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Abstract. For a bounded linear operator on Hilbert space we define a
sequence of the so-called weakly extremal vectors. We study the proper-
ties of weakly extremal vectors and show that the orthogonality equation
is valid for weakly extremal vectors. Also we show that any quasinilpo-

tent operator T has an hypernoncyclic vector, and so T has a nontrivial
hyperinvariant subspace.
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1. Introduction

Throughout this paper, let H denote a separable (complex) Hilbert space,
and B(H) the C∗-algebra of all bounded linear operators onH. ForW ⊂ B(H)
we denote by W ′ the set of all operators which commute with elements of W
and set W ′′ = (W ′)′. Let us recall that a subspace M of H is called a nontrivial
hyperinvariant subspace for T if {0} ≠ M ̸= H and it is an invariant subspace
for every operator S ∈ {T}′. We use the matrix representation for bounded
linear operators on a separable Hilbert space i.e., if T ∈ B(H) and {en} is an
orthonormal basis for a separable Hilbert space H, then an infinite matrix (aij)
represents T when Tx =

∑
i(
∑

j aijxj)ei for all x =
∑∞

i=1 xiei ∈ H. In this

case, we have
∑

i |aij |2 ≤ c and
∑

j |aij |2 ≤ c for some c > 0. For more details

see [7]. An operator Q ∈ B(H) is called quasinilpotent if σ(T ) = {0}, where

σ(T ) = {λ ∈ C;T − λ is not invertible}.

If T is a quasinilpotent operator then we have ∥Tn∥ 1
n → 0. Also an oper-

ator T is called quasiaffinity if T and T ∗ are injective. A vector x is called
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hypernoncyclic for an operator T if the subspace {Ax;A ∈ {T}′}, which is
hyperinvariant subspace for T , is not dense in H.

Our study motivated by the following problem;

Does every quasinilpotent operator on Hilbert space have a non-
trivial hyperinvariant subspace?

This problem has been considered in several papers and solved in some special
cases [1-6]. In [1], S. Ansari and P. Enflo introduced extremal vectors as a
method of constructing hypernoncyclic vectors and hyperinvariant subspaces
for certain operators. Let us give some basic notations of extremal vectors.
Assume that T ∈ B(H) has dense range. For a unit vector x0 ∈ H and
0 < ϵ < 1 define F = {y; ∥Ty − x0∥ ≤ ϵ}, then F is a nonempty, closed and
convex subset of H. So there exists a unique minimal vector y0 ∈ F . In this
case ∥Ty0−x0∥ = ϵ. In [1], by the method of extremal vectors, it is shown that
for any compact operator K and normal operator N , some weak limit of the
subsequence of minimal vectors is noncyclic for all operators commuting with
K and N , this approach gives a new method for the existence of nontrivial
hyperinvariant subspaces. In [3], by the extremal vectors method, it is shown

that if A is compact, then either

(
A ∗
0 B

)
or

(
A 0
∗ B

)
has a nontrivial

hyperinvariant subspace.

2. Main results

Assume that T is a linear bounded operator on the separable complex Hilbert
space H and T has dense range. For any x0 ∈ H and
0 < ϵ < ∥x0∥, define

W = {y ∈ H : |⟨Ty − x0, x0⟩| ≤ ϵ∥x0∥2} .
Then it is easy to see that W is a closed nonempty and convex subset of H, so
there exists a unique minimal vector y0 ∈ W such that

∥y0∥ = inf{∥y∥ : y ∈ W}.

In this case we have |⟨Ty0−x0, x0⟩| = ϵ∥x0∥2, we say y0 is the weakly extremal
vector of T with respect to x0 and ϵ.

Remark 2.1. The weakly extremal vectors are equal to extremal vectors in
some situations. For example, let T = diag(λi) be a diagonalizable operator
respect to the orthonormal basis {ei} and x0 = e1. If yn (y′n) are weakly
extremal vectors (extremal vectors) of Tn, then

yn = y′n =
1− ϵ

λn
1

e1.

Note that the extremal vectors are different from weakly extremal vectors, in
general. For example, if T = diag( 1n ) and x0 = 1√

2
(e1 + e2) then the minimum
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of {∥y∥ : ∥Ty−x0∥ ≤ 1
2} happens on an elipse which (

√
2
2 ,

√
2−1) and (

√
2
2 ,

√
2+

1) are it’s vertices, i.e., we get the following nonlinear programming

inf z = u2 + v2

such that
(u−

√
2
2 )2

1
+

(v −
√
2)2

4
≤ 1

4
,

which has the unique solution y′ = 2
√
2

5 e1 +
√
2
5 e2. But to find the minimum of

{∥y∥ : |⟨Ty − x0, x0⟩| ≤ 1
2}, we get the following nonlinear programming

inf z = u2 + v2

such that
2 ≤ 2

√
2u+

√
2v ≤ 6,

which has the unique solution y =
√
2
4 e1 +

√
2
2 e2.

In the following, we get the orthogonality equation for weakly extremal
vectors. First, we give a useful lemma.

Lemma 2.2. [5] Suppose that u and v are nonzero vectors in H such that
for every w ∈ H, Re⟨u,w⟩ < 0 implies that Re⟨v, w⟩ > 0. Then there exists a
negative number γ0 such that v = γ0u.

Theorem 2.3. (Orthogonality equation) Let y0 be the weakly extremal vector
of T respect to a unit vector x0 and 0 < ϵ < 1. Then there exists δ > 0 such
that

y0 =
δ

1 + δ∥Tx0∥2
T ∗x0.

Proof. Assume that for some z ∈ H, Re ⟨Ty0 − x0, x0⟩⟨x0, T z⟩ < 0. Then there
exists t0 > 0 such that, the function u(t) = |⟨Ty0 − x0 + tTz, x0⟩| decreases on
[0, t0]. So for any t in [0, t0],

ϵ = |⟨Ty0 − x0, x0⟩| ≥ |⟨T (y0 + tz)− x0, x0⟩|.(2.1)

Minimality of ∥y0∥ gives that ∥y0∥ ≤ ∥y0 + tz∥, so Re⟨y0, z⟩ > 0. Hence, by
Lemma 2.2, there is some γ0 < 0 such that

(2.2) y0 = γ0⟨Ty0 − x0, x0⟩T ∗x0,

thus

⟨Ty0 − x0, x0⟩ = ⟨γ0⟨Ty0 − x0, x0⟩TT ∗x0 − x0, x0⟩
= γ0⟨Ty0 − x0, x0⟩⟨TT ∗x0, x0⟩ − 1,

which shows that ⟨Ty0−x0, x0⟩ = −1
1−γ0∥T∗x0∥2 is a negative real number. Again

by (2.2), and if we put δ = −γ0, we get

y0 =
δ

1 + δ∥T ∗x0∥2
T ∗x0.



Hyperinvariant subspaces and quasinilpotent operators 808

□

Corollary 2.4. Let y0 be the weakly extremal vector of T respect to a unit
vector x0 and 0 < ϵ < 1. Then

y0 =
1− ϵ

∥T ∗x0∥2
T ∗x0.

Proof. By the proof of Theorem 2.3 we can see that ⟨Ty0 − x0, x0⟩ = −ϵ, so
δ = 1−ϵ

ϵ∥T∗x0∥2 we get the desired result. □

Corollary 2.5. Let x0 ∈ H be a unit vector and 0 < ϵ < 1. Then the function
ϵ → yϵ is analytic, where yϵ is weakly extremal vector respect to x0 and ϵ.

Note that |⟨Ty − x0, x0⟩| ≤ ∥Ty − x0∥ so the norm of weakly extremal
vector is less than the norm of extremal vector. It is shown that in [1], if

T is a quasinilpotent operator and yn is extremal vector of Tn, then
∥ynk−1∥
∥ynk

∥
converges to zero for some subsequence nk. We show that the last assertion is
valid for weakly extremal vectors of Tn.

Lemma 2.6. If T is a quasinilpotent operator, x0 ∈ H, ∥x0∥ = 1,

0 < ϵ < 1 and yn is weakly extremal vector for Tn, then limk→∞
∥ynk−1∥
∥ynk

∥ = 0,

for some subsequence ynk
.

Proof. If limn→∞
∥ynk−1∥
∥ynk

∥ ̸= 0 for any subsequences of yn, then for some t > 0,

∥yn−1∥
∥yn∥

≥ t > 0, n ≥ 2.

So we get

∥y1∥ ≥ t∥y2∥ ≥ · · · ≥ tn−1∥yn∥ ,
on the other hand by use of the minimality of ∥y1∥ and |⟨Tnyn − x0, x0⟩| ≤ ϵ,
we see that ∥y1∥ ≤ ∥Tn−1yn∥, hence

tn−1∥yn∥ ≤ ∥y1∥ ≤ ∥Tn−1yn∥ ≤ ∥Tn−1∥∥yn∥.
But this is a contradiction. □

We study the stability of weakly extremal vectors. For this, we recall some
definitions of stability of extremal vectors [3]. Suppose T has dense range.
Then T is said to be strongly stable (for x0), if there exist a unit vector x0 in
H and 0 < ϵ < 1 such that Tnyn ∈ ∨{x0} for all n ≥ n0, where yn = yn(x0, ϵ)
are the extremal vectors for Tn and ∨A is the space that spanned by vectors
of A. Now we define the weakly stability for operators.

Definition 2.7. We say that an operator T with dense range is weakly stable
(for x0) if there exist a unit vector x0 and 0 < ϵ < 1 such that Tnyn ∈ ∨{x0}
for all n ≥ n0, where yn = yn(x0, ϵ) are the weak extremal vectors for Tn.
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In [3] the following theorem is given which characterizes strongly stable
operators.

Theorem 2.8. [3] Suppose T has dense range. Then T is strongly stable for
x0 if and only if the operators in the family {TnT ∗n}∞n=n0

( for some n0) have
a common eigenvector x0.

For any quasiaffinity operator such as T and nontrivial invariant subspace
M of T with T |M = A, in [2] the following question is asked:

Question 2.9. Is the implication “ T is strongly stable for x0 ∈ M =⇒ A is
strongly stable for x0 ” true?

We show that if T is strongly stable for x0 and y′n is the extremal vector for
Tn and yn is the weak extremal vector for Tn, then y′n = yn. Also we show
that Question 2.9 is equivalent to the following implication:
“ T is weakly stable for x0 ∈ M =⇒ A is weakly stable for x0 ”

Lemma 2.10. Suppose T has dense range. Then T is weakly stable for x0

if and only if the operators in the family {TnT ∗n}∞n=n0
( for some n0) have a

common eigenvector x0.

Proof. Suppose that T is weakly stable for some x0. Then by Definition 2.7,
there exist cn such that Tnyn = cnx0 for all n ≥ n0. Hence by Corollary 2.4
we get

1− ϵ

∥T ∗n∥2
TnT ∗nx0 = Tnyn = cnx0

which shows that the operators in the family {TnT ∗n}∞n=n0
( for some n0) have

a common eigenvector x0. For the reverse assertion suppose that TnT ∗nx0 =
cnx0 for all n ≥ n0. Then by Corollary 2.4 we get

Tnyn =
1− ϵ

∥T ∗n∥2
TnT ∗nx0 =

1− ϵ

∥T ∗n∥2
cnx0 ∈ ∨{x0}.

□
Now, we have the following corollary.

Corollary 2.11. Suppose T has dense range. Then T is strongly stable for
some x0 ∈ H if and only if T is weakly stable for x0.

Proof. By Lemma 2.10 and Theorem 2.8, the desired result is obtained. □
By the last corollary, Question 2.9 is equivalent to the following question:

Question 2.12. Is implication “ T is weakly stable for x0 ∈ M =⇒ A is weakly
stable for x0 ” true?

Theorem 2.13. Let T be a weakly stable for x0 and yn be the weak extremal
vector for Tn. Then yn is the extremal vector for Tn.
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Proof. By hypothesis we see that there exists cn such that cnx0 = Tnyn so we
get

−ϵ = ⟨Tnyn − x0, x0⟩ = cn − 1

which gives that cn = 1− ϵ. Hence, by Corollary 2.4, TnT ∗nx0 = ∥T ∗nx0∥2x0.
Since extremal vectors are unique and ∥Tnyn − x0∥ = |cn − 1| = ϵ, therefore
yn is the extremal vector for Tn. □

Theorem 2.14. Let T be a quasiaffinity quasinilpotent operator on H. If there
exist a unite vector x0 and 0 < ϵ < 1 such that the weakly extremal vectors {yn}
for Tn have the following property

lim sup
n≥1

∥Tn−1yn∥ < ∞ ,

then T has a hypernoncyclic vector. In particular T has a nontrivial hyperin-
variant subspace.

Proof. Suppose X ∈ {T}′ is arbitrary. Also suppose yn is the extremal vec-
tors for Tn and the subsequence {ynk

} is such as Lemma 2.6. For any k, let
Xynk−1 = αkynk

+ γk, in which αk are scalars and γk ⊥ ynk
. Then

∥Xynk−1∥2 = |αk|2∥ynk
∥2 + ∥γk∥2 ≥ |αk|2∥ynk

∥2

so we get the following inequalities

∥X∥∥ynk−1∥ ≥ ∥Xynk−1∥ ≥ |αk|∥ynk
∥.

Hence by Lemma 2.6, we have limk→∞ αk = 0. By hypothesis there is a
subsequence of {ynk

}, which we show by {ynk
} again, such that {Tnk−2ynk−1}

weakly converges to b0. We claim that b0 ̸= 0. Indeed, if {Tnk−2ynk−1} weakly
converges to zero then by Corollary 2.4,

−ϵ = ⟨Tnk−1ynk−1 − x0, x0⟩ = ⟨Tnk−1ynk−1, x0⟩ − 1

= ⟨Tnk−2ynk−1, T
∗x0⟩ − 1 → −1.

This is a contradiction, since 0 < ϵ < 1. Let bnk
= Tnk−2ynk−1 − x0 then by

Theorem 2.3, we have

⟨T 2Xbnk
, x0⟩ = ⟨T 2X(Tnk−2ynk−1 − x0), x0⟩

= ⟨TnkXynk−1, x0⟩ − ⟨T 2Xx0, x0⟩
= ⟨Tnk(αkynk

+ γk), x0⟩ − ⟨T 2Xx0, x0⟩
= αk⟨Tnkynk

, x0⟩+ ⟨γk, T ∗nkx0⟩ − ⟨T 2Xx0, x0⟩
= αk⟨Tnkynk

, x0⟩ − ⟨T 2Xx0, x0⟩ → −⟨T 2Xx0, x0⟩.

Therefore

⟨T 2X(b0 − x0), x0⟩ = −⟨T 2Xx0, x0⟩ ,
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so ⟨XT 2b0, x0⟩ = 0. Since T is a quasiaffinity operator, we have T ∗2x0 ̸= 0.
Thus b0 is a hypernoncyclic vector for T . If we put M = {XT 2b0;X ∈ {T}′},
then M is a nontrivial hyperinvariant subspace of T . □
Corollary 2.15. Let T be a quasinilpotent and quasiaffinity operator on H. If
there exists a unit vector x0 and k > 0 such that ∥TnT ∗nx0| ≤ k∥T ∗nx0∥2, then
T has a hypernoncyclic vector. In particular, T has a nontrivial hyperinvariant
subspace.

Proof. By Corollary 2.4 and the hypothesis the sequence {Tnyn} is bounded,
so we can by Lemma 2.6 choose a subsequence nk and b0 ∈ H such that

Tnk−1ynk−1 → b0 weakly, and
∥ynk−1∥
∥ynk

∥ → 0. It is easy to see that b0 ̸= 0. Let

X ∈ {T}′ be arbitrary, then we write Xynk−1 = αkynk
+ γk, where γk ⊥ ynk

.
By the same way as in the proof of Theorem 2.14 we get αk → 0. Hence

⟨XTnkynk−1, x0⟩ = αk⟨Tnkynk
, x0⟩ → 0.

On the other hand ⟨XTnkynk−1, x0⟩ → ⟨Xb0, T
∗x0⟩. Therefore

⟨Xb0, T
∗x0⟩ = 0. If we set M = {Xb0;X ∈ {T}′}, then M is a nontrivial

hyperinvariant subspace of T . □
Corollary 2.16. Let T ∈ B(H) has dense range. If there exists a unit vector
x0 such that T is weakly stable for x0, then T has a nontrivial hyperinvariant
subspace.

Proof. In the proof of Theorem 2.13, we see that ∥TnT ∗nx0∥ = ∥T ∗nx0∥2.
Hence by Corollary 2.15 we get the desired result. □

Finally, we show that any quasinilpotent operator has a nontrivial invariant
subspace. We use the model of quasinilpotent operators due to Foias and
Pearcy [4]. In the same paper the authors give a quasinilpotent operator Kα

where α = {αn} is a positive sequence decreasing to zero and define Kα ∈
B(⊕H) by

Kα =

 0 α11H 0
0 0 α21H

. . .
. . .

 .

The following theorem is the model theory for quasinilpotent operators.

Theorem 2.17. [4] If T is a quasinilpotent operator, then there exist a de-
creasing sequence α = {αn} of nonnegative numbers converging to zero, an in-
variant subspace M of the operator Kα, and an invertible operator S : H → M
such that STS−1 = Kα|M .

We recall that the subspace M in Theorem 2.17 is of the form

∨{(b, w1Tb, w2T
2b, . . .) : b ∈ H} ⊂ ⊕H

where wk = 1
α1α2...αk

.
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Theorem 2.18. Let T be a quasinilpotent operator, then T has a nontrivial
hyperinvariant subspace.

Proof. Let K be a backward weighted shift mentioned in Theorem 2.17 such
that T is similar to K|M . We show that K has a nontrivial hyperinvariant
subspace and so T has a such subspace. Let x0 ∈ H be a unit vector and
0 < ϵ < 1. Define x̃ = (x0, w1Tx0, w2T

2x0, . . .) ∈ M . By an elementary
computations we get

(K|M )∗nx̃ = (0, 0, . . . , 0, cn,0x0, cn,1w1Tx0, cn,2w2T
2x0, . . .)

and
(K|M )n(K|M )∗nx̃ = (c2n,0x0, c

2
n,1w1Tx0, c

2
n,2w2T

2x0, . . .)

where cn,k = αk+1αk+2 . . . αn+k. Since {αk} is a decreasing sequence, we get
for any k = 1, 2, . . .

c2n,k = (αk+1αk+2 . . . αk+n)
2

≤ (α1α2 . . . αn)
2 ≤

∞∑
i=1

c2n,iw
2
i ∥T ix0∥2 = ∥(K|M)∗nx̃∥2.

This yields that

∥(K|M )n(K|M )∗nx̃∥ =

[ ∞∑
i=1

c4n,iw
2
i ∥T ix0∥2

] 1
2

≤

( ∞∑
i=1

c2n,iw
2
i ∥T ix0∥2

)2
 1

2

= ∥(K|M )∗nx̃∥2.

Hence by Corollary 2.15 the result is concluded. □
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