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Abstract. The group 26·G2(2) is a maximal subgroup of the Rudvalis

group Ru of index 188500 and has order 774144 = 212.33.7. In this pa-
per, we construct the character table of the group 26·G2(2) by using the
technique of Fischer-Clifford matrices.
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1. Introduction

The Rudvalis group Ru, founded by Arunas Rudvalis [22] and constructed
by Conway and Wales [10], is a sporadic simple group of order 145926144000 =
214.33.53.7.13.29. Ru is one of the six sporadic simple groups known as ”pariah
groups” as they are not found within the Monster group [14]. Wilson [27] found
that the group Ru has 14 conjugacy classes of maximal subgroups as listed in
the Atlas of Finite Groups [11]. The non-split extension 26·G2(2), is the second
largest maximal subgroup of Ru of index 188500.

Let G= N ·G be a non-split extension of N ∼= 26, the vector space of di-
mension 6 over GF (2), by G ∼= G2(2) (the adjoint Chevalley group of type
G2 over GF (2)). In the present paper, we construct the character table of
26·G2(2) using the method of the Fischer-Clifford matrices. This method was
presented by Bernd Fischer [12] for the construction of the character tables
of finite group extensions and extensively used by Moori and his research
team (see [1–7, 19, 24, 25] and [28]). Pahlings in [20] also used Fischer-Clifford
theory to compute the character table of the non-split extension 21+22·Co2.
The method involves the construction of a non-singular matrix M(g), called a
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Fischer-Clifford matrix, for each conjugacy class [g] of G/N ∼= G2(2). The char-
acter table of G can be constructed from these Fischer-Clifford matrices and
the character tables of certain subgroups of G2(2), called inertia factor groups.
Our computations were done in the computer algebra systems MAGMA [8]
and GAP [23]. We adopt the notation used in the ATLAS [11] for conjugacy
classes and permutation characters.

2. Theory of Fischer-Clifford matrices

We will see later in Section 6 that for the group G = 26·G2 under discussion
in this paper, the projective characters of the inertia factor groups of G are
not involved in the construction of the character table of G. Only the ordinary
characters of the inertia factors groups are used and therefore we only need the
special case of Fischer-Clifford theory [1] (Chapter 5) to compute the character
table of G. In this section, we will give a brief theoretical background of this
technique which is covered extensively in [1], [12], [19], [24] [25] and [28].

Let G = N .G be an extension of N by G and θ ∈ Irr(N), where Irr(N)
denotes the irreducible characters of N . Define θg by θg(n) = θ(gng−1) for
g ∈ G and n ∈ N and θg ∈ Irr(N). Let H =

{
x ∈ G|θx = θ

}
= IG(θ) be the

inertia group of θ in G then N is normal in H. We say that θ is extendible to
H if there exists ϕ ∈ Irr(H) such that ϕ ↓N= θ. If θ is extendible to H, then
by Gallagher [16], we have{

ϕ|ϕ ∈ Irr(H), < ϕ ↓N , θ > ̸= 0
}
=

{
βϕ|β ∈ Irr(H/N)

}
.

Let G have the property that every irreducible character of N can be extended
to its inertia group. Now let θ1 = 1N , θ2, · · · , θt be representatives of the orbits
of G on Irr(N), Hi = IG(ϕi), 1 ≤ i ≤ t, ϕi ∈ Irr(Hi) be an extension of θi to

Hi and β ∈ Irr(Hi) such that N ⊆ ker(β). Then it can be shown that

Irr(G) =

t∪
i=1

{(β ϕi)G |β ∈ Irr(Hi), N ⊆ ker(β)} =

t∪
i=1

{(β ϕi)G |β ∈ Irr(Hi/N)}

Hence the irreducible characters of G will be divided into blocks, where each
block corresponds to an inertia group Hi.
Let Hi be the inertia factor group and ϕi be an extension of θi to Hi. Take
θ1 = 1N as the identity character of N , then H1 = G and H1

∼= G. Let
X(g) = {x1, x2, · · · , xc(g)} be a set of representatives of the conjugacy classes of

G from the coset Ng whose images under the natural homomorphism G −→ G
are in [g] and we take x1 = ḡ. We define

R(g) = {(i, yk) | 1 ≤ i ≤ t,Hi ∩ [g] ̸= ∅, 1 ≤ k ≤ r}
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and we note that yk runs over representatives of the conjugacy classes of el-
ements of Hi which fuse into [g] in G. Let {ylk} be the representatives of
conjugacy classes of Hi that contain yk. Then we define the Fischer-Clifford
matrix M(g) by M(g) = (aj(i,yk)

), where

aj(i,yk)
=

′∑
l

|CG(xj)|
|CHi

(ylk)|
ϕi(ylk) ,

with columns indexed by X(g) and rows indexed by R(g) and where
∑′

l is

the summation over all l for which ylk ∼ xj in G. Then the partial character

table of G on the classes {x1, x2, · · · , xc(g)} is given by


C1(g)M1(g)
C2(g)M2(g)

...
Ct(g)Mt(g)

 where

the Fischer-Clifford matrix M(g) =


M1(g)
M2(g)

...
Mt(g)

 is divided into blocks Mi(g)

with each block corresponding to an inertia group Hi and Ci(g) is the partial
character table of Hi consisting of the columns corresponding to the classes

that fuse into [g] in G. Hence the full character table of G will be


∆1

∆2

...
∆t

,
where ∆i = [Ci(1)Mi(1)|Ci(g2)Mi(g2)|...|Ci(gk)Mi(gk)] with {1, g1, g2, ..., gk}
the representatives of conjugacy classes of G. We can also observe that |Irr(G)|
= |Irr(H1)| + |Irr(H2)| +...+ |Irr(Ht)|.

Let xj ∈ X(g) and define mj = [Cḡ:CG(xj)], where Cg = {x ∈ G|x(Ng) =
(Ng)x} is the set stabilizer of Ng in G under the action by conjugation of G
on Ng. Hence Cḡ ≤ G and it can be shown that N is normal in Cḡ. The
Fischer-Clifford matrix M(g) is partitioned row–wise into blocks, where each
block corresponds to an inertia group. The columns of M(g) are indexed by
X(g) and for each xj ∈ X(g), at the top of the columns of M(g), we write
|CG(xj)| and at the bottom we write mj . The rows of M(g) are indexed by
R(g) and on the left of each row we write |CHi(yk)|, where yk fuses into [g] in
G. Then in general we can write M(g) with corresponding weights for rows
and columns as follows, where blocks corresponding to the inertia groups are
separated by horizontal lines.
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|C
G
(x1)| |C

G
(x2)| · · · |C

G
(xc(g))|

|CG(g)| a1(1,g) a2(1,g) · · · a
c(g)
(1,g)

|CH2
(y1)| a1(2,y1) a2(2,y1) · · · a

c(g)
(2,y1)

|CH2
(y2)| a1(2,y2) a2(2,y2) · · · a

c(g)
(2,y2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

|CHi
(y1)| a1(i,y1) a2(i,y1) · · · a

c(g)
(i,y1)

|CHi
(y2)| a1(i,y2) a2(i,y2) · · · a

c(g)
(i,y2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

|CHt
(y1)| a1(t,y1) a2(t,y1) · · · a

c(g)
(t,y1)

|CHt
(y2)| a1(t,y2) a2(t,y2) · · · a

c(g)
(t,y2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.


m1 m2 · · · mc(g)

The Fischer-Clifford matrix M(g) satisfies the following properties [19]:

(a) aj(1,g) = 1 for all j = {1, 2, .., c(g)}.
(b)|X(g)| = |R(g)|.
(c)

∑c(g)
j=1mj a

j
(i,yk)

aj(i′,y′
k)

= δ(i,yk),(i′,y′
k)

|CG(g)|
|CHi

(yk)| |N |.

(d)
∑

(i,yk)∈R(g) a
j
(i,yk)

aj
′

(i,yk)
|CHi(yk)| = δjj′ |CG(xj)|.

(e) M(g) is square and nonsingular.
If N is elementary abelian, then we obtain the following additional properties
of M(g):

(f) a1(i,yk)
= |CG(g)|

|CHi
(yk)| .

(g) |a1(i,yk)
| ≥ |aj(i,yk)

|.
(h) aj(i,yk)

≡ a1(i,yk)
(modp), if |N | = pn, for p a prime and n ∈ N .

3. The group G = 26·G2(2)

In the construction of 26·G2(2), G2(2) acts on the elementary abelian group
26. The action on 26 is multiplication on the right of the six dimensional row
vector space N = 26. This requires 26·G2(2) to be represented as a matrix
group of dimension six over a finite field of two elements. In this section we
will construct G2(2) as a 6 × 6 matrix group representation over GF (2). All
our computations were done in MAGMA .

We represented the Rudvalis group Ru and M = 26·G2(2) as permutations
on 4060 points in MAGMA, by making use of Wilson’s online ATLAS of Group
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Representations [26]. The command ”Ismaximal(Ru,M)” in MAGMA [8] con-
firms thatM is a maximal subgroup of Ru. By checking all the indices of max-
imal subgroups of Ru in the Atlas [11], we deduce that the maximal subgroup
G of index 188500 in Ru is indeed our group M . Using the commands “a,b:=
ChiefSeries(M)”, “N := a[3]”, “IsNormal(M,N)”, “IsElementaryAbelian(N)”
and “Complements(M,N)” in MAGMA, we are able to represent 26 ∼= N
as a permutation group on 4060 points inside Ru. We obtain the group
M/N ∼= G2(2), represented as a matrix group of dimension 6 over GF (2),
as the result of the action of the generators of M on the generators of a[3] by
conjugation. The generators g1 and g2 of orders 2 and 3, respectively, for the
group G ∼= G2(2) are as follows:

g1=


1 1 0 0 0 0
0 1 0 0 0 0
0 1 1 0 1 0
1 1 0 1 0 1
0 0 0 0 1 0
0 1 0 0 0 1

 g2=


0 0 1 0 0 0
1 1 1 0 1 1
1 0 1 0 0 0
0 1 1 0 0 0
1 1 0 1 0 1
0 0 1 0 1 0



4. The action of G2(2) on 26 and Irr(26)

When G2(2) acts on the conjugacy classes of elements of 26, we obtain two
orbits of lengths 1 and 63. The orbits have the representatives (0, 0, 0, 0, 0, 0)
and (1, 0, 0, 0, 0, 0) with corresponding point stabilizers G2(2) and 42:D12 of
orders 12096 and 192, respectively. Let χ(G2(2)|26) be the permutation char-
acter of G2(2) on 26. Then, from methods that were developed by Mpono [19],
we obtain that χ(G2(2)|26) = 2 × 1a + 14a + 21a + 27b, which is the sum of
the identity characters of the point stabilizers induced to G2(2). Therefore
χ(G2(2)|26) will give the number k of points of 26 fixed by each g ∈ G2(2) such
that k = 2n, where n ∈ {0, 1, 2, 3, 4, 5, 6}. These values of k are found in Table
2.

SinceG has two orbits onN of lengths 1 and 63 respectively, then by Brauer’s
Theorem [13] G acts on Irr(N) with the same number of orbits. Hence the
lengths of these orbits will also be 1 and 63 with corresponding point stabi-
lizers H1 and H2 as subgroups of G such that [G : H1] =1 and [G : H2] =
63. By checking the indices of all the maximal subgroups of G2(2) ∼= U3(3):2
in the ATLAS [11], we found there are two maximal subgroups M1 = 42:D12

and M2 = (4·S4):2 with indices of 63. M1 and M2 have 14 and 17 conjugacy
classes of elements, respectively. Let T be the matrix group of dimension 6
over GF (2) formed by the transpose of the generators of G2(2). The action of
T on the classes of N = 26 is the equivalent of G2(2) acting on Irr(N). The
action of T on N has orbits of lengths 1 and 63 with point stabilizers T and
42:D12, respectively. Therefore, the orbits of lengths 1 and 63 resulted from the
action of G2(2) on Irr(G) will also have point stabilizers H1 = G2(2) ∼= T and
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H2
∼= 42:D12, respectively. Hence the action of G on Irr(N) determined two

inertia groups Hi = 26·Hi in 26·G2(2) , i ∈ {1, 2}, with corresponding inertia
factor groups H1 = G2(2) and H2 = 42:D12.

We represented the group H2 as permutations on 63 points in MAGMA (by
making use of Wilson’s online ATLAS of Group Representations [26]) as fol-
lows:
H2:= PermutationGroup< 63|(1, 62, 52, 30, 61, 4, 2, 17)(3, 27)(5, 16, 33, 31,
63, 32, 13, 14)(6, 19, 8, 21, 38, 18, 44, 49)(7, 54, 55, 53, 43, 59, 9, 46)(10, 22,
12, 25, 45, 15, 48, 41)(11, 29, 28, 57, 35, 26, 20, 56)(24, 39, 36, 58)(34, 37, 50,
47)(40, 51, 42, 60), (1, 6)(2, 35, 55, 8, 62, 49)(3, 47, 50)(4, 28, 59, 11, 30, 26)(5,
14, 36, 25, 12, 24)(7, 20, 52, 19, 17, 44)(9, 29, 43, 21, 54, 18)(10, 40, 15, 16, 58,
13)(22, 32, 42, 33, 45, 39)(27, 37, 34)(31, 51, 41, 48, 60, 63)(38, 53, 57, 61, 56,
46)>;
We construct all of the normal subgroups of H2 within MAGMA using the
command ”NormalSubgroups(H2)”. We found that there is only one nor-
mal subgroup N1 that has order 16 and therefore N1 must be the group 42.
The command ”K:=Complements(H2, N1)” returns us one copy of a group
of order 12. We check that the group ”K[1]” is indeed a complement for
N1 using the command ”IsTrivial(N1 meet K[1])”. This is a confirmation
that H2 is a split extension of N1 by ”K[1]”. Using the command ”IsIsomor-
phic(K[1],DihedralGroup(6))” confirms that the group ”K[1]” is isomorphic to
the dihedral group D12. Note that the dihedral group D12 of order 12 can be
represented as a permutation group acting on 6 points using the MAGMA com-
mand ”DihedralGroup(6)”. Hence the structure of the inertia factor group H2

is identified as 42:D12. The group 42:D12 is constructed from elements within
G2(2) and the generators are as follows:

42:D12 =⟨α1, α2⟩ , α1 ∈ 2A, α2 ∈ 8B where

α1=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 1
0 0 0 1 0 0
1 0 0 0 1 1
0 0 0 0 0 1

 , α2=


1 0 0 0 0 0
0 0 1 1 0 0
1 1 0 1 0 0
1 0 1 0 1 1
1 1 1 0 1 1
0 1 0 1 1 0



We obtain the fusion of the inertia factor 42:D12 into G2(2) by using direct
matrix conjugation in G2(2) and the permutation character of the inertia factor
group in G2(2) of degree 63. MAGMA was used for the various computations.
The fusion map of 42:D12 into G2(2) is shown in Table 1.
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Table 1. The fusion of 42:D12 into G2(2)
[h]

42:D12
−→ [g]G2(2) [h]

42:D12
−→ [g]G2(2)

1A 1A 4A 4A
2A 2A 4B 4C
2B 2B 4C 4B
2C 2B 4D 4C
2D 2A 6A 6B
2E 2B 8A 8A
3A 3B 8B 8B

5. The conjugacy classes of 26·G2(2)

In Section 3, the group 26·G2(2) was constructed as a permutation group
on 4060 points inside Ru. We obtained that 26·G2(2) has exactly 30 conjugacy
classes of elements, using direct computation in MAGMA. Again, using direct
computation in MAGMA, we are able to determine the fusion of the conjugacy
classes of G into the classes of Ru. We rearrange the conjugacy classes of G
into the form normally obtained by the technique of coset-analysis and are
listed in Table 2. In Section 4 we computed the values of k with the aid of
the permutation character χ(G2(2)|26). We used Programme A [1] written in
MAGMA to calculate the fj ’s. The order of the centralizer CG(x) for each

element x ∈ G in a conjugacy class [x]G is given by |CG(x)| =
k|CG(g)|

fj
, where

CG(g) is the centralizer for g ∈ G2(2). The reader is referred to [1], [17],
[18], [19], [21] and [25] for detailed information about coset analysis and the
descriptors of the parameters used in Table 2.

Table 2. The conjugacy classes of elements of 26·G2(2)
[g]G2(2) k fj |[x]

26·G2(2)
| |C

26·G2(2)
(x)| → Ru

1A 64 f1 = 1 1A 774144 1A
f2 = 63 2A 12288 2A

2A 16 f1 = 1 2B 3072 2A
f2 = 3 2C 1024 2A
f3 = 12 4A 256 4A

2B 8 f1 = 1 2D 384 2A
f2 = 1 4B 384 4A
f3 = 3 4C 128 4D
f4 = 3 4D 128 4C

3A 1 f1 = 1 3A 216 3A
3B 4 f1 = 1 3B 72 3A

f2 = 3 6A 24 6A
4A 4 f1 = 1 4E 384 4A

f2 = 3 4F 128 4D
4B 4 f1 = 1 4G 192 4B

f2 = 3 4H 64 4C
4C 4 f1 = 1 4I 128 4D

f2 = 1 4J 128 4D
f3 = 2 4K 64 4C

6A 1 f1 = 1 6B 24 6A
6B 2 f1 = 1 6C 12 6A

f2 = 1 12A 12 12A
7A 1 f1 = 1 7A 7 7A
8A 2 f1 = 1 8A 16 8A

f2 = 1 8B 16 8C
8B 2 f1 = 1 8C 16 8C

f2 = 1 8D 16 8C
12A 1 f1 = 1 12B 12 12B
12B 1 f1 = 1 12C 12 12A
12C 1 f1 = 1 12D 12 12B
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Let χ(Ru|26·G2(2)) be the permutation character of Ru on the cosets of
26·G2(2) of degree 188500. Having obtained the fusion of 26·G2(2) into Ru
and thus the values of the permutation character of Ru on the classes of
26·G2(2), we will proceed to compute χ(Ru|26·G2(2) in terms of irreducible
characters of Ru. From the ATLAS [11], we only need to restrict ψi ∈ Irr(Ru),
i ∈ {1, 2, 3, ..., 16}, to 26·G2(2). Let γ1 be the identity character of 26·G2(2),
then we compute the inner product of each ψi with γ1 . The values of the inner
product ⟨ψi, γ1⟩ are given in Table 3.

Table 3. The values of ⟨ψi, γ1⟩
ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ψ10 ψ11 ψ12 ψ13 ψ14 ψ15 ψ16

⟨ψi, γ1⟩ 1 0 0 0 0 2 1 0 0 0 1 1 1 1 1 1

Using Table 3 and the Frobenius-Reciprocity Theorem (Theorem 3.4.3 in
[19]), we obtain that χ(Ru|26·G2) = 1a + 2× 3276a + 3654a + 27000abc
+27405a + 34944ab.

6. The Fischer-Clifford matrices of 26·G2(2)

In Section 5, we obtained that G has 30 conjugacy classes and hence we
have to find 30 irreducible characters for G. From Section 2, these 30 char-
acters are distributed into two blocks ∆1 and ∆2 corresponding to the inertia
factor groups H1 and H2, respectively. H1 = G contributes 16 characters to-
wards the character table of G which are coming from the ordinary irreducible
character table of G (see Note 5.3.1 in [6]). If the character Ψ =

∑64
i=2 θi,

where θi’s are the non-trivial linear characters of N = 26, is extendable to
an ordinary character of its inertia group H2, then we will use the ordinary
character table of H2 to complete the character table of G. Otherwise, we have
to use the appropriate projective character table of H2 with associated factor
set α−1 ( see [1], [6] and [24]). In Section 4 we found that H2 has 14 conjuacy
classes and thus we deduce that |Irr(H2)| = 14. Since |Irr(G)| = |Irr(G)| +
|IrrProj(H2, α

−1)| = 16 + |IrrProj(H2, α
−1)| = 30 [7] (Section 5.3, equation

5.7) then it follows that the inertia factor H2 must contribute with 14 irre-
ducible projective characters with associated factor set α−1 to complete the
ordinary character table of G. IrrProj(H2, α

−1) denotes the set of all irre-
ducible projective characters of H2 with associated factor set α−1.

The first step to find all the projective character tables of H2 with their
corresponding factor sets is to compute the Schur multiplier M(H2) of H2. We
represented the group H2 as permutations on 63 points in MAGMA (see Sec-
tion 4). The sequence of Magma commands found in [6] (Section 4 , page 52)
is used to compute the Schur multiplier M(H2) of H2 and also the ordinary
character table of the full covering group C = M(H2)·H2 of H2. We found
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that M(H2) ∼= Z2 ×Z2
∼= 22 so that there are 3 sets of projective characters of

H2 with non-trivial factor sets β−1
i , i = 1, 2, 3, such that β2

i ∼ 1. We obtained
that |Irr(M(H2)·H2| = 36, where 14 of these are the ordinary characters of

H2 and so we deduce that
∑3

i=1 |IrrProj(H2, β
−1
i )| = 22.

Haggarty and Humphreys [15] show that is possible to determine the pro-
jective characters of H2 with a given factor set β−1

i , i = 1, 2, 3, without the full
representation group 22·H2 of H2. We proceed computationally in MAGMA
by first computing the center Z of 22·H2 . We obtained that Z ∼= 22 ∼=M(H2).
Next, we compute the three non-conjugate subgroups Pi of Z, i = 1, 2, 3 , of or-
der two. The command ”Ri := C/Pi” resulted in a qoutient group Ri

∼= 2i·H2

of M(H2)·H2 and any projective representation of H2 with factor set β−1
i can

be lifted to an ordinary representation of Ri. Thus the projective characters
of H2 with factor set β−1

i can be determined from the ordinary character ta-
ble of Ri. We compute the character tables of the groups Ri and found that
|Irr(R1)| = |Irr(R2)| = 21 and |Irr(R3)| = 22 , where 14 of these in each group
are the ordinary irreducible characters of H2. Thus the number of projective
characters of H2 associated with each non-trivial factor set β−1

1 , β−1
2 and β−1

3

is 7,7 and 8, respectively. This shows that we should use the set Irr(H2) to
construct the ordinary character table of G. Therefore, Ψ is extendable to an
ordinary character of H2 and hence we will use the ordinary character tables of
the inertia factor groups G2(2) and 42:D12 to obtain the irreducible characters
of 26·G2(2). This implies that every coset corresponding to a conjugacy class
of G2(2) is a split coset and therefore by Ali and Moori (Section 2 in [3]) the
shapes of the Fischer-Clifford matrices of G are forced.

Having obtained the fusions of the inertia factors into G2(2) and the con-
jugacy classes of G2(2) in coset-analysis form (Table 2), we are now able to
compute the Fischer-Clifford matrices of the group 26·G2(2). We will use the
theory and properties discussed in Section 2 and [3] to help us in the construc-
tion of these matrices. The fusion of G into Ru together with the restriction
of characters of Ru to G forces the signs of the Fischer-Clifford matrices and
the orders of the elements of G. Note that all the relations hold since 26 is an
elementary abelian group.

For example, consider the conjugacy class 2B of G2(2). Then we obtain that
M(2B) has the following form with corresponding weights attached to the rows
and columns:
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M(2B) =



384 384 128 128

48 a e i m
48 b f j n
16 c g k o
16 d h l p
.


8 8 24 24

By properties (a) and (f) of the Fischer-Clifford matrix M(g) in Section 2,
we have a = e = i = m = 1, b = 1, c = d = 3. Thus we get the following form

M(2B) =



384 384 128 128

48 1 1 1 1
48 1 f j n
16 3 g k o
16 3 h l p
.


8 8 24 24

By the orthogonality relations for columns and rows (properties (c) and (d)
in Section 2) we obtained the equations f + g + h = −1,3f2 + g2 + h2 = 21,
j+k+l = −1, 3j2+k2+l2 = 5, n+o+p = −1, 3n2+o2+p2 = 5, f+3j+3n = −1,
f2 + 3j2 + 3n2 = 7, g + 3k + 3o = −3, g2 + 3k2 + 3o2 = 15, h+ 3l + 3p = −3
and h2+3l2+3p2 = 15. Solving the above equations simultaneously and using
the remaining properties discussed in Section 2, we obtained that

M(2B)=


1 1 1 1
1 −1 −1 1
3 3 −1 −1
3 −3 1 −1


Let 2D, 4B, 4C, and 4D be the conjugacy classes of G, obtained from the

coset corresponding to the class 2B of G2(2). Suppose that the above matrix
is the Fischer-Matrix M(2B) obtained from the coset 2B ∈ G2(2). Then by
considering the restriction of ψ4 ∈ Irr(Ru) [11] to G, we observe that there will
be no fusion from 2D ∈ G into 2A ∈ Ru. Hence this is not the required Fischer-
Clifford matrix and therefore the sign of the rows has to be changed. Now we
multiply each of rows 2 and 3 by -1 , then we obtain the proper Fischer-Clifford
matrix M(2B) for G. Hence

M(2B)=


1 1 1 1

−1 1 1 −1
3 3 −1 −1

−3 3 −1 1

.

We use a similar type of argument as in the case of M(2B) to construct a
Fischer-Clifford matrix M(g) for each class representative g ∈ G2(2) which are
listed in Table 4.



867 Prins

Table 4. The Fischer-Clifford Matrices of 26·G2(2)
M(g) M(g)

M(1A) =

(
1 1

63 −1

)
M(2A) =

 1 1 1
3 3 −1

12 −4 0



M(2B) =


1 1 1 1

−1 1 1 −1
3 3 −1 −1

−3 3 −1 1

 M(3A) =
(

1
)

M(3B) =

(
1 1
3 −1

)
M(4A) =

(
1 1
3 −1

)

M(4B) =

(
1 1
3 −1

)
M(4C) =

 1 1 1
1 1 −1
2 −2 0


M(6A) =

(
1

)
M(6B) =

(
1 1

−1 1

)

M(7A) =
(

1
)

M(8A) =

(
1 1
1 −1

)
M(8B) =

(
1 1
1 −1

)
M(12A) =

(
1

)
M(12B) =

(
1

)
M(12C) =

(
1

)

7. Character Table and Power maps of 26·G2(2)

We use the Fischer-Clifford matrices of 26·G2(2) and the ordinary character
tables of H1 and H2 together with the fusions of H2 into H1 to obtain the
character table of 26·G2(2).

For example, we calculate the partial character table of 26·G2(2) correspond-
ing to the coset of 2B ∈ G2(2). From the Fischer-Clifford matrix M(2B) we
obtain that

M1(2B) = (1 1 1 1) and M2(2B)=

 −1 1 1 −1
3 3 −1 −1

−3 3 −1 1

 .

Let C1(2B) and C2(2B) be the partial character tables of the inertia factors
for the classes which fuse to 2B ∈ G2(2). Then the partial character table of
26·G2(2) on the classes {2D, 4B, 4C, 4D} is given by:

C1(2B)M1(2B)=



1
−1
0
0
1

−1
0

−2
2
3

−3
−3
3
0
0
0



(
1 1 1 1

)
=

2D 4B 4C 4D



1 1 1 1
−1 −1 −1 −1
0 0 0 0
0 0 0 0
1 1 1 1

−1 −1 −1 −1
0 0 0 0

−2 −2 −2 −2
2 2 2 2
3 3 3 3

−3 −3 −3 −3
−3 −3 −3 −3
3 3 3 3
0 0 0 0
0 0 0 0
0 0 0 0
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C2(2B)M2(2B)=



1 1 1
−1 −1 1
−1 −1 −1
1 1 −1

−2 −2 0
2 2 0

−3 1 −1
3 −1 −1

−3 1 1
3 −1 1
0 0 0
0 0 0
0 0 −2
0 0 2



 −1 1 1 −1
3 3 −1 −1

−3 3 −1 1

 =

2D 4B 4C 4D



−1 7 −1 −1
−5 −1 −1 3
1 −7 1 1
5 1 1 −3

−4 −8 0 4
4 8 0 −4
9 −3 −3 1

−3 −3 5 −3
3 3 −5 3

−9 3 3 −1
0 0 0 0
0 0 0 0
6 −6 2 −2

−6 6 −2 2

Similarly for all the other classes of G, we can compute the partial character
tables of G. Altogether we obtain 30 irreducible characters of G. The set of
irreducible characters of 26·G2(2) will be partioned into two blocks △1 and △2

corresponding to the inertia factor groups H1 and H2, respectively. In fact,
△1 = {χj |1 ≤ j ≤ 16} and △2 = {χj |17 ≤ j ≤ 30}, where χi ∈ Irr(G) such

that Irr(G) = △1 ∪ △2. The character table of 26·G2(2) is given in Table
5. The consistency and accuracy of the character table of 26·G2(2) have been
tested by using Programme E [24] written in GAP.

Table 5. Character table of G = 26·G2(2)
1A 2A 2B 3A 3B 4A

1A 2A 2B 2C 4A 2D 4B 4C 4D 3A 3B 6A 4E 4F
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1
χ3 6 6 -2 -2 -2 0 0 0 0 -3 0 0 -2 -2
χ4 6 6 -2 -2 -2 0 0 0 0 -3 0 0 -2 -2
χ5 7 7 -1 -1 -1 1 1 1 1 -2 1 1 3 3
χ6 7 7 -1 -1 -1 -1 -1 -1 -1 -2 1 1 3 3
χ7 14 14 6 6 6 0 0 0 0 -4 2 2 -2 -2
χ8 14 14 -2 -2 -2 -2 -2 -2 -2 5 -1 -1 2 2
χ9 14 14 -2 -2 -2 2 2 2 2 5 -1 -1 2 2
χ10 21 21 5 5 5 3 3 3 3 3 0 0 1 1
χ11 21 21 5 5 5 -3 -3 -3 -3 3 0 0 1 1
χ12 27 27 3 3 3 -3 -3 -3 -3 0 0 0 3 3
χ13 27 27 3 3 3 3 3 3 3 0 0 0 3 3
χ14 42 42 2 2 2 0 0 0 0 6 0 0 -6 -6
χ15 56 56 -8 -8 -8 0 0 0 0 2 2 2 0 0
χ16 64 64 0 0 0 0 0 0 0 -8 -2 -2 0 0
χ17 63 -1 15 -1 -1 -1 7 -1 -1 0 3 -1 3 -1
χ18 63 -1 -9 7 -1 -5 -1 -1 3 0 3 -1 3 -1
χ19 63 -1 15 -1 -1 1 -7 1 1 0 3 -1 3 -1
χ20 63 -1 -9 7 -1 5 1 1 -3 0 3 -1 3 -1
χ21 126 -2 6 6 -2 -4 -8 0 4 0 -3 1 6 -2
χ22 126 -2 6 6 -2 4 8 0 -4 0 -3 1 6 -2
χ23 189 -3 21 5 -3 9 -3 -3 1 0 0 0 -3 1
χ24 189 -3 -3 13 -3 -3 -3 5 -3 0 0 0 -3 1
χ25 189 -3 -3 13 -3 3 3 -5 3 0 0 0 -3 1
χ26 189 -3 21 5 -3 -9 3 3 -1 0 0 0 -3 1
χ27 378 -6 18 -14 2 0 0 0 0 0 0 0 -6 2
χ28 378 -6 -30 2 2 0 0 0 0 0 0 0 -6 2
χ29 378 -6 -6 -6 2 6 -6 2 -2 0 0 0 6 -2
χ30 378 -6 -6 -6 2 -6 6 -2 2 0 0 0 6 -2



869 Prins

Table 5 continued
4B 4C 6A 6B 7A 8A 8B 12A 12B 12C

4G 4H 4I 4J 4K 6B 6C 12A 7A 8A 8B 8C 8D 12B 12C 12D
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 -1 -1 1 1 1 1 -1 -1 1 1 1 -1 -1 1 -1 -1
χ3 0 0 2 2 2 1 0 0 -1 0 0 0 0 1 −i3 i3
χ4 0 0 2 2 2 1 0 0 -1 0 0 0 0 1 i3 −i3
χ5 -3 -3 -1 -1 -1 2 1 1 0 -1 -1 -1 -1 0 0 0
χ6 3 3 -1 -1 -1 2 -1 -1 0 -1 -1 1 1 0 0 0
χ7 0 0 2 2 2 0 0 0 0 0 0 0 0 -2 0 0
χ8 2 2 2 2 2 1 1 1 0 0 0 0 0 -1 -1 -1
χ9 -2 -2 2 2 2 1 -1 -1 0 0 0 0 0 -1 1 1
χ10 -1 -1 1 1 1 -1 0 0 0 -1 -1 1 1 1 -1 -1
χ11 1 1 1 1 1 -1 0 0 0 -1 -1 -1 -1 1 1 1
χ12 -3 -3 -1 -1 -1 0 0 0 -1 1 1 1 1 0 0 0
χ13 3 3 -1 -1 -1 0 0 0 -1 1 1 -1 -1 0 0 0
χ14 0 0 -2 -2 -2 2 0 0 0 0 0 0 0 0 0 0
χ15 0 0 0 0 0 -2 0 0 0 0 0 0 0 0 0 0
χ16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
χ17 3 -1 3 -1 -1 0 -1 1 0 1 -1 1 -1 0 0 0
χ18 3 -1 -1 3 -1 0 1 -1 0 -1 1 1 -1 0 0 0
χ19 -3 1 3 -1 -1 0 1 -1 0 1 -1 -1 1 0 0 0
χ20 -3 1 -1 3 -1 0 -1 1 0 -1 1 -1 1 0 0 0
χ21 0 0 2 2 -2 0 -1 1 0 0 0 0 0 0 0 0
χ22 0 0 2 2 -2 0 1 -1 0 0 0 0 0 0 0 0
χ23 -3 1 1 -3 1 0 0 0 0 -1 1 1 -1 0 0 0
χ24 -3 1 -3 1 1 0 0 0 0 1 -1 1 -1 0 0 0
χ25 3 -1 -3 1 1 0 0 0 0 1 -1 -1 1 0 0 0
χ26 3 -1 1 -3 1 0 0 0 0 -1 1 -1 1 0 0 0
χ27 0 0 -2 6 -2 0 0 0 0 0 0 0 0 0 0 0
χ28 0 0 6 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ29 6 -2 -2 -2 2 0 0 0 0 0 0 0 0 0 0 0
χ30 -6 2 -2 -2 2 0 0 0 0 0 0 0 0 0 0 0

We can use GAP to compute possible power maps from the character table
of G. The Programme E in [24] produces unique p-power maps for our Table
5 and are listed in Table 6.

Table 6. The power maps of the elements of 26·G2(2)
[g]G2(2) [x]

26·G2(2)
2 3 7 [g]G2(2) [x]

26·G2(2)
2 3 7

1A 1A 2A 2B 1A
2A 1A 2C 1A

4A 2A
2B 2D 1A 3A 3A 1A

4B 2A
4C 2A
4D 2A

3B 3B 1A 4A 4E 2B
6A 3B 2A 4F 2C

4B 4G 2B 4C 4I 2B
4H 2C 4J 2C

4K 2C
6A 6B 3A 2B 6B 6C 3B 2D

12A 6A 4B
7A 7A 1A 8A 8A 4E

8B 4F
8B 8C 4I 12A 12B 6B 4E

8D 4J
12B 12C 6B 4G 12C 12D 6B 4G



On the Fischer-clifford matrices 870

Acknowledgments

The financial support from the Department of Defence (Republic of South
Africa) towards transport between the South African Military Academy and
the University of the Western Cape is acknowledged. I am most greatful to my
Lord Jesus Christ.

References

[1] F. Ali, Fischer-Clifford theory for split and non-split group extensions, PhD Thesis,
University of Natal, 2001.

[2] F. Ali, The Fischer-Clifford matrices of a maximal subgroup of the sporadic simple group

of Held, Algebra Colloq. 14 (2007), no. 1, 135–142.
[3] F. Ali and J. Moori, The Fischer-Clifford matrices of a maximal subgroup of Fi′24,

Represent. Theory 7 (2003) 300–321.

[4] F. Ali and J. Moori, Fischer-Clifford matrices of the non-split group extension 26 ·U4(2),
Quaest. Math. 31 (2008), no. 1, 27–36.

[5] F. Ali and J. Moori, The Fischer-Clifford matrices and character table of a maximal
subgroup of Fi24, Algebra Colloquium 17 (2010) 389–414.

[6] A.Basheer and J. Moori, Fischer matrices of Dempwolff group 25·GL(5, 2), Int. J. Group
Theory 1 (2012), no. 4, 43–63.

[7] A. B. M. Basheer, Clifford-Fischer Theory Applied to Certain Groups Associated with
Symplectic, Unitary and Thompson Groups, PhD Thesis, University of KwaZulu-Natal,

Pietermaitzburg, 2012.
[8] W. Bosma and J. J. Canon, Handbook of Magma Functions, Department of Mathemat-

ics, University of Sydney, Sydney, 1994.
[9] J. J. Cannon, An Introduction to the Group Theory Language Cayley, Computational

Group Theory (Durham, 1982), 145–183, Academic Press, London, 1984.
[10] J. H. Conway and D. B. Wales, Construction of the Rudvalis group of

order145, 926, 144, 000, J. Algebra 27 (1973) 538–548.
[11] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite

Groups, Oxford University Press, Oxford, 1985.
[12] B. Fischer, Clifford-matrices, Representation theory of finite groups and finite-

dimensional algebras (Bielefeld, 1991), 1–16, Progr. Math., 95,Birkhuser, Basel, 1991.

[13] D. Gorenstein, Finite Groups, Harper & Row Publishers, New York-London 1968.
[14] R. L. Griess, The friendly giant, Invent. Math. 69 (1982), no. 1, 1–102.
[15] R. J. Haggarty and J. F. Humphreys, Projective characters of finite group, Proc. London

Math. Soc. (3) 36 (1975), no. 1, 176–192.

[16] G. Karpilovsky, Group Representations: Introduction to Group Representations and
Characters, Vol. 1 Part B, North-Holland Publishing Co., Amsterdam, 1992.

[17] J. Moori, On certain groups associated with the smallest Fischer group, J. London Math.
Soc. (2) 2 (1981), no. 1, 61–67.

[18] J. Moori, On the Groups G+ and G of the forms 210:M22 and 210:M22, PhD Thesis,
University of Birmingham, 1975.

[19] Z. Mpono, Fischer-Clifford theory and character tables of group extensions, PhD Thesis,
University of Natal, 1998.

[20] H. Pahlings, The character table of 21+22
+ .Co2, J. Algebra 315 (2007), no. 1, 301–325

[21] A. L. Prins, Fischer-Clifford Matrices and Character Tables of Inertia Groups of Maximal
Subgroups of Finite Simple Groups of Extension Type, PhD Thesis, University of the
Western Cape, 2011.

[22] A. Rudvalis, A new simple group of order 214 33 53 7 13 29, Notices Amer . Math. Soc.

20 (1973) A-95.
[23] The GAP Group, GAP --Groups, Algorithms, and Programming, Version 4.6.3; 2013.

(http://www.gap-system.org).



871 Prins

[24] T. T. Seretlo Fischer Clifford Matrices and Character Tables of Certain Groups Asso-

ciated with Simple Groups O+
10(2), HS and Ly, PhD Thesis, University of KwaZulu

Natal, 2011.
[25] N. S. Whitley, Fischer matrices and character tables of group extensions, MSc Thesis,

University of Natal, 1994.

[26] R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R. Parker, S. Norton, S.
Nickerson, S. Linton, J. Bray and R. Abbot, ATLAS of Finite Group Representations,
http://brauer.maths.qmul.ac.uk/Atlas/v3/.

[27] R. A. Wilson, The geometry and maximal subgroups of the simple groups of A. Rudvalis

and J. Tits, Proc. London Math. Soc. (3) 48 (1984), no. 3, 533–563.
[28] K. Zimba, Fischer-Clifford matrices of the generalized symmetric group and some asso-

ciated groups, PhD Thesis, University of KwaZulu Natal, 2005.

(Abraham Love Prins) Department of Mathematics, Faculty of Military Science,
University of Stellenbosch, Private Bag X2, Saldanha, 7395, South Africa

E-mail address: abraham.prins@ma2.sun.ac.za


	1. Introduction
	2. Theory of Fischer-Clifford matrices
	3. The group G= 26 G2(2) 
	4. The action of G2(2) on 26 and Irr(26)
	5. The conjugacy classes of 26 G2(2) 
	6. The Fischer-Clifford matrices of 26 G2(2) 
	7. Character Table and Power maps of 26 G2(2)
	References

