Title:
Pseudo-almost valuation rings

Author(s):
R. Jahani-Nezhad and F. Khoshayand
PSEUDO-ALMOST VALUATION RINGS

R. JAHANI-NEZHAD* AND F. KHOSHAYAND

(Communicated by Mohammad Taghi Dibaei)

Abstract. The aim of this paper is to generalize the notion of pseudo-almost valuation domains to arbitrary commutative rings. It is shown that the classes of chained rings and pseudo-valuation rings are properly contained in the class of pseudo-almost valuation rings; also the class of pseudo-almost valuation rings is properly contained in the class of quasi-local rings with linearly ordered prime ideals.

Keywords: Strongly prime ideal; Pseudo-almost valuation domain; Pseudo-valuation ring.

1. Introduction

Throughout this paper, R will be a commutative ring with identity. In [8], Hedstrom and Houston introduced a class of integral domains which is closely related to the class of valuation domains. An integral domain R with quotient field K is called a pseudo-valuation domain when each prime ideal P of R is a strongly prime ideal, in the sense that for every $x, y \in K$, if $xy \in P$, then $x \in P$ or $y \in P$. An interesting survey article on pseudo-valuation domains is [5].

In [3], the study of pseudo-valuation domains was generalized to arbitrary rings (possibly with nonzero zero-divisors), in the following way:

A prime ideal P of a ring R is said to be strongly prime, if aP and bR are comparable (under inclusion) for all $a, b \in R$. A ring R is called a pseudo-valuation ring, if each prime ideal of R is strongly prime. A pseudo-valuation ring is necessarily quasi-local ([3, Lemma 1]). Also, an integral domain is a pseudo-valuation ring if and only if it is a pseudo-valuation domain, by ([1, Proposition 3.1]), ([2, Proposition 4.2]) and ([4, Proposition 3]). Recall from [6] that for an integral domain R with quotient field K, a prime ideal P of R is called a pseudo-strongly prime ideal, if whenever $x, y \in K$ and $xyP \subseteq P$, there is a positive integer $m \geq 1$ such that either $x^m \in R$ or $y^mP \subseteq P$. If every prime
ideal P of R is a pseudo-strongly prime ideal, then R is called a pseudo-almost valuation domain.

In this paper, we define a prime ideal P of a ring R to be a pseudo-strongly prime ideal, if for every $a, b \in R$, there is a positive integer $m \geq 1$ such that $a^m R \subseteq b^m R$ or $b^m P \subseteq a^m P$. We show that if R is an integral domain, then our definition is equivalent to the original definition of a pseudo-strongly prime as introduced by Badawi in [6]. If every maximal ideal P of R is a pseudo-strongly prime ideal, then R is called a pseudo-almost valuation ring (PAVR). We show that the classes of chained rings and pseudo-valuation rings are properly contained in the class of pseudo-almost valuation rings; also the class of pseudo-almost valuation rings is properly contained in the class of quasi-local rings with linearly ordered prime ideals.

In the second section, we prove in Proposition 2.3 that every pseudo-strongly prime ideal is comparable to each prime ideal of R. Also, we show that in Noetherian quasi-local rings every strongly prime ideal is a pseudo-strongly prime ideal.

In the third section, we show in Proposition 3.6 that every pseudo-valuation ring is a PAVR and we give in Proposition 3.4 a characterization of PAVRs. We prove that every PAVR is a quasi-local ring with linearly ordered prime ideals. Also, we show that every pseudo-almost valuation domain is a Goldie ring with $Gdim = 1$.

Furthermore, we consider the idealization construction $R(+)B = D$ arising from a ring R and an R–module B. For instance, if R is an integral domain and D is a PAVR then R is a pseudo-almost valuation domain. We then have the following implication, non of which is reversible:

\[
\text{chained ring} \quad \downarrow \quad \text{pseudo-valuation ring} \quad \downarrow \quad \text{pseudo-almost valuation ring} \quad \downarrow \quad \text{quasi-local ring with linearly ordered prime ideals}
\]

Our work generalize the work of Badawi on integral domains in [6]. We close this introduction by noting the following result:

Proposition 1.1. Let R be a quasi-local ring with maximal ideal M. Then M is a strongly prime ideal, if whenever $a, b \in R$ and $aR \not\subseteq bR$, then $bM \subseteq aM$.

Proof. Let $a, b \in R$ such that $aR \not\subseteq bM$. If $aR \not\subseteq bR$ then $bM \subseteq aM \subseteq aR$. Now, we assume that $aR \subseteq bR$. Since $aR \not\subseteq bM$, there is $r \in R \setminus M$ such that $a = rb$. Since r is a unit element of R, we have $b = r^{-1}a$ and so $bR \subseteq aR$.

Hence $aR = bR$ and consequently $bM \subseteq bR = aR$. Therefore M is a strongly prime ideal of R.

\[\square \]

2. Pseudo-strongly prime ideal

We start with our definition of a pseudo-strongly prime ideal.

Definition 2.1. A prime ideal P of a ring R is called a pseudo-strongly prime ideal if for every $a, b \in R$, there is a positive integer $m \geq 1$ such that $a^m R \subseteq b^m P$ or $b^m P \subseteq a^m P$.

In the following Proposition, we show that, if R is an integral domain, the above definition is equivalent to the definition of pseudo-strongly prime ideal introduced in [6].

Proposition 2.2. Let R be an integral domain with quotient field K. If P is a prime ideal of R then the following conditions are equivalent:

1. For every $x, y \in K$, if $xyP \subseteq P$ then there is a positive integer $m \geq 1$ such that $x^m \in R$ or $y^m P \subseteq P$.
2. For every $a, b \in R$, there is a positive integer $m \geq 1$ such that $a^m R \subseteq b^m P$ or $b^m P \subseteq a^m P$.

Proof. (1) \implies (2). Let $0 \neq a, b \in R$. Set $x = a/b$ and $y = b/a$. Since $xyP \subseteq P$, by hypothesis there is an $m \geq 1$ such that $x^m \in R$ or $y^m P \subseteq P$. Hence $a^m R \subseteq b^m R$ or $b^m P \subseteq a^m P$.

(2) \implies (1). Let $x, y \in K$ and $xyP \subseteq P$. Suppose that for every $m \geq 1$, $x^m \notin R$. If $x = a/b$ then $a^m R \nsubseteq b^m R$ for every $m \geq 1$. Hence there is $m \geq 1$ such that $b^m P \subseteq a^m P$. Thus $x^{-m}P = (b/a)^m P \subseteq P$. Since $x^{m}y^{m}P \subseteq P$ and $x^{-m}P \subseteq P$, we have $y^{m}P = x^{-m}(x^{m}y^{m}P) \subseteq x^{-m}P \subseteq P$.

\[\square \]

Proposition 2.3. Let P be a pseudo-strongly prime ideal of R. Then the following statements are hold:

1. P is comparable to each prime ideal.
2. If Q_1 and Q_2 are two prime ideals of R contained in P, then Q_1 and Q_2 are comparable.

Proof. (1). Suppose that Q is a prime ideal of R such that $Q \nsubseteq P$. Let $q \in Q \setminus P$ and $p \in P$. For every $n \geq 1$, $q^n R \nsubseteq p^n R$, because $q \notin P$. Since P is a pseudo-strongly prime ideal, there is $n \geq 1$ such that $p^n P \subseteq q^n P$. Therefore $P \subseteq Q$.

(2). Suppose that Q_1 and Q_2 are two distinct prime ideals of R such that $Q_1 \nsubseteq Q_2$. Then there is an element $a \in Q_1 \setminus Q_2$. Let $b \in Q_2$. Since P is a pseudo-strongly prime ideal, there is an $n \geq 1$ such that $a^n R \subseteq b^n R$ or $b^n P \subseteq a^n P$. If $a^n R \subseteq b^n R$ then $a \in Q_2$, which is a contradiction. Thus $b^n P \subseteq a^n P$. Since $b \in P$, we have $b^{n+1} \in a^n P \subseteq Q_1$ and so $b \in Q_1$. Therefore $Q_2 \subseteq Q_1$.

\[\square \]
Proposition 2.4. Let \(P \) be a pseudo-strongly prime ideal of \(R \). Then for every \(p \in P \) and \(r \in R \setminus P \) there is an \(n \geq 1 \) such that \(p^n \in r^n P \).

Proof. Let \(p \in P \) and \(r \in R \setminus P \). Since \(P \) is a pseudo-strongly prime ideal, there is an \(n \geq 1 \) such that \(r^{2n} R \subseteq p^n R \) or \(p^n P \subseteq r^{2n} P \). If \(r^{2n} R \subseteq p^n R \) then \(r \in P \), which is a contradiction. Thus \(p^n P \subseteq r^{2n} P \). Hence \(p^{2n} = p^n p^n \in r^{2n} P \). Therefore \(p^n \in r^n P \) where \(m = 2n \).

Proposition 2.5. Let \(P \) be a pseudo-strongly prime ideal of \(R \). Suppose that \(P \) contains a prime ideal \(Q \) of \(R \). Then for every \(q \in Q \) and \(p \in P \setminus Q \), there is an \(n \geq 1 \) such that \(q^n \in p^n Q \).

Proof. Let \(q \in Q \) and \(p \in P \setminus Q \). There is an \(n \geq 1 \) such that \(q^n R \subseteq p^n R \) or \(p^n P \subseteq q^n P \). If \(p^n P \subseteq q^n P \) then \(p \in Q \), which is a contradiction. Hence \(q^n R \subseteq p^n R \). Thus \(q^n = ap^n \) for some \(a \in R \). Since \(q^n \in Q \) and \(p^n \notin Q \), we have \(a \in Q \). Therefore \(q^n \in p^n Q \).

Proposition 2.6. Let \(R \) be a Noetherian quasi-local ring. Then every strongly prime ideal of \(R \) is a pseudo-strongly prime ideal.

Proof. Let \(P \) be a strongly prime ideal of \(R \). Suppose that \(a, b \in R \) such that \(a^n R \not\subseteq b^n R \) for every \(n \geq 1 \). Thus \(aR \not\subseteq bP \). Since \(P \) is a strongly prime ideal, we have \(bP \subseteq aR \). If \(a \notin P \), then \(bP \subseteq aP \). Now, we assume that \(a \in P \) and \(bP \not\subseteq aP \). Then there is \(p \in P \) such that \(pb \notin aP \). Since \(bP \subseteq aR \), there exists \(r_0 \in R \setminus P \) such that \(pb = ar_0 \). Since \(P \) is a strongly prime ideal of \(R \), we have \(P \subseteq r_0 R \). Hence there is \(r_1 \in P \) such that \(a = r_1 r_0 \). Thus we have \(pb = ar_0 = r_1 r_0 ^2 \). Hence \(pb \in r_0 ^2 R \). Similarly, there exists \(r_2 \in P \) such that \(r_1 = r_2 r_0 \) and so \(pb = r_2 r_0 ^3 \). Hence \(pb \in r_0 ^3 R \). Proceeding in the same way, we get \(pb \in r_0 ^n R \) for every \(n \geq 1 \). Thus \(pb \in \bigcap \limits_{n=1}^{\infty} r_0 ^n R \). Now, \(r_0 \in M = Jac(R) \), because if \(r_0 \notin M \) then \(r_0 \) is a unit element of \(R \) and so \(aR \subseteq bR \), which is a contradiction. Since \(R \) is a Noetherian ring, \(\bigcap \limits_{n=1}^{\infty} r_0 ^n R = 0 \), by the Krull intersection Theorem. Hence \(pb = 0 \), which is a contradiction. Therefore \(bP \subseteq aP \). Thus \(P \) is a pseudo-strongly prime ideal of \(R \).

An element of \(R \) is called regular, if it is not a zero-divisor. A regular ideal of \(R \) is one that contains a regular element. Also, a ring \(R \) is called a Marot ring, if each regular ideal of \(R \) is generated by its set of regular elements.

Proposition 2.7. Let \(P \) be a pseudo-strongly prime ideal of a Marot ring \(R \). Then every regular prime ideal \(Q \subseteq P \) of \(R \) is a pseudo-strongly prime.

Proof. Let \(a, b \in R \) such that \(a^n R \not\subseteq b^n R \) for every \(n \geq 1 \). Since \(P \) is pseudo-strongly prime, there is \(n \geq 1 \) such that \(b^n P \subseteq a^n P \). Thus \(b^n Q \subseteq b^n P \subseteq a^n P \). Let \(q \) be a regular element of \(Q \). Hence there is a \(p \in P \) such that \(qb^n = pa^n \).
If \(p \notin Q \) then there is \(m \geq 1 \) such that \(q^m \in p^mQ \), by Proposition 2.5. Thus there is \(q' \in Q \) such that \(q^m = q'p^m \). But \(qb^n = pa^n \), and \(q'q^n = p^nq'a^{mn} \). Thus \(p^m q'q^n = p^nq'a^{mn} \). Since \(q \) is regular, \(p^m \) is regular. Hence \(q'q^n = q'^n \) and consequently \(a^{mn}R \subseteq b^{mn}R \), which is a contradiction. Hence \(p \in Q \) and so \(qb^n \in a^nQ \). Since \(Q \) is a regular ideal of the Marot ring \(R \), \(Q \) is generated by its set of regular elements. Hence \(b^nQ \subseteq a^nQ \). Therefore \(Q \) is a pseudo-strongly prime.

\[\square \]

3. Pseudo-almost valuation rings

Definition 3.1. Let \(R \) be a commutative ring. If every maximal ideal \(P \) of \(R \) is a pseudo-strongly prime ideal, then \(R \) is called a pseudo-almost valuation ring (PAVR).

Let \(R \) be an integral domain and \(M \) be a maximal ideal of \(R \). If \(M \) is a pseudo-strongly prime ideal and \(P \) is a prime ideal of \(R \) contained in \(M \) then \(P \) is a pseudo-strongly prime ideal of \(R \), by Proposition 2.7. Namely, an integral domain is a pseudo-almost valuation ring if and only if it is a pseudo-almost valuation domain.

Now, let \(R \) be a ring and \(M \) be a maximal ideal of \(R \). If \(M \) is a pseudo-strongly prime ideal, then \(M \) is comparable to each prime ideal of \(R \), by Proposition 2.3(1), and so \(R \) is a quasi-local ring. Therefore

Proposition 3.2. A ring \(R \) is a PAVR if and only if some maximal ideal of \(R \) is a pseudo-strongly prime ideal.

If \(R \) is a pseudo-almost valuation ring, then the set of all prime ideals of \(R \) is linearly ordered, by Proposition 2.3(2). Thus we have the following result

Corollary 3.3. Let \(R \) be a PAVR. Then the prime ideals of \(R \) are linearly ordered. In particular, \(R \) is quasi-local.

The following Theorem gives a characterization of pseudo-almost valuation rings.

Theorem 3.4. A commutative ring \(R \) is a PAVR if and only if for every \(a, b \in R \), there is an \(n \geq 1 \) such that \(a^nR \subseteq b^nR \) or \(b^n \in a^nR \) for every non-unit \(d \in R \).

Proof. Suppose that \(R \) is a PAVR. Then \(R \) is quasi-local, by Corollary 3.3. Let \(M \) be the maximal ideal of \(R \) and \(a, b \in R \). If \(a^nR \nsubseteq b^nR \) for every \(n \geq 1 \), then there is \(n \geq 1 \) such that \(b^nM \nsubseteq a^nM \), because \(M \) is a pseudo-strongly prime ideal. Thus \(b^n \in a^nR \) for every non-unit \(d \in R \).

Conversely, suppose that for every \(a, b \in R \), there is an \(n \geq 1 \) such that \(a^nR \subseteq b^nR \) or \(b^n \in a^nR \) for every non-unit \(d \in R \). First, we show that \(R \) is quasi-local. Let \(a \) and \(b \) be nonzero non-unit elements of \(R \). We assume that \(b \neq a^n \) for every \(n \geq 1 \), then \(a^nR \nsubseteq b^nR \) for every \(n \geq 1 \). Hence there is an \(n \geq 1 \)
such that \(b^n d \in a^n R \) for every non-unit \(d \in R \). In particular, \(b^{n+1} a^n R \subseteq aR \). Thus \(a | b^{n+1} \). Therefore the set of all prime ideals of \(R \) is linearly ordered, by ([4, Theorem 1]), and so \(R \) is quasi-local. Let \(M \) be the maximal ideal of \(R \). Suppose that \(a, b \in R \) and \(a^n R \not\subseteq b^n R \) for every \(n \geq 1 \). Thus there is an \(n \geq 1 \) such that \(b^n d \in a^n R \) for every non-unit \(d \in R \). Hence \(b^n M \subseteq a^n R \). For every \(d \in M \), there is an \(r \in R \) such that \(b^n d = a^n r \). If \(r \notin M \) then \(r \) is a unit element of \(R \). Thus \(a^n R \subseteq b^n R \), which is a contradiction. Hence \(b^n M \subseteq a^n M \). Therefore \(M \) is a pseudo-strongly prime ideal of \(R \) and so \(R \) is a PAVR.

We recall that a ring \(R \) is called a \textit{chained ring}, if the set of all ideals of \(R \) is linearly ordered by inclusion. Then the above Theorem implies that

Corollary 3.5. Every chained ring is a PAVR.

Proposition 3.6. Let \(R \) be a pseudo-valuation ring. Then \(R \) is a PAVR.

Proof. Let \(M \) be the maximal ideal of \(R \) and \(a, b \in R \). Since \(M \) is a strongly prime ideal, \(bM \subseteq aR \) or \(aR \subseteq bM \). We assume that \(a^n R \not\subseteq b^n R \) for every \(n \geq 1 \). Then \(aR \not\subseteq bM \) and so \(bM \subseteq aR \). If \(bM \not\subseteq aM \) then there are elements \(d \in M \) and \(r \in R \setminus M \) such that \(bd = ra \). Since \(r \) is a unit element of \(R \), we have \(aR \subseteq bR \), which is a contradiction. Hence \(bM \subseteq aM \). Thus \(M \) is a pseudo-strongly prime ideal of \(R \). Therefore \(R \) is a PAVR.

Definition 3.7. A commutative ring \(R \) is called root closed, if whenever \(a, b \in R \) and \(a^n R \subseteq b^n R \) for some \(n \geq 1 \), then \(aR \subseteq bR \).

Theorem 3.8. Let \(R \) be a root closed PAVR. Then \(R \) is a pseudo valuation ring.

Proof. Let \(M \) be the maximal ideal of \(R \). By ([3, Theorem 2]), it is enough to show that \(M \) is a strongly prime ideal. Let \(a, b \in R \) such that \(aR \not\subseteq bR \). Since \(R \) is root closed, \(a^n R \not\subseteq b^n R \) for every \(n \geq 1 \). Hence \(b^n M \subseteq a^n M \) for some \(n \geq 1 \), because \(M \) is a pseudo-strongly prime ideal of \(R \). Let \(c \in M \). Then \(c^n b^n \in a^n M \) and so \((cb)^n R \subseteq a^n R \). Since \(R \) is root closed, we have \(cb R \subseteq aR \). If \(cb \notin aM \) then there is \(r \in R \setminus M \) such that \(cb = ra \). Since \(R \) is a quasi-local ring, \(r \) is a unit element of \(R \). Thus \(a = r^{-1} cb \). Hence \(aR \subseteq bR \), which is a contradiction. Therefore \(bM \subseteq aM \). Thus \(M \) is a strongly prime ideal, by Proposition 1.1.

Proposition 3.9. Let \(P \) be a pseudo-strongly prime ideal of \(R \). Then \(R_P \) is a PAVR.

Proof. Suppose that \(x, y \in R_P \) and \(x^n R_P \not\subseteq y^n R_P \) for every \(n \geq 1 \). Then \(x = a/s \) and \(y = b/t \) for some \(a, b \in R \) and \(s, t \in R \setminus P \). If \(a^n R \not\subseteq b^n R \) for some \(n \geq 1 \) then there is \(r \in R \) such that \(a^n = rb^n \). Thus

\[
x^n = a^n/s^n = (rb^n)/s^n = (rt^n b^n)/(s^n t^n) = ((rt^n)/s^n) (b/t)^n = z y^n,
\]
where \(z = (rt^n)/s^n \in R_P \), and so \(x^nR_P \subseteq y^nR_P \), which is a contradiction. Since \(P \) is a pseudo-strongly prime ideal of \(R \), there is \(n \geq 1 \) such that \(b^nP \subseteq a^nP \). Thus \((b/t)^nP R_P \subseteq (a/s)^nP R_P \). Hence \(PR_P \) is a pseudo-strongly prime ideal of \(R_P \) and consequently \(R_P \) is a PAVR.

Proposition 3.10. Let \(R \) be a PAVR and \(I \) be an ideal of \(R \). Then \(R/I \) is a PAVR. In particular, if \(P \) is a prime ideal of \(R \) then \(R/P \) is a pseudo-almost valuation domain.

Proof. Suppose that \(M \) is the maximal ideal of \(R \) and \(M/I \) is the maximal ideal of \(R/I \). Let \(x, y \in D = R/I \). Then \(x = a + I \) and \(y = b + I \) for some \(a, b \in R \). Since \(M \) is a pseudo-strongly prime ideal of \(R \), there is \(n \geq 1 \) such that \(a^nR \subseteq b^nR \) or \(b^nM \subseteq a^nM \). If \(a^nR \subseteq b^nR \) then \((a^n + I)D \subseteq (b^n + I)D \). Thus \(x^nD \subseteq y^nD \). If \(b^nM \subseteq a^nM \) then \((b^n + I)M/I \subseteq (a^n + I)M/I \). Hence \(y^n(M/I) \subseteq x^n(M/I) \). Therefore \(M/I \) is a pseudo-strongly prime ideal of \(D \). Hence \(D \) is a PAVR.

In view of the above Proposition, if \(D \) is a pseudo-almost valuation domain and \(I \) is a non-prime ideal of \(D \) then \(D/I \) is a pseudo-almost valuation ring with zero divisor.

Proposition 3.11. If \(R \) is a Noetherian PAVR, then \(R \) has Krull dimension \(\leq 1 \).

Proof. Let \(M \) be the maximal ideal of \(R \) and \(P \) be a minimal prime ideal of \(R \). Hence \(R/P \) is a pseudo-almost valuation domain, by Proposition 3.10, and so \(\dim R/P \leq 1 \), by ([6, Proposition 2.22]). We know that \(\dim R/P = \text{ht}(M/P) = \text{ht}M = \dim R \). Therefore \(\dim R \leq 1 \).

Let \(I \) be an ideal of a ring \(R \). We say that \(I \) is an essential ideal of \(R \), if \(I \cap J \neq 0 \), for all nonzero ideals \(J \) of \(R \). A nonzero ring \(R \) is said to be a uniform ring, if each nonzero ideal of \(R \) is an essential ideal. A ring \(R \) is said to have finite Goldie dimension if it contains no infinite direct sum of nonzero ideals, and \(R \) has Goldie dimension \(n \), \(\text{Gdim}(R) = n \), if \(n \) is the largest finite number of ideals of \(R \), forming a direct sum. For instance, the Goldie dimension of every uniform ring is equal to 1. Also, \(R \) is called a Goldie ring, if \(R \) has finite Goldie dimension and a.c.c on annihilators.

Proposition 3.12. Let \(R \) be an integral domain. If the set of all prime ideals of \(R \) is linearly ordered, then \(R \) is uniform and so \(\text{Gdim}(R) = 1 \).

Proof. Suppose that \(I \) and \(J \) are two nonzero ideals of \(R \). Then \(\text{Rad}(I) \) and \(\text{Rad}(J) \) are comparable. We assume that \(\text{Rad}(I) \subseteq \text{Rad}(J) \) and \(0 \neq a \in I \). Then \(a^n \in J \) for some \(n \geq 1 \). If \(I \cap J = 0 \) then \(a^n = 0 \) and so \(a = 0 \), which is a contradiction. Therefore \(I \cap J \neq 0 \). Hence each nonzero ideal of \(R \) is an essential ideal.
Corollary 3.13. Every pseudo-almost valuation domain is a Goldie ring with Goldie dimension equal to 1.

The following results is on the idealization construction $R(+)B$ arising from a ring R and an R–module B as in ([9, Chapter VI]). For a ring R and R-module B, we consider commutative ring $R(+)B$. We recall that if R is an integral domain and B is an R-module, then B is said to be divisible, if for every nonzero element $r \in R$ and $b \in B$, there exists $f \in B$ such that $rf = b$. First, we show that the reverse of part 2 of Theorem 3.1 in [7] holds.

Proposition 3.14. Let R be an integral domain and B be an R-module. Set $D = R(+)B$. Then

1. If D is a pseudo-valuation ring, then R is a pseudo-valuation domain.
2. R is a pseudo-valuation domain and B is a divisible R–module if and only if D is a pseudo-valuation ring.

Proof. (1). ([7, Theorem 3.1]). (2). \Rightarrow ([7, Theorem 3.1]).

Conversely, suppose that $D = R(+)B$ is a pseudo-valuation ring. Then R is a pseudo-valuation domain, by 1. Now, we show that B is a divisible R–module. If M is the maximal ideal of R then $M(+)B$ is the maximal ideal of D, by ([9, Theorem 25.1]). Let $0 \neq r \in R$ and $b \in B$. Set $x := (r,0)$ and $y := (0,b)$. We have $x(M(+)B) \subseteq yD$ or $yD \subseteq x(M(+)B)$, because $M(+)B$ is a strongly prime ideal of D. If $x(M(+)B) \subseteq yD$ then $x = 0$, which is a contradiction. Thus $yD \subseteq x(M(+)B)$. Hence there is $c \in M$ and $a \in B$ such that $y = x(c,a)$ and so $b = ra$. Therefore B is a divisible R–module.

Proposition 3.15. Let R be an integral domain and B be an R-module. Set $D = R(+)B$. Then

1. If D is a PAVR, then R is a pseudo-almost valuation domain.
2. If R is a pseudo-almost valuation domain and B is a divisible R–module, then D is a PAVR.

Proof. (1). Suppose that D is a PAVR. Then D is a quasi-local ring. By ([9, Theorem 25.1]), R is also quasi-local ring and $M(+)B$ is the maximal ideal of D where M is the maximal ideal of R. Let $r, s \in R$ such that $r^nR \nsubseteq s^nR$ for every $n \geq 1$. If $x = (r,0)$ and $y = (s,0)$, then $x^nD \nsubseteq y^nD$. Since $M(+)B$ is pseudo-strongly prime, there is $n \geq 1$ such that $y^n(M(+)B) \nsubseteq x^n(M(+)B)$. Hence for every $m \in M$, there exist $m' \in M$ and $d \in B$ such that $(m,0)(s^n,0) = (m',d)(r^n,0)$. It follows that $s^nm = r^nm'$ and so $s^nM \subseteq r^nM$. Thus M is a pseudo-strongly prime ideal of R. Therefore R is a PAVR.

(2). Suppose that R is a pseudo-almost valuation domain with the maximal ideal M and B is a divisible R–module. By ([9, Theorem 25.1]), $M(+)B$ is the maximal ideal of D. Let $x, y \in D$ such that $x^nD \nsubseteq y^nD$ for every $n \geq 1$. Then $x = (r,a)$ and $y = (s,b)$ for some $r, s \in R$ and $a, b \in B$. If $r^nR \nsubseteq s^nR$ for some
n ≥ 1, then there is t ∈ R such that r^n = s^n a. Set c = nr^{n-1} - nts^{n-1} b. Since B is a divisible R-module, there is d ∈ B such that s^n d = c. Thus x^n = (t, d)y^n and so x^n D ⊆ y^n D, which is a contradiction. Since M is a pseudo-strongly prime ideal of R, there is n ≥ 1 such that s^n M ⊆ r^n M. Now, let m ∈ M and c ∈ B. Then there is m' ∈ M such that s^n m = r^n m'. Also, there exists d ∈ B such that s^n c + nms^n b - nm'r^n a = r^n d, because B is a divisible R-module. Thus x^n (m, c) = x^n (m', d) and so y^n (M(+) B) ⊆ x^n (M(+) B). Hence M(+) B is a pseudo-strongly prime ideal of D. Therefore D is a PAVR.

Example 3.16. Let R = C + C[X^2 + X^4C[[X]]] = C[[X^2, X^5]], where C is the field of complex numbers. Then R is a quasi-local domain with linearly ordered prime ideals that is not a pseudo-almost valuation domain, by ([6, Example 3.4]). Then for every R-module B, the ring D = R(+) B is quasi-local with linearly ordered prime ideals, by ([9, Theorem 25.1]), that is not a PAVR, by Proposition 3.15.

Example 3.17. Let F be a field and X_1, ..., X_n, ... be an infinite set of indeterminates over F and R_∞ = F[X_1, ..., X_n, ...]. Suppose that I is an ideal of R_∞ generated by the set \{X_i^j | i ∈ N\}. Then R_∞/I is a PAVR with only prime ideal (X_1, X_2, ...)/(X_1, X_2, ...) that is not a pseudo-valuation ring.

Acknowledgments

The authors would like to thank the referee for the valuable suggestions and comments.

REFERENCES

(Reza Jahani-Nezhad) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KASHAN, P.O. BOX 8731751167, KASHAN, IRAN
E-mail address: jahanian@kashanu.ac.ir

(Foroozan Khoshayand) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KASHAN, P.O. BOX 8731751167, KASHAN, IRAN
E-mail address: Foroozan _100@yahoo.com