
A
νn∗

ij (dx).

The conditional Laplace transform of {Sn}, conditioned that the first
and the last states of {kn} be i and j, respectively, is

ϕ
(n)
ij (λ) = Ei

[
e−λSn

∣∣∣ kn = j
]

=
1
pn

ij

∫
R
e−λxνn∗

ij (dx), (2.4)

which, by (2.1) and induction, is well-defined for all λ ∈ L. Comparing
the equations (2.2) and (2.4), we get

mn
ij(λ) = pn

ijϕ
(n)
ij (λ) (2.5)

for all i, j ∈ E, λ ∈ L and every integer n.
The entries of the matrix M(λ) are complex-valued analytic functions

in λ ∈ L. For those values of λ = θ ∈ L0 = L ∩ R, the entries are
nonnegative and positive in a neighborhood of zero whenever pij > 0.
Therefore, M(θ) has positive entries at least in the same positions as
P does. This implies the positive regularity of M(θ) for all θ ∈ L0

and hence the conditions of Theorem 1 in [1] hold. We single out this
fact here in the next lemma. Like the maximum eigenvalue in positive
regular matrices, ρ(λ) is maximum modulus eigenvalue of M(λ) if it is
a simple root of det(zI −M(λ)) = 0 and for any other eigenvalue ρ1(λ)
of M(λ), |ρ1(λ)| < |ρ(λ)|. Thus, |ρ(λ)| is the spectral radius of M(λ).

Lemma 2.1. Let the matrix M(λ) = {mij(λ)} of analytic functions
defined on the open set L ⊂ C have the property that, for all θ ∈ L0 =
L ∩ R, M(θ) is positive regular. Then there is an open set Ω ⊂ L
containing L0 such that for any λ ∈ Ω,M(λ) has a simple maximum
modulus eigenvalue ρ(λ), with corresponding left and right eigenvectors
u(λ) and v(λ) satisfying the following properties:
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(a) ρ(λ), u(λ) and v(λ) are non-zero analytic functions in λ ∈ Ω; and
for the real argument, ρ(λ) > 0 and u, v have positive components.

(b) u(λ) and v(λ) have nonzero analytic components and are normal-
ized so that

∑p
i=1 ui(λ)vi(λ) = 1, and

∑p
i=1 ui(λ) = 1.

(c) For any θ ∈ Ω0 = Ω ∩ R, there is an open neighborhood B =
B(θ, δ) ⊂ Ω and positive constants γ ∈ (0, 1) and K, such that for all
i, j and n,

sup
λ∈B

∣∣∣ρ(λ)−nmn
ij(λ)− vi(λ)uj(λ)

∣∣∣ ≤ Kγn.

�
Let θ ∈ Ω0. The measure νij is said to be degenerate if for some

β ∈ R, mij(θ) = e−βθ. If for some diagonal matrix D(θ) of degenerate
Laplace transforms, M(θ) = e−βθD(θ)M(0)D−1(θ), then M(θ) is said
to be degenerate. When M(θ) is non-degenerate, ρ(θ) is a strictly log
convex function in θ ∈ Ω0 (see Section 5 in [5] ), and µ = ρ′(θ) is mean
drift of the random walk Sn (see Section 2 in [6]). We now impose
further assumptions:
A(2) : 0 ∈ Ω0.
A(3) : The matrix M(θ) is non-degenerate in the sense that ρ(θ) is a

strictly log-convex in θ ∈ Ω0.
For any fixed real number a and for any i and j, define Yij = Xij − a.

Then Yij is a random variable with distribution function F̄ij(x) = Fij(x+
a). Define the stochastic kernel ν̄(.) = {ν̄ij(.)} = {pijF̄ij(.)} with its n-
fold convolution,

ν̄n∗
ij (dx) =

∑
k

∫
R
ν̄

(n−1)∗
ik (dy)ν̄kj(dx− y). (2.6)

Similar to (2.3), let {S̄n} = {(kn, Ūn)} be a Markov chain over the
state space E = E×R with transition densities ν̄(.) = {ν̄ij(.)}. Given the
initial distribution P (S̄0 = (i, 0)) = P (k0 = i, Ū0 = 0) = 1, the distri-
bution of the n-th step is determined by ν̄n∗

i (.) = (ν̄n∗
i1 (.), . . . , ν̄n∗

ip (.)).
The conditional complex valued Laplace transform of S̄n, conditional on
the first and the last states of {kn}, similar to (2.4), is

ϕ̄
(n)
ij (λ) = Ei

[
e−λS̄n

∣∣∣ kn = j
]
.

Analogous to M(λ), define M̄(λ) = {m̄ij(λ)} := {pijϕ̄
(1)
ij (λ)} with

M̄n(λ) = {m̄n
ij(λ)} = {pn

ijϕ̄
(n)
ij (λ)}. (2.7)
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Then M̄(λ) = eaλM(λ) and both of these matrices are defined on the
same set L ⊂ C, and M̄(λ) satisfies all conditions of Lemma 2.1. We
denote its simple maximum-modulus eigenvalue by ρ̄(λ) and the related
left and right eigenvectors by ū(λ) and v̄(λ), respectively. The equation
M̄(λ) = eaλM(λ) implies that ρ̄(λ) = eaλρ(λ), ū(λ) = u(λ), and v̄(λ) =
v(λ). We will prove these properties in proposition 2.7 at the end of this
section. By this Proposition we will be able to use u(λ) (v(λ)) for the
left (right) eigenvector of both matrices M(λ) and M̄(λ). We also assume
that ρ̄′(θ)|θ=0 = 0 or a = −ρ′(0)/ρ(0) (= −ρ′(0) by ρ(0) = 1), and we let
σ2 = (ρ̄(θ))′′|θ=0 > 0. With this assumption on a, M̄(0) = P, ρ̄(0) = 1
and v(0) = (1, . . . , 1). Note that, when θ ∈ Ω0, M̄(θ) is positive regular
with equilibrium probabilities π(θ) = (π1(θ), . . . , πp(θ)) with πi(θ) =
ui(θ)vi(θ) (see [6]). Our last assumption is:
A(4): For any i and j, the characteristic function ϕ̄

(1)
ij (iη) associated

with F̄ij(.) is absolutely integrable.
Now we give The Central Limit Theorem 2.2 and The Local Limit

Theorem 2.3 for S̄n conditional on k0 = i and kn = j, or the probabil-
ity measure (1/pn

ij)ν̄
n∗
ij (.). Between them the local limit Theorem 2.3 is

new and as mentioned before, it can be interpreted as an extension of
Negayev’s local limit theorem to the non-lattice random variables. The
central limit Theorems 2.2, 2.4 and 2.5 are well known (e.g., see Section
5 in [5]), but here we give a new proof based on the maximum modulus
eigenvalue in Perron-Frobenius theory.

Theorem 2.2. Suppose A(1)−A(4) hold, a = −ρ′(0), and σ2 = ρ̄′′(0) >
0. Then for any fixed i, j, and t ∈ R,

lim
n
P
(
S̄n ≤ t/

√
n
∣∣ k0 = i, kn = j

)
=

∫ t

−∞

1√
2πσ

e−
x2

2σ2 dx.

By A(4), for each i, j and n, the density function of (1/pn
ij)ν̄

n∗
ij exists

which will be denoted by gn
ij .

Theorem 2.3. Suppose A(1) − A(4) hold, a = −ρ′(0), and
σ2 = ρ̄′′(0) > 0. Then,

lim
n

{
sup
x∈R

∣∣∣∣√ngn
ij(x

√
n)− 1√

2πσ
e−

x2

2σ2

∣∣∣∣
}

= 0.
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The next theorem, which is an alternative version of the central limit
Theorem 2.2, is a direct consequence of the integration of the uniform
convergence sequences in Theorem 2.3.

Theorem 2.4. Let the hypothesis of Theorem 2.2 hold and b > 0. Then
for any bounded Borel measurable set A ⊂ R, and any fixed i, j ∈ E,

lim
n→∞

 sup
|A|≤b
c∈R

∣∣∣∣√nν̄n∗
ij (c+A)−

∫
c+A

1√
2πσ

e−
x2

2σ2 dx

∣∣∣∣
 = 0,

where |A| is the Lebesgue measure of A. �
By the relation between the measures ν(.) and ν̄(.), the analogous

central limit theorem for the measure νn∗
ij (.) may now be stated.

Theorem 2.5. With the hypothesis of Theorem 2.4, for any bounded
Borel measurable set A ⊂ R, and any fixed i, j ∈ E,

lim
n→∞

 sup
|A|≤b
c∈R

∣∣∣∣√nνn∗
ij (na+ c+A)−

∫
c+A

1√
2πσ

e−
x2

2σ2 (x)dx
∣∣∣∣
 = 0. �

Remark 2.6. In all of the theorems given above, conditioning on i and
j means that the initial distribution of {kn} is concentrated at the state
i and the n-th step distribution of {kn} is concentrated at the state j. As
we have seen, the limiting results of these theorems are independent from
the positions of the first and the last states of {kn} in our conditions.
The author believes that, if instead of conditions on the first and the
last states of {kn} one imposes a condition on any sample path of the
process, the limiting results remain independent from that sample path
of the process.

We conclude this section by the next proposition, which is a part of
the proof of Theorem 1 in [6].

Proposition 2.7. Let A(1)−A(3) hold. Then we have:
(i) ρ̄(λ) = eaλρ(λ), ū(λ) = u(λ), and v̄(λ) = v(λ) for all λ ∈ Ω.
(ii) ρ̄(θ) is strictly log-convex in θ ∈ Ω0, and ρ̄(θ)′′ > 0.
(iii) If a = −ρ′(θ)/ρ(θ) then ρ̄′(θ) = 0.

Proof. To prove (i), let λ ∈ Ω. Then ρ(λ) is a simple root of the
characteristic equation det(zI − M(λ)) = 0 with maximum modulus.
Multiplying both sides of the characteristic equation by eaλ we get



30 Rahimzadeh Sani

det(eaλρ(λ)I − M̄(λ)) = 0 implying that ρ̄(λ) = eaλρ(λ) is a simple
eigenvalue of M̄(λ). For any other eigenvalue γ of M̄(λ), from det(γI −
M̄(λ)) = 0 we get det(e−aλγI−M(λ)) = 0 and hence, γe−aλ is an eigen-
value of M(λ). This implies that |e−aλγ| < ρ(λ) or |γ| < |ρ̄(λ|. Thus,
ρ̄(λ) has the maximum modulus. The equations M(λ)v(λ) = ρ(λ)v(λ)
and eaλM(λ)v(λ) = eaλρ(λ)v(λ) are equivalent, and so v(λ) is the right
eigenvector of M̄(λ). For the related left eigenvector of ρ̄(λ) we argue
similarly.

To prove (ii), let θ ∈ Ω0. Then log ρ̄(θ) = aθ+ log ρ(θ), implying that
both log ρ̄(θ) and log ρ(θ) have the same second derivatives. Then by
A(3), both ρ(θ) and ρ̄(θ) are strictly log-convex in θ ∈ Ω0.

The proof for (iii) is obvious. �

3. Proofs of Theorems 2.2 and 2.3

This section contains the proofs for the central limit Theorem 2.2
and the local limit Theorem 2.3. The proofs are direct extensions of the
well known central and local limit theorems for sums of i.i.d. random
variables and is based on the properties of the characteristic functions
(e.g., see the central and the local limit theorems in [3], Chapter 5,
Sec. 10). The extended maximum modulus Perron-Frobenius theory,
Lemma 2.1, leads to Lemma 3.1 on some properties of the characteristic
functions ϕ̄(n)

ij (iη). This lemma is new and fundamental for our approach.
Similar results for the real maximum Perron-Frobenius eigenvalue are
previously considered (e.g., see Theorem 5.3 in [8]).

Lemma 3.1. Let A(1)−A(4) hold, b > 0, a = −ρ′(0), and ρ̄′′(0) = σ2.
Then,

(a) For any i, j, and η ∈ R,

lim
n→∞

ϕ̄
(n)
ij

(
iη√
n

)
= e−

σ2η2

2 .

(b) For any i, j and η ∈ R, let ψ(η) = max1≤i,j≤p |ϕ̄ij(iη)| . Then for
any n and η ∈ R, ∣∣∣ϕ̄(n)

ij (iη)
∣∣∣ ≤ ψn(η).

Moreover, all ϕ̄(n)
ij (iη) are absolutely integrable and their related bounded

density functions gn
ij exist.
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(c) There are constants N1 and M > 0 such that for all n ≥ N1 and
|η| ≤ b, ∣∣∣∣ϕ̄(n)

ij

(
iη√
n

)∣∣∣∣ ≤ Me−
σ2η2

4 .

Proof. For each i, j, and η ∈ R, from (2.7) we have m̄n
ij(iη/

√
n) =

pn
ijϕ̄

(n)
ij (iη/

√
n). Then the characteristic function ϕ̄

(n)
ij ( iη√

n
) can be writ-

ten as:

ϕ̄
(n)
ij

(
iη√
n

)
=

 1
pn

ij

m̄n
ij(

iη√
n
)

(ρ̄( iη√
n
))n

(ρ̄( iη√
n

))n

. (3.1)

Since for each j, vj(0) = 1, by Lemma 2.1, as n → ∞,
m̄n

ij(iη/
√
n)ρ̄(iη/

√
n)−n converges to uj(0) for all η ∈ R.

Also as n → ∞, pn
ij converges to its equilibrium probability uj(0).

Now we show that ρ̄(iη/
√
n)n converges to the as required limit. In

fact, ρ̄(iη) has the same regularity conditions required for applying the
well known methods in proving a classic central limit theorem (e.g., see
the central limit theorem in [3], Chapter 5, Section 10). Observe that
ρ̄(0) = 1, ρ̄′(0) = 0 and ρ̄′′(0) = σ2 > 0. By the Taylor expansion of
ρ̄(λ) in a neighborhood of zero (with a similar argument employed in
the above mentioned theorem in [3]), for any |η| ≤ b as n→∞, we can
write,

ρ̄

(
iη√
n

)
=

(
1− η2σ2

2n

)
+O

(
1

n
√
n

)
.

Then, for any |η| ≤ b as n→∞, we get,

ρ̄

(
iη√
n

)n

=

(
1− σ2η2

2n
+O(

1
n
√
n

)

)n

= 1− σ2η2

2
+O(

1√
n

)

= e−
η2σ2

2 +O(
1√
n

).

This completes the proof of part (a).
To prove part (b), define ψ(η) = maxi,j |ϕ̄(1)

ij (iη)| for η ∈ R. Then, by
A(4), ψ is absolutely integrable and 0 ≤ ψ(η) < 1 for all |η| 6= 0. We
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now proceed the proof by induction on n. Let i and j be fixed. Then,
|ϕ̄(1)

ij (η)| ≤ ψ(η). For each n, by considering (2.7), using the convolution
of measures in (2.6) and then anticipating a change of variable x→ x+y,
it follows:∣∣∣pn+1

ij ϕ̄
(n+1)
ij (iη)

∣∣∣ =
∣∣∣∣∫

R
e−iηxν̄

(n+1)∗
ij (dx)

∣∣∣∣
=

∣∣∣∣∣∑
k

∫
R,x

e−iηx
∫

R,y
ν̄n∗

ik (dy)ν̄kj(dx− y)

∣∣∣∣∣
=

∣∣∣∣∣∑
k

pn
ikpkjϕ

(n)
ik (η)ϕ(1)

kj (iη)

∣∣∣∣∣
≤ pn+1

ij (ψ(iη))n+1 .

Then, by induction we have |ϕ̄(n)
ij (iη)| ≤ (ψ(η))n for all η ∈ R, i, j

and n. Since ψ is integrable and (ψ(η))n ≤ ψ(η), we get the absolute
integrability of all ϕ̄(n)

ij and hence the existence of their bounded density
functions gn

ij .
To prove part (c), as in the proof of part (a), we consider equation

(3.1). The convergence of {m̄n
ij(iη)ρ̄(iη)

(−n)}, by part (c) of Lemma 2.1,
is uniform in a neighborhood of zero. So it is bounded by some M1

for all |η| ≤ δ1, for some δ1. The convergent sequence {1/pn
ij} is also

bounded by some M2. If we let n be large enough, then for all |η| ≤ b,
we get |η/

√
n| ≤ δ1, and hence,∣∣∣∣ϕ̄(n)

ij (
iη√
n

)
∣∣∣∣ ≤M1M2

∣∣∣∣(ρ̄( iη√
n

))n∣∣∣∣ .
Now it is enough to bound

(
ρ̄
(

iη√
n

))n
by e−η2σ2/4. Similar to part (a),

the Taylor expansion of ρ̄(λ) in a neighborhood of zero, as n→∞, gives

ρ̄

(
iη√
n

)
= 1− σ2η2

2n
+O(

1
n
√
n

),

for all |η| ≤ b. Let n be large enough so that 0 ≤ 1 − b2σ2/2n < 1 and
O(1/

√
n) ≤ σ2/4. Then, we can write,∣∣∣∣ρ̄( iη√

n

)∣∣∣∣ ≤ 1− σ2η2

4n
− η2

n

(
σ2

4
−O

(
1√
n

))
≤ 1− σ2η2

4n
.

Let N1 be such that for all n ≥ N1, the above inequalities hold. Since
the sequence {(1− (σ2η2)/4n)n} is increasing and converges to e−η2σ2/4,
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then for all |η| ≤ b and n ≥ N1, we get,∣∣∣∣ρ̄( iη√
n

)n∣∣∣∣ ≤ e−
σ2η2

4 .

This implies that for M = M1M2 and all |η| ≤ b, n ≥ N1, and any i, j,
we have

∣∣∣ϕ̄(n)
ij

(
iη√
n

)∣∣∣ ≤Me−(σ2η2/4), which completes the proof. �

Proof of Theorem 2.2 . From part (a) of Lemma 3.1, as n→∞, the
characteristic functions ϕ̄(n)

ij ( iη√
n
) converge to the characteristic function

of normal distribution e−η2σ2/2. Now, by the continuity theorem ([2],
Chapter XV, Sec. 3), the proof is complete. �

Proof of Theorem 2.3 . Let gn
ij be the density function of the proba-

bility measure (1/pn
ij)ν̄

n∗
ij (.). Then its characteristic function ϕ̄(n)

ij (iη), by
Fourier inversion formula ([2], Chapter XV, Sec. 3, Theorem 3), satisfies
the equation,

gn
ij(x

√
n) =

1
2π
√
n

∫
R
eiηxϕ̄

(n)
ij (

iη√
n

)dη. (3.2)

The density of the normal distribution N(0, σ2) also satisfies the equa-
tion,

fσ(x) :=
1√
2πσ

e−
x2

2σ2 =
1
2π

∫
R
eiηxe−

η2σ2

2 dη. (3.3)

For any i, j, n, and any real x, by considering (3.2) and (3.3), we can
write, ∣∣∣√ngn

ij(x
√
n)− fσ(x)

∣∣∣ ≤ 1
2π

∫
R

∣∣∣∣ϕ̄(n)
ij (

iη√
n

)− e−
η2σ2

2

∣∣∣∣ dη
=

1
2π

∫
R

∣∣∣Ln
ij(η)

∣∣∣ dη (say). (3.4)

We show that, the last integral in (3.4) tends to zero, as n → ∞, uni-
formly in x. Let δ > 0 be as in Lemma 2.1, part (c), and 0 < b < δ

√
n.

By dividing the integral in (3.4) into three parts as∫
R

∣∣∣Ln
ij(η)

∣∣∣ dη =
∫
|η|≤b

∣∣∣Ln
ij(η)

∣∣∣ dη +
∫

b≤|η|≤δ
√

n

∣∣∣Ln
ij(η)

∣∣∣ dη
+
∫
|η|≥δ

√
n

∣∣∣Ln
ij(η)

∣∣∣ dη,
we show that, for suitable values of b, each part tends to zero, as n→∞.
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Part one.
∫
|η|≥δ

√
n

∣∣∣Ln
ij(η)

∣∣∣ dη. Let βδ = sup|η|≥δ ψ(η), then, as in
the proof of part (b) in Lemma 3.1, 0 < βδ < 1. The function ψ(η) is
integrable. Let

∫
R ψ(η)dη ≤ M1. From the integrability of the function

e−(η2σ2/2), as n → ∞, δn =
∫∞
δ
√

n e
−(η2σ2/2)dη converges to zero, and so

by part (b) of Lemma 3.1 we can write,∫
|η|≥δ

√
n

∣∣∣Ln
ij(η)

∣∣∣ dη ≤
√
n

∫
|η|≥δ

ψ(η)ndη + 2δn

≤
√
nβn−1

δ

∫
|η|≥δ

ψ(η)dη + 2δn

≤ 2
√
nβn−1

δ M1 + 2δn.

Since 0 ≤ βδ < 1, we can choose N1 large enough to make∫
|η|≥δ

√
n

∣∣∣Ln
ij(η)

∣∣∣ dη small enough for all n ≥ N1.

Part two.
∫
b≤|η|≤δ

√
n

∣∣∣Ln
ij(η)

∣∣∣ dη. Let δ > 0 and N1 be as in part one.
Also, let n ≥ N1 and b ≤ δ

√
n. Then by part (c) of Lemma 3.1, we can

write,∫
b≤|η|≤δ

√
n

∣∣∣Ln
ij(η)

∣∣∣ dη ≤ 2M
∫

b≤η
e−

σ2η2

4 dη + 2
∫

b≤η
e−

σ2η2

2 dη. (3.5)

The integrals on the right hand side of the last inequality converge.
Thus, by choosing N1 and b large enough, we can make the right hand
side of (3.5) small.

Part three.
∫
|η|≤b

∣∣∣Ln
ij(η)

∣∣∣ dη. Let δ, b, and N2 be such that the condi-
tions of part two hold for all n ≥ N2. From part (a) of Lemma 3.1, the
sequence of characteristic functions {ϕ̄(n)

ij (iη)} converges point-wise in
R. Since any point-wise convergent sequence of characteristic functions
also converges uniformly in any neighborhood of zero (see Theorem 2 in
[2], Chapter XV, Sec. 3). So limn→∞

∣∣∣Ln
ij(η)

∣∣∣ = 0 uniformly in |η| ≤ b.

The dominated convergence theorem implies that

lim
n→∞

∫
|η|≤b

∣∣∣Ln
ij(η)

∣∣∣ dη = 0.

Thus the right hand side of (3.4) converge to 0, as n → ∞, and this
completes the proof. �



CLT and LLT in Markov dependent random variables 35

Acknowledgment
The author thanks Professor J. D. Biggins for many valuable discus-

sions. He also thanks the anonymous referee for his/her useful comments
that helped to improve the presentation. This work has been partially
supported by a grant No. S84-126 from Mosahab Institute of Mathe-
matics (MIM).

References

[1] J. D. Biggins and A. Rahimzadeh Sani, Convergence results on multitype, mul-
tivariate branching random walks, Adv. Appl. Prob. 37 (2005), 681-705.

[2] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II,
New York: Wiley, 1971.

[3] G. R. Grimmett and D. R. Stirzaker, The Probability and Random Processes,
Second Edition, New York: Oxford University Press, 1993.

[4] J. L. Jensen, Saddlepoint Approximations, Oxford University Press, 1995.
[5] I. Kontoyiannis and S. P. Meyn, Spectral theory and limit theorems for geomet-

rically ergodic Markov processes, Ann. Appl. Prob. 13 (2003), 304-362.
[6] H. D. Miller, A convexity property in the theory of random variables defined on

a finite Markov chain, Ann. Math. Statist, 32 (1961), 1260-1270.
[7] S. V. Nagaev, Some limit theorems for stationary Markov chains, Theory Prob.

Appl, 2 (1957), 378-406.
[8] P. Ney and E. Numellin, Markov Additive Processes, I and II, Ann. Prob. 15

(1987), 561-592 and 593-609.
[9] M. Seva, On the local limit theorem for non-uniformly ergodic Markov chain, J.

Appl. Prob. 32 (1995), 32-62.

A. Rahimzadeh Sani
Department of Mathematics
Tarbiat Moallem University of Tehran
49 Mofatteh Avenue
Tehran, 15614, Iran
Email: rahimsan@saba.tmu.ac.ir


