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ABSTRACT. In this work we prove Malliavin differentiability for the so-
lution to an SDE with locally Lipschitz and semi-monotone drift. To
prove this formula, we construct a sequence of SDEs with globally Lip-
schitz drifts and show that the p-moments of their Malliavin derivatives
are uniformly bounded.
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1. Introduction

Stochastic flows and weak derivatives in Wiener space are studied by var-
ious authors. In [10] Kusuoka and Stroock have shown that an SDE with
coefficients which are C'°°-globally Lipschitz and have polynomial growth, has
a strong Malliavin differentiable solution of any order. In recent years, there
were attempts to generalize these results to SDEs with non-globally Lipschitz
coefficients. For example, in [6,16] the authors studied the existence of a global
stochastic flow for SDEs with unbounded and Holder continuous drift and a
nondegenerate diffusion coefficients. Zhang [17] considered the flow of stochas-
tic transport equations with irregular coeflicients . The SDEs with non-globally
Lipschitz coefficients have many applications in Financial Mathematics. The
interested reader could see [1,3,9,14].

The SDE we consider has both non-globally Lipschitz and semi-monotone
drift coefficient. Such equations mostly come from finance and biology and
also dynamical systems and are more challenging when considered on infinite
dimensional spaces (see e.g. [2,7,18]).
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In this paper, we consider an SDE with locally Lipschitz and monotone drift
and globally Lipschitz diffusion. We prove the existence of a unique infinitely
Malliavin differentiable strong solution to this SDE.

Since the drift of the SDE we consider is not globally Lipschitz, we will
construct a sequence of SDEs with globally Lipschitz drifts whose solutions are
Malliavin differentiable of any order. In this way we can apply the classical
Malliavin calculus to the solutions. Then we can find also a uniform bound for
the moments of all the the Malliavin derivatives of solutions. We will prove
that the solutions to the constructed sequence of SDEs converge to the solution
of the desired SDE. Then by the uniform boundedness of the moments of the
mentioned solutions and the convergence result we are able to prove infinite
Malliavin differentiability of the solution to the original SDE.

The organization of the paper is as follows. In section 2, we recall some basic
results from Malliavin calculus that will be used in the paper. In section 3, we
state the assumptions and prove the existence and uniqueness of the solution.
In section 4, we construct our approximating SDEs with globally Lipschitz
coefficients and prove the convergence of their solutions to the unique solution
of the original SDE (3.1). In section 5, we will prove uniform boundedness
of the Malliavin derivatives associated to the approximating processes, which
results to the infinite weak differentiability of the solution to this SDE.

2. Some basic results from Malliavin calculus

Let 2 denote the Wiener space C, ([0, T]; R?). We furnish Q with the || . ||__-
norm making it a (separable) Banach space. Consider (2, F, P) a complete
probability space, in which F is generated by the open sets of the Banach space,
W is a d-dimensional Brownian motion, and F; is the filtration generated by
Wr.
Consider the Hilbert space H := L?([0, T]; R?) and the space LP(Q; H), the
set of H-valued random variable X such that E[||X||§{} < o0o. We denote

LP(Q) == LP(;RY). Let {W(h),h € H} be a Gaussian process associated to
the Hilbert space H in which W(h) = [ h(t)dW;. We denote by ce (R™)
the set of all infinitely differentiable functions f : R® — R such that f and
all of its partial derivatives have polynomial growth. Let S be the class of all
smooth random variables F' : Q — R such that F' = f(W(h,),..., W(h,)) for
some f belonging to C° (R"), and h,, ..., h, € H for some n > 1.

The derivative of the smooth random variable ' € § is an H-valued random
variable given by

DiF =31,0. f(W(hy)s ooos W(h, ) (2).

n i

The operator D is closable from L?(€2) to LP(Q; H), for every p > 1. We denote

its domain by D'? which is exactly the closure of S with respect to || . ||,
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where |
| FIl.,= [EIFP+ 1| DF I, 0.0, |

(see [15]). One can also define the k-th order derivative of F' as a random
vector in [0, T]* x . We denote by D*? the completion of S with respect to
the norm

=

| Fll,= [BIFP+ | D25 |2 0 pron |

and set D> := (", P,
Kusouka and Stroock have proved the following proposition [11, Theorem
1.9.].
Proposition 2.1. Consider the following SDE.
dX; = B(Xy)dt + G(Xy)dWs, Xo = xog,

where the coefficients B and G are globally Lipschitz functions and all of their
derivatives have polynomial growth, then (3.1) has a strong solution in D>
whose Malliavin derivative satisfies the following linear equations. For every
r<t

t
D, X} =G'(X,)+ / VB'(X,)D,X.ds
t 4 '
+ [ VGi(Yo) Dy X oWy,
and for everyTr >t, D.X; =0. Also it holds

sup E[ sup |DIX"|] < o0.
0<r<T r<s<T

In what follows use the upper index shows a specified row, and the subindex
shows a specified column of a matrix.

3. Existence and Uniquness of the solution

Consider the following stochastic differential equation
(3.1) dX; = [b(Xy) + f(Xe)]dt + o(Xy)dWr, Xo = xo.

where b, f : RY — R? are measurable functions and o : R — Mgy 4(R)
is a measurable C*° function. We denote by L the second-order differential
operator associated to SDE (3.1):

14 d

L= > (00™)i(@)0;0; + Y [ (@) + f(x)]0s,
i,j=1 i=1

where * denotes the transpose of matrix. Throughout the paper we assume
that b, f and o satisfy the following Hypothesis.
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Hypothesis 3.1. e The function b is an C'*° uniformly monotone func-
tion, i.e., there exists a constant K > 0 such that for every x,y € RY,

(3.2) <b(y) = b(x),y — = >< —Kly — |,

where (.,.) denotes the scalar product in R®. Furthermore, b is locally
Lipschitz and all of its derivatives have polynomial growth, i.e., for each
multi-index o with || = m, there exist positive constants v, and Gm,
such that for each x € R?

(3:3) [Oab(@)* < Y (1 + 2] ™).

Set £ 1= maxy;,>1 gm < 00.

o The functions f and o are C*°, globally Lipschitz with Lipschitz con-
stant k1 > 0, and all of their derivatives of any order are bounded.
Furthermore f has linear growth, i.e., for every x € R?,

(3-4) [f(@)] < k(1 + [2]).

Hypothesis (3.1) yields to the following useful inequalities
(3.5) (b(a) + f(a),a) V]o(a)]* < a+ Blal? Va € RY,
where
(3.6)  a:= %|b(0)\2 FE2V20(0)?, and Bi= (=K + 1+ k) V 22,
and
(3.7) (Vb(z)y,y) < —Kly|*  Va,y e R™

It is well-known that by inequality (3.5), the SDE (3.1) has a strong solution
{X:} (see e.g., [12] and [13]). The uniqueness of the solution is obtained by
using It6’s formula and Gronwall’s inequality (Lemma 3.2). We will show that
this solution is in D>°. To this end, we first show that X; € L¥(Q) and does
not blow up in finite time. Then we construct an almost everywhere conver-
gent sequence of processes X;* whose limit is X; and has uniformly bounded
Malliavin derivatives of any order with respect to n.

For each n > 1, define the stopping time 7, by

T = inf{t > 0; |X¢| > ns}.

Lemma 3.2. For each t € [0,T] and every integer p > 1, the strong solution
X; to SDE (3.1) is unique, belongs to LP(Q) and does not blow up in finite
time.

Proof. To proceed, first we use Fatou’s lemma to show that X; belongs to
LP(€2) and does not blow up. Then we prove the uniqueness of X;.
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By the definition of £ and (3.5) , we have
LIX4|P = p| X [P72(Xe, b(Xe) + F(Xe)) + §|Xt|p72|U(Xt)|2

+ 22 i o ()

< P12 b5 + ) + PP 2o,

+1 +1 _
Sp(p2 )6|Xt|p+p(p2 )OL|Xt|p 2
(3.8) =: Bp| X¢|P + ap| X P72

Applying Itd’s formula and using (3.8),
d
(3.9) B[ Xurr, I*] = E[£1Xenr, ?] < BE[|Xinr, )] + B[ Xinr, [772].
Setting p = 2 and using Gronwall’s inequality, we have
(3.10) EDXMMP} < |zol?agexp{B2T}.
From (3.10) we can deduce the following inequality

(5 =D P(t = 1) < lwol*aseap{BT).
Letting n tend to oo, lim, _coTn = 00 almost surely, which implies that X,
does not blow up in the finite time interval [0, 7). Also, let n tend to infinity

in (3.10) and use Fatou’s lemma, then

E(|X,|*) < E(liminf | X¢ar, [*) < liminf E(|X¢ar,
n—oQ n—oo

2) < |zol?anexp{B2T}.

Finally by (3.9) and induction on p we conclude that X; € LP(9).
To prove uniqueness, we assume that the SDE (3.1) has two strong solutions
X; and Y;. Since Xy,Y; € L?(Q), applying Itd’s formula we have

%]E[lXt - Yt|2] = 2]E[<Xt = Y5, 0(Xy) - b(Yt)ﬂ

- 2E[<Xt =Y, f(Xy) - f(Y;t»}

+E[lo(X0) - o(v)P]
From which by (3.2) and the Lipschitz property of ¢ and f we derive

GE[1X, ] < (-2K + 2k)E[1X, - V]

By Gronwall’s inequality which is proved in [8, Lemma 1.1] we conclude that
E[|Xt - Yﬂ = 0. So that

P(|Xt—Yt| =0 for allteQﬁ[(),T]) =1,
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where Q denotes the set of rational numbers. Since t — | X;—Y;| is continuous,
then

P(|Xt ~Y,| =0 forallte [O,T]) —1,

and uniqueness is proved. O

4. Approximation of the solution

In this section we will show that there exists a sequence X' converging to
the unique strong solution X, of the SDE (3.1), and the moments of DX]* are
uniformly bounded with respect to n and ¢. This way we can use Lemma 1.2.3
in [15] to deduce the Malliavin differentiability of X; and show that X; € D°.
Here we show how to construct this sequence.

Lemma 4.1. There exist smooth functions ¢, : R* —s R with compact support
such that ¢p(z) = 1 on B,e(0), ¢n(x) = 0 outside By,e(0) ( & is defined in
Hypothesis 3.1) and for each multi-index L with |L| =1> 1,

(4.1) sup (110, 0ull + () 026n(@)]) < My

n>1,zeRd
for some M; > 0.

Proof. This proof is motivated by Berhanu in [4, Theorem 2.9]. Assume that
U =B, (0)and V = B,_(0) are two sets in R? with distance a :=ry — 7, > 0.
For 0 < € < a, define U, = {z;d(x,U) < €}. Then Uc = |,y Be(x) and
U CU. CV. Fix e such that 0 < 2¢ < a and let h°(z) be the characteristic
function of Ue. Let v € C5°(R?) with supp ¢ C B1(0) and [ (z)dz = 1. Set
Ye(z) = 41p(£). Consider now the convolution functions function 1. x h¢ for
0 < 2¢ < d. Since supp ¥, C B.(0), then 1) x h* = 1 on U and ¥ x hc =0

outside Us.. Note that for each multi-index «,

0ulbex 1) (@) = [ 00— )y = iy (@)D (a — )y
2 — o [ @)@z = ) <) 1

Now, for every n > 1 consider U = B,¢(0), V = By,¢(0) and € = n¢. Then
there exist functions ¢, (x) := ¥, x h¢(x) such that ¢,(x) = 1 on U and
¢n(x) = 0 outside V. Since supp ¢n(x) C By,e(0), by (4.2) and (3.3) for
each multi-index o with |a| = ¢ > 1, we have
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1
16(2)0an ()] < [b(2)X|z<one| | ¥ lloe oy

1
<1420 | ¢ [l ] S <2y (| Y |loos
and

|0an ()] <[l ¥ |l -

Now, for ¢,, (from Lemma 4.1), set

bn(z) := op(z)b(x),

for every 2 € R? and n > 0. Then b,s are globally Lipschitz and continuously
differentiable. By (3.3) for each x € R? and each multi-index L with |L| = I,
there exist positive constants I'; and p; such that

(4.3) |Obn (@)[* < To(1+ [2[™).

Now by Proposition 2.1, for every n > 1, there exists a strong solution to the
following SDE, which is unique, is in D> and satisfies

(4.4) X{ =x0 + /Ot[bn(Xf) + f(XD)]ds + /Ot (X dWs.

We use L, to show the infinitesimal operators associated to SDEs (4.4):

1 7, 7 Z
£n=§Z( j88+2b )+ fi(2)]0;

We will show that the sequence X' converges to the unique strong solution

Lemma 4.2. For each t € [0,T] and every integer p > 1, the sequence X}'
converges to Xy in LP(Q).

Proof. To proceed, first we prove the almost sure convergence of X' to X;.
Then by showing the uniform integrability of X;* we will conclude.

Let X™ denotes X stopped at 7,,. By the choice of ¢,(.), it follows that
X = X[ for all ¢ < 71,. So, for fixed t € [0,T], letting n tend to oo,
UMy oo X7 = limp 00 X{™ = Xt as.

Now, we are going to prove that the sequence X}* is uniformly integrable. In
fact, we will show that for every integer p > 1,

(4.5) sup sup IE“XZIH < ¢p.
n>10<t<T

By the definition of L,,, we have
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L] X7 = xol? = p|X]* — wolP 72 (X7 — w0, ba(X]") + F(XP))
p _
+ 1 — ol 2o (X P

-2
F P2 g - .0 (X))
= DX 02X — 0, bu(XP) — ba)6u(XP)
FDIXP — ol 2K — 0, ba)u (X7) + F(XD))

b n — n
+ 21X — o) P

—92 _ n n
+M|X?—xo|p UXT = w0, 0 (XTI

Using the inequality —ac < a?/2+ ¢?/2 for a = K and ¢ = ¢,,(X]*) (note that
¢n(.) <1), by (3.2) and (3.5), we have

Lol Xy = wol? < —Kp|Xi" — xo[Pdn(X]')
+pl X7 — wolPTHXT — wo, b(wo)dn (X') + F(XT))

pip—1) on _ n
+T|Xt — 20" |o(X])?

2
< K*+1
- 2

n ol n n
+ plXF = ol 2 [S1X7 = ol + (|bao)? + 17 (X7)2)

p(p—1)
2

PIXE = wolPon(XY')

+ X7 — @ o (X7

(4.6) < ap|th —zol + 5P|th - 170|p727

for some constants oy, 3, > 0. Using It6’s formula, we have

GE[X7 = a0l ] = B[.(x7 — aop)]

< a,E [|th - $0|p} + BpE [|th N m0|p_2}

1— L1
< oE[1X7 — wol’] + B, (E[1X7 - wo™]) 7
Applying Gronwall’s inequality for p = 2 and then using mathematical induc-
tion on p, (4.5) will be proved for every integer p > 2.
Now the almost sure convergence of X" to X; and inequality (4.5) complete
the proof of lemma. O

We prove the uniform boundedness of the moments of DX}* in the next
section.
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5. Weak differentiability in the Wiener space

In this section, we will mainly use Lemma 1.2.3 from [15] to deduce Malliavin
differentiability of the solution to (3.1). Then we show that X; € D>. Note
that by Proposition 2.1, the solutions to SDEs (4.4) are in D*°.

Lemma 5.1. Assume that Hypothesis 3.1 holds, then the unique strong solu-
tion of SDE (3.1) is in DYP for every integer p > 1. Moreover, for r <t

D, X{ =o' (X,) + / t[w(xs) + VfI(X,)].D, Xds

t
+ / Voi(X,).D, XdW!

and for r > t, D, X} = 0, where 0;(Xs) is the l-th column of o(Xs) and u.C
denotes the product C*u of vector u and matriz C.

Proof. By Proposition 2.1 we know that for every r <t and 1 <i<d

DAY =o' (X0) + [ (VB0 + V(XD Xy ds

t
+ / Voi(X7).D, X"dW,

and for every r > t, D, (X]")" = 0.
Now by Lemma 1.2.3 in [15], it is sufficient to show that

(5.1) sup sup ]E[HDXZLH];{} < ¢p.

n>10<t<T

To this end, note that for every 1 < ¢ < d by Itd’s formula
t
6:2) E[ID.0xpyP] =E[lo' cor] + B[ [ 6 (1D 002y P)ds] + B[],
where
n\i|p\ _ n\t|p—2 Q. b n\i|p—47T.

gn(|Dr(Xs )l ) = p|Dr(X)' P77 Sis + §|DT(X5) P~ Us,s

+p| DA (XD P DA(XD), VH(XE).Dr XY
in which
Sis 1= <DT(X;L)17 Vb:z(X;L)-DTXsTL>a
Uis = |De(X7)'?[Vo (X7).D X2

+(p = 2)(D(XT)', Vo (X7).De X7,
and

t
My = / pID (XY P~2(D, (X"), Vo (X7).D, X W),
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Note that by Proposition 2.1, M} is a local martingale and thus E[M]"] = 0.
Since o and f have bounded derivatives, there exists some v > 0 such that

p n\i|p— p(p_ 1) n\i|p— n
(5:3) DDA UL < AP D () D, X
and

PID, (XD P=2(Dr(X2), VFH(X2).D, XY <
(5.4) SID (XD + 45 D (X ) P2 D, X7

By using (3.7) and (4.1) for every 0 < ¢ < T, we have

< Vb (XMDIX™ DIX! >

t{?&
i
M@

N
Il
—

<.
Il
—_

én (XT)(VO(XT)DIXT, DIXT)

I
M~

<.
Il
N

((b(X2), V(X)) DIX!, DIX)

+
(VR

<
I
a

d d
(5.5) < (—Koén(X7) + M) Y |DIXI? < My Y |DIXT|?

j=1 j=1

where DJ X[ is the j-th column of DXJ'. As for every Y = (Y!,... V%) € R?
and for every 1 <i¢ < d

d
(5.6) A: |YIP<|YP, B: [YP<di' Y Y.
i

Substituting (5.5), (5.3) and (5.4) in (5.2) and taking summation on i we derive:
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E[|Dxp | < d¥- 1Z]E[|D (X7)'P]
i=1

5= 1Z1E[|a (X7 |p}
+d%—1de1§j / &[|D, (X7 72D, X7 ] ds
+dz-1z/ |D X" |P}
+df‘127 / E[|D.(X7) 2D, X7 ) ds

p_ plp—1 ny\i|p— n
rat 132D (gl ey, o as
i=1 r

Now by part A of (5.6), we can find a constant aj, > 0 such that

B[|Dx7 | < d¥- i E[lo'(X1)IP] + o [E“Drxmp}ds.

Using Gronwall’s inequality, we have
d
E[mrxmp] 5= Z [|a (X H eap{a! T},

From which by the Lipschitz property of o and inequality (4.5) the result
follows. 0

Here we are going to prove higher order differentiability of X;. To avoid
complexity, we will only show the second order differentiability. Higher order
differentiability could be proved similarly. For every real-valued function f and
random variables F and G, we set Af(x)FG := 0;0;f(x)F'G? and DIFF =
DEDIF.

Lemma 5.2. Assuming Hypothesis 3.1, for every p > 1 the unique strong
solution of SDE (3.1) is in D*P and
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gk yi . pig
DIkXi = AU,

t
+ [ [(Voie). Dt + Aoi(X.)DEX.DIX. | aw!

vr

t
[ (OO + V), DX ds

vr

t
+/ [Abi(Xs)+Afi(XS)}D’szDZXSds7
where mr

d
AY = (Vol(X, )+ (Voi(X,), DIX,),
=1

and D; X, =0 form>r, and D, X, =0 forT <r.

Proof. Since X" € D>, by Proposition 2.1 for 19 := 7 V r we have
DJ, F(XT) = Al

n,T,r

t
+ [ [tvaicen), Disxs) + Aoi(xy)DEXT DX aw!
v | |
+ [ (THX) + V() DEEXT)ds
To
t
+ [ [atoen + arcen]| pixrpixzas,

0
where

U

A =(Vol(X]),DEx]") Z "), DIXT),

and D, X' = 0 for 7 > r. Similarly we have DTX;L =0 for 7 < r. By Lemma
1.2.3 in [15], now it is sufficient to find some ¢z > 0 such that

(5.7) sup]E[HDJ X7 on] < e

By It0’s formula, for every 1 < i < d we have
(5.8)
t
B[yt cxnyP] = B[lag, r] B[ [ 6i(1DpceyP)as] + B [pd )],
where
G/ (IDIE(X) ) = pIDEEX) P20 + B DRE (XL - 2212
p(p B 2) j n\t|p—
+ B = Dy s,

in which
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I =DEE(X2) ((V0L,(X2) + VFI(XD), DIEXT))
+ a0 (xm) + ari (x| DEXDIXE,
1y(1) =[| A} (X7)DEXZ DIXE| + (Vo (x7). DEEXT) ]
Iy == DIE (X1 (Ao} (XI)DEXEDIXE + (Voi (X1), DIEXT) )2,
and

t
M () = / Pl DI (XY P=2(DIE (XY (1) dW?).

Note that by Proposition 2.1, M (¢) is a local martingale and thus E[M (t)] =
0.

Now, we are going to find appropriate upper bounds for Iy, I(l) and I3. As
o has bounded derivatives, we can find some 4 > 0 such that

\DJ’“ Xm)HP- ZZI )\Dﬂ EXTPTL <
(5.9)

,plp—1) Gk (v p—2) ik v 2 Gk (N p—21d v 2| Dk v (2
PP (IDEE (X0 P2 DES XTI + | DS (X I3 DX DEX ).

Also by the boundedness of f and the derivatives of o, the polynomial growth
of the derivatives of b and (4.3), there exist some 74 > 0 and ¢ > 0 such that

® 3

pIDEE(XI) P72 = plDIE(X )20 + p| DEE (XD P2,
+p| DIE(X) P2 DR (X (V (XD, DISXT)
< p|DIE(XI) P2
(
(

® 3

+75p| DLE (X P2 IDEX T PIDIXT P (1 4 | X[ [P2)?
(5.10) + pra | DEE (XD P + pys| DEE(XD) P2 DIE(X )P,
where
and

Jo = DI ([A6(X2) + A £1(X2) | DEXTDIXT ).

By using (3.7) and (4.1) for every 0 < ¢ < T, we have
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d
Y S = (Vou(XD)DEEXD, DITXY) = 6u(X2)(VO(XZ)DEEXE, DIEXY)

+ (XY, Vo (X)) DEEX T, DIFXY)
(5.11) < (=K¢n(XJ)+ M)|DLEXT P < My |DLEXT .

Now, substitute (5.10) and (5.9) in (5.8), sum up on ¢ and then use (5.11) and
part A of (5.6) to derive

jéE{Lﬂk‘X" }—

i=1

g p( =1, ["&lips
S B[4, ] +pO + 2005+ ZEZD) [ iikxrpas
i=1 7o
d + . . )
+3 5 [ B[ DEXT PIDIXT P+ X2 ] ds
i=1 7o
L0 =1 [ el sk -2
a2+ ST [ ippk ey 2 Dy PiDEXT s
2 .

To bound the terms in the right hand side of the above inequality, we need
the following version of the Young’s inequality. For p > 2 and for all a,c and
A1 > 0 we have:

-2 2
(5.13) aP=2c* < Afp a?l + —cP.

p pA’f
Using (5.13) with A; = 1 we find some bounds for the last four terms in
(5.12) which depend only on f:ﬂ E [|DZ:§XS"|17} ds and some terms which could

be bounded by a constant. For the last term in (5.12) we have

d t
-1 , . ,
AP [ [ ipg ey i DX ds <
i=1 To

trp-1D(p-2 : :
iy [ (=D i) + o - vE[IDixzDE ] s
and for the third term in (5.12) we have

d t
> ok [ E[IDZACC) P DEXE PIDIXIP(L + X2 ] ds <
=1 o

t
@ [ (0~ 2B[|DIAXIP] + 2B [|DEXPIDLXII (1 + X2 ] ).
Substituting these bounds in the right hand side of (5.8) and using (4.5), (5.1)
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and part B of (5.6), we can find some positive constants c¢;(p) and co(p) such
that

d t
E[|DiExzP] < a1 Y E[1AY, 1] + ea(p) + () / E[|IDZEXL|?]ds.

i=1 70

Now, from (5.1), (4.5) and the definition of A% . (in which we have used the

boundedness of the derivatives of ¢) and Gronwall’s inequality, (5.7) will be
derived. g

In the same way, one can easily show that for every multi-index «

(5.14) sup E(| DX [|%00) < 00

and then by Lemma 1.2.3 in [15] deduce the following theorem.
Theorem 5.3. The SDE (3.1) has a unique strong solution in D,
Here we give an example that will help us figure all this out.

Example 5.4. Consider the following scalar SDE;
(5.15) dXy = (—X? + Xp)dt + (sin*(X;) + 1)dWy, X =0.

Let b(x) = —23, f(x) := x and o(x) := sin®*(z) + 1, then Hypothesis 3.1 is
satisfied. Define b, (x) = b(x)pn(x) as Lemma 4.1 and consider the following
SDEs;

X7 = —(XP)VP6u(XP)dt + (sin®(X]) + 1)dW;,  Xo = 0.

By Theorem 5.3, SDE (5.15) has a unique strong solution in D> and for every
r<t

ADX, — ( ~ (X2 + 1)DXtdt + 2sin(X;)cos(Xe) DX, dW,.
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