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Abstract. Let Mn be an n(n ≥ 3)-dimensional complete connected and
oriented spacelike hypersurface in a de Sitter space or an anti-de Sitter
space, S and K be the squared norm of the second fundamental form

and Gauss-Kronecker curvature of Mn. If S or K is constant, nonzero
and Mn has two distinct principal curvatures one of which is simple, we
obtain some characterizations of the Riemannian products: Sn−1(a) ×
H1(

√
a2 − 1), or Hn−1(a)×H1(

√
1− a2).
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1. Introduction

By an (n+1)-dimensional Lorentzian space formMn+1
1 (c) we mean a de Sit-

ter space Sn+1
1 (c), a Minkowski space Rn+1

1 or an anti-de Sitter space Hn+1
1 (c),

according to c > 0, c = 0 or c < 0, respectively. That is, a Lorentzian space
form Mn+1

1 (c) is a complete simply connected (n+ 1)-dimensional Lorentzian
manifold with constant curvature c. A hypersurface in a Lorentzian manifold
is said to be spacelike if the induced metric on the hypersurface is positive
definite. Denote by (hij) the second fundamental form, by H = 1

n

∑n
i=1 hii the

mean curvature and by S =
∑n

i,j=1 h
2
ij the squared norm of the second funda-

mental form of Mn. The function K = det(hij) is called the Gauss-Kronecker
curvature of Mn. We choose e1, . . . , en such that hij = λiδij . Then we see
that K = det(hij) = λ1λ2 · · ·λn. We notice that if Mn has constant mean

curvature or constant scalar curvature in Mn+1
1 (c), there are many important

characteristic results for such spacelike hypersurfaces, see [2–6]. Since H, S
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Spacelike hypersurfaces with constant S or K 836

and K are the important rigidity invariants under the isometric immersion, we
may naturally ask the following questions:

(1) if S is constant, nonzero andH satisfies some pinching conditions (related
to S), can we obtain any characteristic results?

(2) if K is constant, nonzero and H or S satisfies some pinching conditions
(related to K), can we also obtain any characteristic results?

In this note, we try to give some answers to the above questions. Let Sk(a)
and Hk(a) denote k-dimensional sphere and k-dimensional hyperbolic surface
with radius 1

a , S
k
1 (a) and Hk

1 (a) denote k-dimensional de Sitter sphere and

k-dimensional anti-de Sitter sphere with radius 1
a , where a is a constant para-

metric. Firstly, we introduce the well-known standard models of complete
spacelike hypersurfaces with constant S or K in Sn+1

1 (1) or Hn+1
1 (−1).

Example 1.1. Spacelike hypersurface x : Sk(a)×Hn−k(
√
a2 − 1) → Sn+1

1 (1),

1 ≤ k ≤ n− 1. Let x = (x1, x2) ∈ Sk(a)×Hn−k(
√
a2 − 1) ⊂ Rk+1

1 ×Rn−k+1
1 ,

⟨x1, x1⟩ = a2, ⟨x2, x2⟩ = −(a2 − 1), en+1 = (−
√
a2−1
a x1, − a√

a2−1
x2) be the

unit normal vector of x such that ⟨en+1, en+1⟩ = −1. By a direct calculation,

we know that x has two distinct principal curvatures
√
a2−1
a and a√

a2−1
with

multiplicities k and n − k, respectively. We easily see that x has constant

squared norm of the second fundamental form S = k a2−1
a2 + (n − k) a2

a2−1 and

a2 = 2k

2k−(S±
√

S2−4k(n−k))
. Denote by H the mean curvature of Sn−1(a) ×

H1(
√
a2 − 1), if a2 = 2(n−1)

2(n−1)−(S∓
√

S2−4(n−1))
, then

H =

√
n− 1(S ∓

√
S2 − 4(n− 1) + 2)

n
√
2(S ∓

√
S2 − 4(n− 1))

.

We see that the Gauss-Kronecker curvature of Sn−1(a)×H1(
√
a2 − 1) is K =

(
√
a2−1
a )n−1 a√

a2−1
. Thus, the mean curvature and the squared norm of the

second fundamental form of Sn−1(a)×H1(
√
a2 − 1) is

H =
1

n
{(n− 1)K

1
n−2 −K− 1

n−2 },

S = (n− 1)K
2

n−2 +K− 2
n−2 ,

where a2 = 1/(1−K
2

n−2 ).

If λ =
√
a2−1
a ≥ κ >

√
S
n , we have a2 ≥ 1

1−κ2 , κ < 1 and

(1.1) S = (n− 1)
a2 − 1

a2
+

a2

a2 − 1
< nκ2.
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By a direct and simple calculation, we see that (1.1) holds if and only if α(κ) <
a2 < β(κ), where

α(κ) =
2(n− 1)

2(n− 1) +
√
n2κ4 − 4(n− 1)− nκ2

,(1.2)

β(κ) =
2(n− 1)

2(n− 1)−
√
n2κ4 − 4(n− 1)− nκ2

,(1.3)

and κ2 > 2
√
n−1
n .

It can be easily checked that α(κ) < 1
1−κ2 . Thus, we conclude that 1

1−κ2 ≤
a2 < β(κ) and 1 > κ2 > 2

√
n−1
n .

If λ =
√
a2−1
a ≤ κ′ <

√
S
n , we have a2 ≥ 1

1−κ′2 if κ′ > 1; a2 ≤ 1
1−κ′2 if κ′ < 1

and

(1.4) S = (n− 1)
a2 − 1

a2
+

a2

a2 − 1
> nκ′2.

By a direct and simple calculation, we see that if κ′ > 1, (1.4) holds if and
only if α(κ′) < a2 < β(κ′), if κ′ < 1; (1.4) holds if and only if a2 < α(κ′) or
a2 > β(κ′), where

α(κ′) =
2(n− 1)

2(n− 1) +
√
n2κ′4 − 4(n− 1)− nκ′2

,(1.5)

β(κ′) =
2(n− 1)

2(n− 1)−
√
n2κ′4 − 4(n− 1)− nκ′2

,(1.6)

and κ′2 > 2
√
n−1
n . Thus, we conclude that α(κ′) < a2 < β(κ′) if κ′ > 1;

a2 < α(κ′) or β(κ′) < a2 ≤ 1
1−κ′2 if 2

√
n−1
n < κ′2 < 1.

Example 1.2. Spacelike hypersurface x : Hk(a)×Hn−k(
√
1− a2) → Hn+1

1 (−1),

1 ≤ k ≤ n− 1. Let x = (x1, x2) ∈ Hk(a)×Hn−k(
√
1− a2) ⊂ Rk+1

1 × Rn−k+1
1 ,

⟨x1, x1⟩ = −a2, ⟨x2, x2⟩ = −(1 − a2) and en+1 = (−
√
1−a2

a x1,
a√

1−a2
x2) be

the unit normal vector of x, ⟨en+1, en+1⟩ = −1. By a direct calculation, we

know that x has two distinct principal curvatures
√
1−a2

a and − a√
1−a2

with

multiplicities k and n − k, respectively. We easily see that x has constant

squared norm of the second fundamental form S = k 1−a2

a2 + (n − k) a2

1−a2 and

a2 = 2k

2k+S±
√

S2−4k(n−k)
. Denote by H the mean curvature of Hn−1(a) ×

H1(
√
1− a2), if a2 = 2(n−1)

2(n−1)+S∓
√

S2−4(n−1)
, then

H =

√
n− 1(S ∓

√
S2 − 4(n− 1)− 2)

n
√
2(S ∓

√
S2 − 4(n− 1))

.
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If λ =
√
1−a2

a ≥ κ >
√

S
n , we have a

2 ≤ 1
κ2+1 and S = (n− 1) 1−a2

a2 + a2

1−a2 <

nκ2. Thus, we conclude that γ(κ) < a2 ≤ 1
1+κ2 , κ ̸= 1 and κ2 > 2

√
n−1
n , where

γ(κ) =
2(n− 1)

nκ2 +
√
n2κ4 − 4(n− 1) + 2(n− 1)

,(1.7)

δ(κ) =
2(n− 1)

nκ2 −
√
n2κ4 − 4(n− 1) + 2(n− 1)

.(1.8)

If λ =
√
1−a2

a ≤ κ′ <
√

S
n , we have a

2 ≥ 1
1+κ′2 and S = (n−1) 1−a2

a2 + a2

1−a2 >

nκ′2. Thus, we conclude that a2 > δ(κ′), κ′2 ≥ 2
√
n−1
n , or 1

1+κ′2 ≤ a2 < γ(κ′),
2
√
n−1
n ≤ κ′2 < 1, where

γ(κ′) =
2(n− 1)

nκ′2 +
√
n2κ′4 − 4(n− 1) + 2(n− 1)

,(1.9)

δ(κ′) =
2(n− 1)

nκ′2 −
√
n2κ′4 − 4(n− 1) + 2(n− 1)

.(1.10)

We shall prove the following:

Theorem 1.3. Let Mn be an n(n ≥ 3)-dimensional complete connected and
oriented spacelike hypersurface in a de Sitter space Sn+1

1 (1) with nonzero con-
stant S and two distinct nonzero principal curvatures λ and µ of multiplicities
n− 1 and 1.

(1) If λ is bounded from below by a positive constant κ >
√

S
n and

H ≥
√
n− 1(S +

√
S2 − 4(n− 1) + 2)

n
√
2(S +

√
S2 − 4(n− 1))

,

then Mn is isometric to the Riemannian product Sn−1(a)×H1(
√
a2 − 1), a2 =

2(n−1)

2(n−1)−(S+
√

S2−4(n−1))
, 1

1−κ2 ≤ a2 < β(κ) and 1 > κ2 > 2
√
n−1
n ;

(2) If λ is bounded from above by a positive constant κ′ <
√

S
n and

H ≤
√
n− 1(S −

√
S2 − 4(n− 1) + 2)

n
√
2(S −

√
S2 − 4(n− 1))

,

then Mn is isometric to the Riemannian product Sn−1(a)×H1(
√
a2 − 1), a2 =

2(n−1)

2(n−1)−(S−
√

S2−4(n−1))
, α(κ′) < a2 < β(κ′) and κ′ > 1; a2 < α(κ′) or β(κ′) <

a2 ≤ 1
1−κ′2 and 2

√
n−1
n < κ′2 < 1.

Theorem 1.4. Let Mn be an n(n ≥ 3)-dimensional complete connected and
oriented spacelike hypersurface in an anti-de Sitter space Hn+1

1 (−1) with nonzero



839 Shu and Chen

constant S and two distinct nonzero principal curvatures λ and µ of multiplic-
ities n− 1 and 1.

(1) If λ is bounded from below by a positive constant κ >
√

S
n and

H ≥
√
n− 1(S +

√
S2 − 4(n− 1)− 2)

n
√
2(S +

√
S2 − 4(n− 1))

,

then Mn is isometric to the Riemannian product Hn−1(a) × H1(
√
1− a2),

a2 = 2(n−1)

2(n−1)+S+
√

S2−4(n−1)
, γ(κ) < a2 ≤ 1

1+κ2 , κ > 1;

(2) If λ is bounded from above by a positive constant κ′ <
√

S
n and

H ≤
√
n− 1(S −

√
S2 − 4(n− 1)− 2)

n
√
2(S −

√
S2 − 4(n− 1))

,

then Mn is isometric to the Riemannian product Hn−1(a) × H1(
√
1− a2),

a2 = 2(n−1)

2(n−1)+S−
√

S2−4(n−1)
, a2 > δ(κ′), κ′2 ≥ 2

√
n−1
n , or 1

1+κ′2 ≤ a2 < γ(κ′),

2
√
n−1
n ≤ κ′2 < 1.

Theorem 1.5. Let Mn be an n(n ≥ 3)-dimensional complete connected and
oriented spacelike hypersurface in a de Sitter space Sn+1

1 (1) with nonzero con-
stant Gauss-Kronecker curvature K and two distinct principal curvatures λ and
µ of multiplicities n− 1 and 1. If 0 < K < 1 and

H ≤ 1

n
{(n− 1)K

1
n−2 −K− 1

n−2 },

or

H ≥ 1

n
{(n− 1)K

1
n−2 −K− 1

n−2 },

thenMn is isometric to one of the Riemannian products: Sn−1(a)×H1(
√
a2 − 1),

a2 = 1/(1−K
2

n−2 ).

Theorem 1.6. Let Mn be an n(n ≥ 3)-dimensional complete connected and
oriented spacelike hypersurface in a de Sitter space Sn+1

1 (1) with nonzero con-
stant Gauss-Kronecker curvature K and two distinct principal curvatures λ and
µ of multiplicities n− 1 and 1. If 0 < K < 1 and

S ≤ (n− 1)K
2

n−2 +K− 2
n−2 ,

or

S ≥ (n− 1)K
2

n−2 +K− 2
n−2 ,

thenMn is isometric to one of the Riemannian products: Sn−1(a)×H1(
√
a2 − 1),

a2 = 1/(1−K
2

n−2 ).
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Remark 1.7. We notice that, in Lemma 3.1, in order to ensure that the
positive function ϖ (see (3.18)) is bounded, the condition (in Theorem 1.3 and

Theorem 1.4) that λ is bounded from below by a positive constant κ >
√

S
n

or is bounded from above by a positive constant κ′ <
√

S
n is necessary. We

also notice that, in the proof of Lemma 4.1 and Lemma 4.2, the condition
0 < K < 1 (in Theorem 1.5 and Theorem 1.6) is necessary.

Remark 1.8. If c = −1, from the proof of Lemma 4.1, we can not know
whether the positive function ϖ = |λn − K|− 1

n is bounded or not. Thus,
the similar results as Theorem 1.5 and Theorem 1.6 in an anti-de Sitter space
Hn+1

1 (−1) may be not held.

2. Preliminaries

LetMn be an n-dimensional spacelike hypersurface in an (n+1)-dimensional
Lorentzian space formMn+1

1 (c) with constant sectional curvature c. We choose
a local field of semi-Riemannian orthonormal frames {e1, . . . , en+1} inMn+1

1 (c)
such that at each point of Mn, {e1, . . . , en} span the tangent space of Mn and
form an orthonormal frame there. We use the following convention on the range
of indices:

1 ≤ A,B,C, · · · ≤ n+ 1; 1 ≤ i, j, k, · · · ≤ n.

Let {ω1, . . . , ωn+1} be the dual frame field so that the semi-Riemannian metric
of Mn+1

1 (c) is given by ds̄2 =
∑
i

ω2
i − ω2

n+1 =
∑
A

ϵAω
2
A, where ϵi = 1 and

ϵn+1 = −1.
The structure equations of Mn+1

1 (c) are given by

(2.1) dωA =
∑
B

ϵBωAB ∧ ωB , ωAB + ωBA = 0,

(2.2) dωAB =
∑
C

ϵCωAC ∧ ωCB +ΩAB ,

where

(2.3) ΩAB = −1

2

∑
C,D

KABCDωC ∧ ωD,

(2.4) KABCD = ϵAϵBc(δACδBD − δADδBC).

Restrict these forms to Mn, we have

(2.5) ωn+1 = 0.
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Cartan’s Lemma implies that

(2.6) ωn+1i =
∑
j

hijωj , hij = hji.

The structure equations of Mn are

(2.7) dωi =
∑
j

ωij ∧ ωj , ωij + ωji = 0,

(2.8) dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl,

(2.9) Rijkl = c(δikδjl − δilδjk)− (hikhjl − hilhjk),

where Rijkl are the components of the curvature tensor of Mn and

(2.10) h =
∑
i,j

hijωi ⊗ ωj

is the second fundamental form of Mn.

From the above equation, we have

(2.11) n(n− 1)(R− c) = S − n2H2,

where n(n− 1)R is the scalar curvature of Mn, H is the mean curvature, and
S =

∑
i,j

h2ij is the squared norm of the second fundamental form of Mn.

We choose e1, . . . , en such that hij = λiδij . From (2.6) we have

(2.12) ωn+1i = λiωi, i = 1, 2, . . . , n.

From the curvature forms of Mn+1
1 (c),

Ωni =− 1

2

∑
C,D

KniCDωC ∧ ωD(2.13)

=
1

2

∑
C,D

c(δnCδiD − δnDδiC)ωC ∧ ωD = cωn ∧ ωi.

Since the covariant derivative of the second fundamental form hij of Mn is
defined by ∑

k

hijkωk = dhij +
∑
k

hikωkj +
∑
k

hkjωki,

we have ∑
k

hijkωk = δjidλj + (λi − λj)ωij .

Putting

ψij = (λi − λj)ωij ,
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we have ψij = ψji and

(2.14) ψij + δijdλj =
∑
k

hijkωk,

where hijk satisfy

(2.15) hijk = hjik = hikj .

We state a Proposition which can be proved by making use of the similar
method due to Otsuki [7].

Proposition 2.1. LetMn be a spacelike hypersurface in an (n+1)-dimensional
Lorentzian space form Mn+1

1 (c) such that the multiplicities of the principal cur-
vatures are constant. Then the distribution of the space of the principal vectors
corresponding to each principal curvature is completely integrable. In partic-
ular, if the multiplicity of a principal curvature is greater than 1, then this
principal curvature is constant on each integral submanifold of the correspond-
ing distribution of the space of the principal vectors.

3. Proofs of Theorem 1.3 and Theorem 1.4

Let Mn be an n-dimensional complete spacelike hypersurface with nonzero
constant squared norm of the second fundamental form and two distinct nonzero
principal curvatures λ and µ of multiplicities n − 1 and 1. By changing the
orientation for Mn and renumbering e1, . . . , en if necessary, we may assume
that λ > 0. Thus, we have that

(3.1) S = (n− 1)λ2 + µ2,

(3.2) µ = ±
√
S − (n− 1)λ2,

and

(3.3) 0 ̸= λ− µ = λ∓
√
S − (n− 1)λ2.

We denote the integral submanifold through x ∈ Mn corresponding to λ by
D(x). Putting

(3.4) dλ =
n∑

k=1

λ,k ωk, dµ =
n∑

k=1

µ,k ωk.

From Proposition 2.1, we have

(3.5) λ,1 = λ,2 = · · · = λ,n−1 = 0 on D(x).

From (3.2), we have

(3.6) dµ = ∓ (n− 1)λ√
S − (n− 1)λ2

dλ.
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Thus, we also have

(3.7) µ,1 = µ,2 = · · · = µ,n−1 = 0 on D(x).

In this case, we may consider locally λ as a function of the arc length s of the
integral curve of the principal vector field en corresponding to the principal
curvature µ. From (2.14) and (3.5), we have for 1 ≤ j ≤ n− 1,

λ,n ωn =
n∑

i=1

λ,i ωi = dλ =dλj =
n∑

k=1

hjjkωk =
n−1∑
k=1

hjjkωk + hjjnωn.(3.8)

Therefore, we have

(3.9) hjjk = 0, 1 ≤ k ≤ n− 1, and hjjn = λ,n .

By (2.14) and (3.7), we have

µ,n ωn =
n∑

i=1

µ,i ωi = dµ =dλn =
n∑

k=1

hnnkωk =
n−1∑
k=1

hnnkωk + hnnnωn.(3.10)

Hence, we obtain

(3.11) hnnk = 0, 1 ≤ k ≤ n− 1, and hnnn = µ,n .

From (3.6), we get

(3.12) hnnn = µ,n = ∓ (n− 1)λ√
S − (n− 1)λ2

λ,n .

From the definition of ψij , if i ̸= j, we have ψij = 0 for 1 ≤ i ≤ n − 1 and
1 ≤ j ≤ n − 1. Therefore, from (2.14), if i ̸= j and 1 ≤ i ≤ n − 1 and
1 ≤ j ≤ n− 1 we have

(3.13) hijk = 0, for any k.

By (2.14), (3.9), (3.11) and (3.13), for j < n, we get

ψjn =

n∑
k=1

hjnkωk(3.14)

=hjjnωj + hjnnωn = λ,n ωj .

From ψij = (λi − λj)ωij , (3.3) and (3.14), for j < n, we have

(3.15) ωjn =
ψjn

λ− µ
=

λ,n
λ− µ

ωj =
λ,n

λ∓
√
S − (n− 1)λ2

ωj .

Thus, from the structure equations of Mn we have dωn =
n−1∑
k=1

ωkn∧ωk +ωnn∧

ωn = 0. Therefore, we may put ωn = ds. By (3.5), we get dλ = λ,n ds,
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λ,n =
dλ
ds . Thus, we have

ωjn =
dλ
ds

λ∓
√
S − (n− 1)λ2

ωj(3.16)

=
d{ln |

√
n−1
S (λ∓

√
S − (n− 1)λ2)e∓

√
n−1 arcsin

√
n−1
S λ| 1

n }
ds

ωj .

From (3.16) and the structure equations of Mn+1
1 (c), for j < n, we have

dωjn =
n−1∑
k=1

ωjk ∧ ωkn + ωjn ∧ ωnn − ωjn+1 ∧ ωn+1n +Ωjn

=

n−1∑
k=1

ωjk ∧ ωkn − ωjn+1 ∧ ωn+1n − cωj ∧ ωn

=
d{ln |

√
n−1
S (λ∓

√
S − (n− 1)λ2)e∓

√
n−1 arcsin

√
n−1
S λ| 1

n }
ds

n−1∑
k=1

ωjk ∧ ωk

− (c− λµ)ωj ∧ ds.

Differentiating (3.16), we have

dωjn =
d2{ln |

√
n−1
S (λ∓

√
S − (n− 1)λ2)e∓

√
n−1 arcsin

√
n−1
S λ| 1

n }
ds2

ds ∧ ωj

+
d{ln |

√
n−1
S (λ∓

√
S − (n− 1)λ2)e∓

√
n−1 arcsin

√
n−1
S λ| 1

n }
ds

dωj

=
d2{ln |

√
n−1
S (λ∓

√
S − (n− 1)λ2)e∓

√
n−1 arcsin

√
n−1
S λ| 1

n }
ds2

ds ∧ ωj

+
d{ln |

√
n−1
S (λ∓

√
S − (n− 1)λ2)e∓

√
n−1 arcsin

√
n−1
S λ| 1

n }
ds

n∑
k=1

ωjk ∧ ωk

=
{
−
d2{ln |

√
n−1
S (λ∓

√
S − (n− 1)λ2)e∓

√
n−1 arcsin

√
n−1
S λ| 1

n }
ds2

+
[d{ln |√n−1

S (λ∓
√
S − (n− 1)λ2)e∓

√
n−1 arcsin

√
n−1
S λ| 1

n }
ds

]2}
ωj ∧ ds

+
d{ln |

√
n−1
S (λ∓

√
S − (n− 1)λ2)e∓

√
n−1 arcsin

√
n−1
S λ| 1

n }
ds

n−1∑
k=1

ωjk ∧ ωk.
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From the previous two equalities, we have

d2{ln |
√

n−1
S (λ∓

√
S − (n− 1)λ2)e∓

√
n−1 arcsin

√
n−1
S λ| 1

n }
ds2

(3.17)

−
{d{ln |√n−1

S (λ∓
√
S − (n− 1)λ2)e∓

√
n−1 arcsin

√
n−1
S λ| 1

n }
ds

}2

− (c− λµ) = 0.

Putting

(3.18) ϖ = |
√
n− 1

S
(λ∓

√
S − (n− 1)λ2)e∓

√
n−1 arcsin

√
n−1
S λ|− 1

n ,

from (3.17), we obtain
d2ϖ

ds2
+ϖ(c− λµ) = 0.

By (3.2), we have

(3.19)
d2ϖ

ds2
+ϖ(c∓ λ

√
S − (n− 1)λ2) = 0.

On the other hand, from (3.16), we have ∇enen =
∑n

i=1 ωni(en)ei = 0. By the
definition of geodesic, we know that any integral curve of the principal vector
field corresponding to the principal curvature µ is a geodesic. Thus, we see
that ϖ(s) is a function defined in (−∞,+∞) since Mn is complete and any
integral curve of the principal vector field corresponding to µ is a geodesic.

We can prove the following Lemmas:

Lemma 3.1. If λ is bounded from below by a positive constant κ >
√

S
n or is

bounded from above by a positive constant κ′ <
√

S
n , then ϖ is bounded.

Proof. Since S − (n − 1)λ2 = µ2 > 0, we have λ <
√

S
n−1 . Putting θ =

arcsin
√

n−1
S λ, we have | sin θ| =

√
n−1
S |λ| < 1,thus |θ| = | arcsin

√
n−1
S λ| < π

2 .

If λ ≥ κ >
√

S
n , we have λ −

√
S − (n− 1)λ2 ≥ κ −

√
S − (n− 1)κ2 >√

S
n −

√
S − (n− 1)Sn = 0. Thus, we see that

|
√
n− 1

S
(λ−

√
S − (n− 1)λ2)e−

√
n−1 arcsin

√
n−1
S λ|

>

√
n− 1

S
|λ−

√
S − (n− 1)λ2|e−π

2

√
n−1

≥
√
n− 1

S
|κ−

√
S − (n− 1)κ2|e−π

2

√
n−1 > 0,
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and 0 < ϖ <
(√

n−1
S |κ−

√
S − (n− 1)κ2|e−π

2

√
n−1
)− 1

n

.

On the other hand

|
√
n− 1

S
(λ+

√
S − (n− 1)λ2)e

√
n−1 arcsin

√
n−1
S λ|

>

√
n− 1

S
|λ+

√
S − (n− 1)λ2|e−π

2

√
n−1

≥
√
n− 1

S
κe−

π
2

√
n−1 >

√
n− 1

n
e−

π
2

√
n−1 > 0.

Thus 0 < ϖ <
(√

n−1
n e−

π
2

√
n−1
)− 1

n

.

If λ ≤ κ′ <
√

S
n , by reasoning as above we see that ϖ is also bounded □

Lemma 3.2. (1) Let

P1(t) = 1−
√
t
√
S − (n− 1)t,

and t0 = S
2(n−1) .

If S < 2
√
n− 1, then P1(t) > 0; if S ≥ 2

√
n− 1, then P1(t) has two positive

real roots t1 =
S−

√
S2−4(n−1)

2(n−1) , t2 =
S+

√
S2−4(n−1)

2(n−1) and t1 ≤ t0 ≤ t2.

(i) if t ≥ t0, then t ≥ t2 holds if and only if P1(t) ≥ 0 and t ≤ t2 holds if
and only if P1(t) ≤ 0;

(ii) if t ≤ t0, then t ≤ t1 holds if and only if P1(t) ≥ 0 and t ≥ t1 holds if
and only if P1(t) ≤ 0.

(2) Let

P2(t) = −1 +
√
t
√
S − (n− 1)t,

and t0 = S
2(n−1) .

If S < 2
√
n− 1, then P2(t) < 0; if S ≥ 2

√
n− 1, then P2(t) has two positive

real roots t1 =
S−

√
S2−4(n−1)

2(n−1) , t2 =
S+

√
S2−4(n−1)

2(n−1) and t1 ≤ t0 ≤ t2.

(i) if t ≥ t0, then t ≥ t2 holds if and only if P2(t) ≤ 0 and t ≤ t2 holds if
and only if P2(t) ≥ 0;

(ii) if t ≤ t0, then t ≤ t1 holds if and only if P2(t) ≤ 0 and t ≥ t1 holds if
and only if P2(t) ≥ 0.

(3) Let

H1(t) = (n− 1)
√
t−

√
S − (n− 1)t.

Then
(i) t ≥ t2 holds if and only if H1(t) ≥ H1(t2) and t ≤ t2 holds if and only if

H1(t) ≤ H1(t2);
(ii) t ≥ t1 holds if and only if H1(t) ≥ H1(t1) and t ≤ t1 holds if and only

if H1(t) ≤ H1(t1).
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(4) Let

H2(t) = (n− 1)
√
t+

√
S − (n− 1)t.

and t′0 = S
n . Then

(i) if t ≥ t′0, when t2 ≥ t′0, then t ≥ t2 holds if and only if H2(t) ≤ H2(t2)
and t ≤ t2 holds if and only if H2(t) ≥ H2(t2);

(ii) if t ≤ t′0, when t2 ≤ t′0, then t ≥ t2 holds if and only if H2(t) ≥ H2(t2)
and t ≤ t2 holds if and only if H2(t) ≤ H2(t2). In addition, t ≥ t1 holds if and
only if H2(t) ≥ H2(t1) and t ≤ t1 holds if and only if H2(t) ≤ H2(t1).

Proof. (1) We have

dP1(t)

dt
=

2(n− 1)t− S

2
√
t
√
S − (n− 1)t

,

it follows that the solution of dP1(t)
dt = 0 is t0 = S

2(n−1) . Therefore, we know

that t ≤ t0 if and only if P1(t) is a decreasing function, t ≥ t0 if and only if
P1(t) is an increasing function and P1(t) obtain its minimum at t0 = S

2(n−1)

and P1(t0) = 1− S
2
√
n−1

.

If S < 2
√
n− 1, we have P1(t) ≥ P1(t0) > 0;

If S ≥ 2
√
n− 1, then P1(t) has two positive real roots t1 =

S−
√

S2−4(n−1)

2(n−1) ,

t2 =
S+

√
S2−4(n−1)

2(n−1) . We easily see that t1 ≤ t0 ≤ t2.

(i) if t ≥ t0, since P1(t) is an increasing function, we have t ≥ t2 holds if and
only if P1(t) ≥ P1(t2) = 0 and t ≤ t2 holds if and only if P1(t) ≤ P1(t2) = 0.

(ii) if t ≤ t0, since P1(t) is a decreasing function, we have t ≤ t1 holds if and
only if P1(t) ≥ P1(t1) = 0 and t ≥ t1 holds if and only if P1(t) ≤ P1(t1) = 0.

(2) By the same method, (2) of Lemma 3.3 follows.
(3) We have

dH1(t)

dt
=
n− 1

2

(
1√
t
+

1√
S − (n− 1)t

)
> 0,

it follows that H1(t) is an increasing function, we conclude.
(4) We have

dH2(t)

dt
=
n− 1

2

(
1√
t
− 1√

S − (n− 1)t

)
,

it follows that the solution of dH2(t)
dt = 0 is t′0 = S

n . Therefore, we know that
t ≤ t′0 if and only if H2(t) is an increasing function, t ≥ t′0 if and only if
H2(t) is a decreasing function and H2(t) obtain its maximum at t′0 = S

n and

H2(t
′
0) =

√
nS. We see that (i) and (ii) of (4) follows by the monotonicity of

H2(t). □
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Proof of Theorem 1.3 . Putting t = λ2(> 0), since c = 1, from (3.19), we have

(3.20)
d2ϖ

ds2
+ϖ(1−

√
t
√
S − (n− 1)t) = 0,

or

(3.21)
d2ϖ

ds2
+ϖ(1 +

√
t
√
S − (n− 1)t) = 0.

(1) If λ ≥ κ >
√

S
n , we have t > S

n > t0 = S
2(n−1) . We may easily see

that (3.21) does not hold. In fact, since 1+
√
t
√
S − (n− 1)t > 0, from (3.21),

we have d2ϖ
ds2 < 0. This implies that dϖ(s)

ds is a strictly monotone decreasing
function of s and thus it has at most one zero point for s ∈ (−∞,+∞). If
dϖ(s)
ds has no zero point in (−∞,+∞), then ϖ(s) is a monotone function of s

in (−∞,+∞). If dϖ(s)
ds has exactly one zero point s0 in (−∞,+∞), then ϖ(s)

is a monotone function of s in both (−∞, s0] and [s0,+∞).
On the other hand, from Lemma 3.1, we know that ϖ(s) is bounded. Since

ϖ(s) is bounded and monotonic when s tends to infinity, we know that both
lims→−∞ϖ(s) and lims→+∞ϖ(s) exist and then we get

(3.22) lim
s→−∞

dϖ(s)

ds
= lim

s→+∞

dϖ(s)

ds
= 0.

This is impossible because dϖ(s)
ds is a strictly monotone increasing function of

s. Therefore, we conclude that only (3.20) holds, that is

(3.23)
d2ϖ

ds2
+ϖP1(t) = 0.

If S < 2
√
n− 1, by Lemma 3.2, we have P1(t) > 0. From (3.23), we have

d2ϖ
ds2 < 0. This implies that dϖ(s)

ds is a strictly monotone decreasing function of
s. By the same arguments as above, we know that this is impossible.

If S ≥ 2
√
n− 1, since t > t0, from Lemma 3.2 and (3.23), we see that if

H ≥
√
n− 1(S +

√
S2 − 4(n− 1)− 2)

n
√
2(S +

√
S2 − 4(n− 1))

,

that is, H = H1(t) ≥ H1(t2) holds if and only if t ≥ t2 if and only if P1(t) ≥ 0

and if and only if d2ϖ
ds2 ≤ 0. Thus dϖ

ds is a monotonic function of s ∈ (−∞,+∞).
Therefore, as observed by Wei [8], ϖ(s) must be monotonic when s tends
to infinity. From Lemma 3.1, we know that the positive function ϖ(s) is
bounded. Since ϖ(s) is bounded and monotonic when s tends to infinity,
we know that both lims→−∞ϖ(s) and lims→+∞ϖ(s) exist and (3.22) holds.

From the monotonicity of dϖ(s)
ds , we have dϖ(s)

ds ≡ 0 and ϖ(s) = constant.

Combining ϖ = |
√

n−1
S (λ∓

√
S − (n− 1)λ2)e∓

√
n−1 arcsin

√
n−1
S λ|− 1

n and (3.2),

we conclude that λ and µ are constant, that is, Mn is isoparametric. By the
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congruence Theorem of Abe, Koike and Yamaguchi (see Theorem 5.1 of [1])
and Example 1.1, we conclude thatMn is isometric to the Riemannian product

Sn−1(a) ×H1(
√
a2 − 1), a2 = 2(n−1)

2(n−1)−(S+
√

S2−4(n−1))
, 1

1−κ2 ≤ a2 < β(κ) and

1 > κ2 > 2
√
n−1
n .

(2) If λ ≤ κ′ <
√

S
n , we have t < S

n = t′0. From the arguments in (1), we

know that only (3.20) holds.
If S < 2

√
n− 1, by the same arguments in (1), we know that this is impos-

sible.
If S ≥ 2

√
n− 1, from Lemma 3.2, we see that if

H ≤
√
n− 1(S −

√
S2 − 4(n− 1) + 2)

n
√
2(S −

√
S2 − 4(n− 1))

,

that is, H = H1(t) ≤ H1(t1) holds if and only if t ≤ t1. Since t1 ≤ t0, from
Lemma 3.2 and (3.23), we have that t ≤ t1 if and only if P1(t) ≥ 0 and if

and only if d2ϖ
ds2 ≤ 0. Thus dϖ

ds is a monotonic function of s ∈ (−∞,+∞).
By the same arguments as in the proof of (1) and Example 1.1, we conclude

thatMn is isometric to the Riemannian product Sn−1(a)×H1(
√
a2 − 1), a2 =

2(n−1)

2(n−1)−(S−
√

S2−4(n−1))
, α(κ′) < a2 < β(κ′) and κ′ > 1; a2 < α(κ′) or β(κ′) <

a2 ≤ 1
1−κ′2 and 2

√
n−1
n < κ′2 < 1. □

Proof of Theorem 1.4. Putting t = λ2(> 0), since c = −1, from (3.19), we have

(3.24)
d2ϖ

ds2
+ϖ(−1−

√
t
√
S − (n− 1)t) = 0,

or

(3.25)
d2ϖ

ds2
+ϖ(−1 +

√
t
√
S − (n− 1)t) = 0.

(1) If λ ≥ κ >
√

S
n , we have t > S

n > t0 = S
2(n−1) . By reasoning as in the

proof of Theorem 1.3, we see that (3.24) does not hold. Thus it follows that
only (3.25) holds, that is

(3.26)
d2ϖ

ds2
+ϖP2(t) = 0.

If S < 2
√
n− 1, by Lemma 3.2, we have P2(t) < 0. From (3.26), we have

d2ϖ
ds2 > 0. By the same arguments as in the proof of Theorem 1.3, we know
that this is impossible.

If S ≥ 2
√
n− 1, we consider two cases S ≥ n and 2

√
n− 1 ≤ S < n.
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If S ≥ n, we easily check that t2 ≥ t′0. Since t′0 = S
n > t0, we have

t2 ≥ t′0 > t0. Since t > t′0 > t0, from Lemma 3.2 and (3.26), we see that if

H ≥
√
n− 1(S +

√
S2 − 4(n− 1)− 2)

n
√
2(S +

√
S2 − 4(n− 1))

,

that is, H2(t) ≥ H2(t2) holds if and only if t ≤ t2 if and only if P2(t) ≥ 0 and if

and only if d2ϖ
ds2 ≤ 0. Thus dϖ

ds is a monotonic function of s ∈ (−∞,+∞). Since

nκ2 > S ≥ n, that is κ > 1, by the same arguments as in the proof of Theorem
1.3 and Example 1.2, we conclude that Mn is isometric to the Riemannian

product Hn−1(a) × H1(
√
1− a2), a2 = 2(n−1)

2(n−1)+S+
√

S2−4(n−1)
, γ(κ) < a2 ≤

1
1+κ2 , κ > 1.

If 2
√
n− 1 ≤ S < n, we easily check that t2 < t′0. Since t2 ≥ t0, we have

t′0 > t2 ≥ t0. Thus t > t2 ≥ t0. From Lemma 3.2 and (3.26), we have P2(t) < 0

and d2ϖ
ds2 > 0. By the same arguments as in the proof of Theorem 1.3, we know

that this is impossible. Thus, the case 2
√
n− 1 ≤ S < n does not occur.

(2) If λ ≤ κ′ <
√

S
n , we have t < S

n = t′0. By reasoning as in the proof of

Theorem 1.3, we see that only (3.26) holds.
If S < 2

√
n− 1, by the same arguments in the proof of Theorem 1.3, we

know that this is impossible.
If S ≥ 2

√
n− 1, we may easily check that t1 ≤ t′0. Since t < t′0, from Lemma

3.2, we see that if

H ≤
√
n− 1(S −

√
S2 − 4(n− 1)− 2)

n
√
2(S −

√
S2 − 4(n− 1))

,

that is, H2(t) ≤ H2(t1) holds if and only if t ≤ t1. Since t1 ≤ t0, by Lemma
3.2 and (3.26), we have that t ≤ t1 if and only if P2(t) ≤ 0 and if and only

if d2ϖ
ds2 ≥ 0. Thus dϖ

ds is a monotonic function of s ∈ (−∞,+∞). By the
same arguments as in the proof of Theorem 1.3 and Example 1.2, we conclude
that Mn is isometric to the Riemannian product Hn−1(a) × H1(

√
1− a2),

a2 = 2(n−1)

2(n−1)+S−
√

S2−4(n−1)
, a2 > δ(κ′), κ′2 ≥ 2

√
n−1
n , or 1

1+κ′2 ≤ a2 < γ(κ′),

2
√
n−1
n ≤ κ′2 < 1. □

4. Proofs of Theorem 1.5 and Theorem 1.6

Let Mn be an n-dimensional complete spacelike hypersurface with nonzero
constant Gauss-Kronecker curvature K and two distinct principal curvatures
λ and µ of multiplicities n− 1 and 1. We have that

(4.1) K = λn−1µ.



851 Shu and Chen

From K ̸= 0, we conclude that λ ̸= 0. By changing the orientation for Mn and
renumbering e1, . . . , en if necessary, we may assume that λ > 0. Thus

(4.2) µ =
K

λn−1
,

(4.3) 0 ̸= λ− µ =
λn −K

λn−1
.

Denote by D(x) the integral submanifold through x ∈Mn corresponding to λ.
By Proposition 2.1, we have

(4.4) λ,1 = λ,2 = · · · = λ,n−1 = 0 on D(x).

From (4.2), we have

(4.5) dµ = − (n− 1)K

λn
dλ.

Thus

(4.6) µ,1 = µ,2 = · · · = µ,n−1 = 0 on D(x).

From (2.14) and (4.4)–(4.6), by the same arguments as in section 3, we have

hjjk = 0, 1 ≤ k ≤ n− 1, and hjjn = λ,n .(4.7)

hnnk = 0, 1 ≤ k ≤ n− 1, and hnnn = µ,n .(4.8)

hnnn = µ,n = − (n− 1)K

λn
λ,n , hijk = 0, for any k.(4.9)

By (2.14), (4.7)–(4.9), for j < n, we get

ψjn =
n∑

k=1

hjnkωk(4.10)

=hjjnωj +Qjnnωn = λ,n ωj .

From ψij = (λi − λj)ωij , (4.3) and (4.10), for j < n, we have

(4.11) ωjn =
ψjn

λ− µ
=

λ,n
λ− µ

ωj =
λn−1λ,n
λn −K

ωj .

From the structure equations of Mn we have dωn = 0. Thus, we may put
ωn = ds. By (4.4), we get dλ = λ,n ds, λ,n =

dλ
ds . Thus, we have

(4.12) ωjn =
λn−1 dλ

ds

λn −K
ωj =

d(log |λn −K| 1
n )

ds
ωj .
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From (4.12) and the structure equations of Mn+1
1 (c), for j < n, we have

dωjn =
n−1∑
k=1

ωjk ∧ ωkn + ωjn ∧ ωnn − ωjn+1 ∧ ωn+1n +Ωjn

=

n−1∑
k=1

ωjk ∧ ωkn − ωjn+1 ∧ ωn+1n − cωj ∧ ωn

=
d(log |λn −K| 1

n )

ds

n−1∑
k=1

ωjk ∧ ωk − (c− λµ)ωj ∧ ds.

Differentiating (4.12), we have

dωjn =
d2(log |λn −K| 1

n )

ds2
ds ∧ ωj +

d(log |λn −K| 1
n )

ds
dωj

=
d2(log |λn −K| 1

n )

ds2
ds ∧ ωj +

d(log |λn −K| 1
n )

ds

n∑
k=1

ωjk ∧ ωk

=
{
− d2(log |λn −K| 1

n )

ds2
+
[d(log |λn −K| 1

n )

ds

]2}
ωj ∧ ds

+
d(log |λn −K| 1

n )

ds

n−1∑
k=1

ωjk ∧ ωk.

From the previous two equalities, we have

(4.13)
d2(log |λn −K| 1

n )

ds2
−
{d(log |λn −K| 1

n )

ds

}2

− (c− λµ) = 0.

If we define ϖ = |λn −K|− 1
n , from (4.13) we obtain

(4.14)
d2ϖ

ds2
+ϖ(c− λµ) = 0.

From (4.12), we have ∇enen =
∑n

i=1 ωni(en)ei = 0. By the same arguments
as in section 3, we see that ϖ(s) is a function defined in (−∞,+∞).

We can prove the following Lemmas:

Lemma 4.1. If c = 1 and K < 1, then the positive function ϖ is bounded
from above.

Proof. From (4.3), we know that λn−K ̸= 0. Thus (4.2) and (4.14) imply that

(4.15)
d2ϖ

ds2
+ϖ

cλn−2 −K

λn−2
= 0,

that is

(4.16)
d2ϖ

ds2
+ϖ

[
c−K(K ±ϖ−n)

2
n−1

]
= 0.
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Multiplying (4.16) by 2dϖ
ds and integrating, we get(

dϖ

ds

)2

+ cϖ2 −ϖ2(K ±ϖ−n)
2
n = C,

where C is a constant. Thus, we have

(4.17) c− (K ±ϖ−n)
2
n ≤ C

ϖ2
.

If the positive function ϖ is not bounded from above, that is, ϖ → +∞. From
(3.17), we have that c−K

2
n ≤ 0, a contradiction with the assumption. □

Lemma 4.2. (1) Let

S(t) =
1

t2(n−1)/n
{(n− 1)t2 +K2}, t > 0,

t0 = K
n

n−2 , K > 0. If t ≤ K and t0 ≤ K, then t ≤ t0 holds if and only if S(t) ≥
(n− 1)t

2/n
0 + t

−2/n
0 and t ≥ t0 holds if and only if S(t) ≤ (n− 1)t

2/n
0 + t

−2/n
0 .

(2) Let

H(t) =
1

nt(n−1)/n
{(n− 1)t+K}, t > 0.

t0 = K
n

n−2 , K > 0. If t ≤ K and t0 ≤ K, then t ≤ t0 holds if and only

if H(t) ≥ 1
n{(n − 1)t

1/n
0 − t

−1/n
0 } and t ≥ t0 holds if and only if H(t) ≤

1
n{(n− 1)t

1/n
0 − t

−1/n
0 }.

Proof. (1) We have

dS(t)

dt
=

2(n− 1)t(2−3n)/n

n
(t2 −K2),

it follows that t ≤ K if and only if S(t) is a decreasing function, t ≥ K if and
only if S(t) is an increasing function.

If t0 ≤ K, since t ≤ K if and only if S(t) is a decreasing function, we infer
that if t ≤ K, then t ≤ t0 holds if and only if

S(t) ≥ S(t0) =
1

t
2(n−1)/n
0

{(n− 1)t20 +K2}

=
1

t
2(n−1)/n
0

{
(n− 1)t20 +

[(
t
n−2
n

0 −K
)
− t

n−2
n

0

]2}
=

1

t
2(n−1)/n
0

{
(n− 1)t20 +

[
− t

n−2
n

0

]2}
= (n− 1)t

2/n
0 + t

−2/n
0 ,

By the same reason, the rest of (1) follows.
(2) Since H(t) is a decreasing function if t ≤ K and an increasing function

if t ≥ K, it follows the result of (2). □
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Proof of Theorem 1.5. Putting t = λn(> 0) and PK(t) = t
n−2
n −K, from (4.15),

we have

(4.18)
d2ϖ

ds2
+ϖ

PK(t)

t
n−2
n

= 0.

Since we assume that 0 < K < 1, we see that t0 < K, where t0 = K
n

n−2 . We
consider two cases t ≥ K and t ≤ K.

If t ≥ K, we have t > t0. Thus, PK(t) > PK(t0) = 0. From (4.18), we have
d2ϖ
ds2 < 0. This implies that dϖ(s)

ds is a strictly monotone decreasing function
of s and thus it has at most one zero point for s ∈ (−∞,+∞). By the same
arguments as in the proof of Theorem 1.3, we know that this is impossible.

If t ≤ K, since t0 < K, from (2) of Lemma 4.2 and (4.18), we see that

H ≤ 1

n
{(n− 1)K

1
n−2 −K− 1

n−2 } =
1

n
{(n− 1)t

1/n
0 − t

−1/n
0 }

holds if and only if t ≥ t0 if and only if PK(t) ≥ 0 and if and only if d2ϖ
ds2 ≤ 0.

Also

H ≥ 1

n
{(n− 1)K

1
n−2 −K− 1

n−2 } =
1

n
{(n− 1)t

1/n
0 − t

−1/n
0 }

holds if and only if t ≤ t0 if and only if PK(t) ≤ 0 and if and only if d2ϖ
ds2 ≥ 0.

Thus dϖ
ds is a monotonic function of s ∈ (−∞,+∞). By use of the same method

as in the proof Theorem 1.3, we know that Mn is isometric to the Riemannian

product Sn−1(a)×H1(
√
a2 − 1), a2 = 1/(1−K

2
n−2 ). □

Proof of Theorem 1.6. Putting t = λn(> 0) and PK(t) = t
n−2
n − K, we see

that (4.18) holds. Since 0 < K < 1, we have t0 < K, where t0 = K
n

n−2 . We
also consider two cases t ≥ K and t ≤ K.

If t ≥ K, we have t > t0. Thus, PK(t) > PK(t0) = 0. From (4.18), we have
d2ϖ
ds2 < 0. By the same arguments as in the proof of Theorem 1.3, we know
that this is impossible.

If t ≤ K, since t0 < K, from (1) of Lemma 4.2 and (4.18), we see that

S ≤ (n− 1)K
2

n−2 +K− 2
n−2 = (n− 1)t

2/n
0 + t

−2/n
0

holds if and only if t ≥ t0 if and only if PK(t) ≥ 0 and if and only if d2ϖ
ds2 ≤ 0.

Also

S ≥ (n− 1)K
2

n−2 +K− 2
n−2 = (n− 1)t

2/n
0 + t

−2/n
0

holds if and only if t ≤ t0 if and only if PK(t) ≤ 0 and if and only if d2ϖ
ds2 ≥ 0.

Thus dϖ
ds is a monotonic function of s ∈ (−∞,+∞). By the same arguments as

in the proof of Theorem 1.3, we know that Mn is isometric to the Riemannian

product Sn−1(a)×H1(
√
a2 − 1), a2 = 1/(1−K

2
n−2 ). □
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