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Abstract. In this work we prove Malliavin differentiability for the so-
lution to an SDE with locally Lipschitz and semi-monotone drift. To
prove this formula, we construct a sequence of SDEs with globally Lip-

schitz drifts and show that the p-moments of their Malliavin derivatives
are uniformly bounded.
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1. Introduction

Stochastic flows and weak derivatives in Wiener space are studied by var-
ious authors. In [10] Kusuoka and Stroock have shown that an SDE with
coefficients which are C∞-globally Lipschitz and have polynomial growth, has
a strong Malliavin differentiable solution of any order. In recent years, there
were attempts to generalize these results to SDEs with non-globally Lipschitz
coefficients. For example, in [6,16] the authors studied the existence of a global
stochastic flow for SDEs with unbounded and Hölder continuous drift and a
nondegenerate diffusion coefficients. Zhang [17] considered the flow of stochas-
tic transport equations with irregular coefficients . The SDEs with non-globally
Lipschitz coefficients have many applications in Financial Mathematics. The
interested reader could see [1, 3, 9, 14].

The SDE we consider has both non-globally Lipschitz and semi-monotone
drift coefficient. Such equations mostly come from finance and biology and
also dynamical systems and are more challenging when considered on infinite
dimensional spaces (see e.g. [2, 7, 18]).
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In this paper, we consider an SDE with locally Lipschitz and monotone drift
and globally Lipschitz diffusion. We prove the existence of a unique infinitely
Malliavin differentiable strong solution to this SDE.

Since the drift of the SDE we consider is not globally Lipschitz, we will
construct a sequence of SDEs with globally Lipschitz drifts whose solutions are
Malliavin differentiable of any order. In this way we can apply the classical
Malliavin calculus to the solutions. Then we can find also a uniform bound for
the moments of all the the Malliavin derivatives of solutions. We will prove
that the solutions to the constructed sequence of SDEs converge to the solution
of the desired SDE. Then by the uniform boundedness of the moments of the
mentioned solutions and the convergence result we are able to prove infinite
Malliavin differentiability of the solution to the original SDE.

The organization of the paper is as follows. In section 2, we recall some basic
results from Malliavin calculus that will be used in the paper. In section 3, we
state the assumptions and prove the existence and uniqueness of the solution.
In section 4, we construct our approximating SDEs with globally Lipschitz
coefficients and prove the convergence of their solutions to the unique solution
of the original SDE (3.1). In section 5, we will prove uniform boundedness
of the Malliavin derivatives associated to the approximating processes, which
results to the infinite weak differentiability of the solution to this SDE.

2. Some basic results from Malliavin calculus

Let Ω denote the Wiener space C0([0, T ];Rd). We furnish Ω with the ∥ . ∥∞ -
norm making it a (separable) Banach space. Consider (Ω,F , P ) a complete
probability space, in which F is generated by the open sets of the Banach space,
Wt is a d-dimensional Brownian motion, and Ft is the filtration generated by
Wt.

Consider the Hilbert space H := L2([0, T ];Rd) and the space Lp(Ω;H), the

set of H-valued random variable X such that E
[
∥X∥pH

]
< ∞. We denote

Lp(Ω) := Lp(Ω;Rd). Let {W (h), h ∈ H} be a Gaussian process associated to
the Hilbert space H in which W (h) =

∫∞
0
h(t)dWt. We denote by C∞

pol
(Rn)

the set of all infinitely differentiable functions f : Rn −→ R such that f and
all of its partial derivatives have polynomial growth. Let S be the class of all
smooth random variables F : Ω −→ R such that F = f(W (h1), ...,W (hn)) for
some f belonging to C∞

pol
(Rn), and h1 , ..., hn ∈ H for some n ≥ 1.

The derivative of the smooth random variable F ∈ S is an H-valued random
variable given by

DtF = Σn
i=1∂if(W (h1), ...,W (hn))hi(t).

The operator D is closable from Lp(Ω) to Lp(Ω;H), for every p ≥ 1. We denote
its domain by D1,p which is exactly the closure of S with respect to ∥ . ∥1,p
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where

∥ F ∥1,p=
[
E|F |p+ ∥ DF ∥pLp(Ω;H)

] 1
p

(see [15]). One can also define the k-th order derivative of F as a random
vector in [0, T ]k × Ω. We denote by Dk,p the completion of S with respect to
the norm

∥ F ∥
k,p

=
[
E|F |p+ ∥ Di1,··· ,ikF ∥p

Lp(Ω;H⊗k)

] 1
p

,

and set D∞ :=
∩

k,p Dk,p.

Kusouka and Stroock have proved the following proposition [11, Theorem
1.9.].

Proposition 2.1. Consider the following SDE.

dXt = B(Xt)dt+G(Xt)dWt, X0 = x0,

where the coefficients B and G are globally Lipschitz functions and all of their
derivatives have polynomial growth, then (3.1) has a strong solution in D∞

whose Malliavin derivative satisfies the following linear equations. For every
r ≤ t

DrX
i
t = Gi(Xr) +

∫ t

r

∇Bi(Xs)DrXsds

+

∫ t

r

∇Gi
l(Ys)DrXsdW

l
s,

and for every r > t, DrXt = 0. Also it holds

sup
0≤r≤T

E[ sup
r≤s≤T

|Dj
rX

i|] <∞.

In what follows use the upper index shows a specified row, and the subindex
shows a specified column of a matrix.

3. Existence and Uniquness of the solution

Consider the following stochastic differential equation

(3.1) dXt = [b(Xt) + f(Xt)]dt+ σ(Xt)dWt, X0 = x0.

where b, f : Rd −→ Rd are measurable functions and σ : Rd −→ Md×d(R)
is a measurable C∞ function. We denote by L the second-order differential
operator associated to SDE (3.1):

L =
1

2

d∑
i,j=1

(σσ∗)ij(x)∂i∂j +
d∑

i=1

[bi(x) + f i(x)]∂i,

where ∗ denotes the transpose of matrix. Throughout the paper we assume
that b, f and σ satisfy the following Hypothesis.
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Hypothesis 3.1. • The function b is an C∞ uniformly monotone func-
tion, i.e., there exists a constant K > 0 such that for every x, y ∈ Rd,

(3.2) < b(y)− b(x), y − x >≤ −K|y − x|2,

where ⟨., .⟩ denotes the scalar product in Rd. Furthermore, b is locally
Lipschitz and all of its derivatives have polynomial growth, i.e., for each
multi-index α with |α| = m, there exist positive constants γm and qm
such that for each x ∈ Rd

(3.3) |∂αb(x)|2 ≤ γm(1 + |x|qm).

Set ξ := maxm≥1 qm <∞.
• The functions f and σ are C∞, globally Lipschitz with Lipschitz con-
stant k1 > 0, and all of their derivatives of any order are bounded.
Furthermore f has linear growth, i.e., for every x ∈ Rd,

(3.4) |f(x)| ≤ k1(1 + |x|).

Hypothesis (3.1) yields to the following useful inequalities

(3.5) ⟨b(a) + f(a), a⟩ ∨ |σ(a)|2 ≤ α+ β|a|2 ∀a ∈ Rd,

where

(3.6) α :=
1

2
|b(0)|2 + k21 ∨ 2|σ(0)|2, and β := (−K + 1 + k21) ∨ 2k21,

and

(3.7) ⟨∇b(x)y, y⟩ ≤ −K|y|2 ∀x, y ∈ Rd.

It is well-known that by inequality (3.5), the SDE (3.1) has a strong solution
{Xt} (see e.g., [12] and [13]). The uniqueness of the solution is obtained by
using Itô’s formula and Gronwall’s inequality (Lemma 3.2). We will show that
this solution is in D∞. To this end, we first show that Xt ∈ LP (Ω) and does
not blow up in finite time. Then we construct an almost everywhere conver-
gent sequence of processes Xn

t whose limit is Xt and has uniformly bounded
Malliavin derivatives of any order with respect to n.
For each n ≥ 1, define the stopping time τn by

τn := inf{t ≥ 0 ; |Xt| ≥ nξ}.

Lemma 3.2. For each t ∈ [0, T ] and every integer p > 1, the strong solution
Xt to SDE (3.1) is unique, belongs to Lp(Ω) and does not blow up in finite
time.

Proof. To proceed, first we use Fatou’s lemma to show that Xt belongs to
Lp(Ω) and does not blow up. Then we prove the uniqueness of Xt.
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By the definition of L and (3.5) , we have

L|Xt|p = p|Xt|p−2⟨Xt, b(Xt) + f(Xt)⟩+
p

2
|Xt|p−2|σ(Xt)|2

+
p(p− 2)

2
|Xt|p−4|⟨Xt, σ(Xt)⟩|2

≤ p|Xt|p−2⟨Xt, b(Xt) + f(Xt)⟩+
p(p− 1)

2
|Xt|p−2|σ(Xt)|2

≤ p(p+ 1)

2
β|Xt|p +

p(p+ 1)

2
α|Xt|p−2

=: βp|Xt|p + αp|Xt|p−2.(3.8)

Applying Itô’s formula and using (3.8),

(3.9)
d

dt
E
[
|Xt∧τn |p

]
= E

[
L|Xt∧τn |p

]
≤ βpE

[
|Xt∧τn |p

]
+ αpE

[
|Xt∧τn |p−2

]
.

Setting p = 2 and using Gronwall’s inequality, we have

(3.10) E
[
|Xt∧τn |2

]
≤ |x0|2α2exp{β2T}.

From (3.10) we can deduce the following inequality

(
n

2
− 1)

1
q0 P

(
t ≥ τn

)
≤ |x0|2α2exp{β2T}.

Letting n tend to ∞, limn→∞τn = ∞ almost surely, which implies that Xt

does not blow up in the finite time interval [0, T ]. Also, let n tend to infinity
in (3.10) and use Fatou’s lemma, then

E(|Xt|2) ≤ E
(
lim inf
n→∞

|Xt∧τn |2
)
≤ lim inf

n→∞
E
(
|Xt∧τn |2

)
≤ |x0|2α2exp{β2T}.

Finally by (3.9) and induction on p we conclude that Xt ∈ Lp(Ω).
To prove uniqueness, we assume that the SDE (3.1) has two strong solutions

Xt and Yt. Since Xt, Yt ∈ L2(Ω), applying Itô’s formula we have

d

dt
E
[
|Xt − Yt|2

]
= 2E

[
⟨Xt − Yt, b(Xt)− b(Yt)⟩

]
+ 2E

[
⟨Xt − Yt, f(Xt)− f(Yt)⟩

]
+ E

[
|σ(Xt)− σ(Yt)|2

]
From which by (3.2) and the Lipschitz property of σ and f we derive

d

dt
E
[
|Xt − Yt|2

]
≤ (−2K + 2k1)E

[
|Xt − Yt|2

]
.

By Gronwall’s inequality which is proved in [8, Lemma 1.1] we conclude that

E
[
|Xt − Yt|2

]
= 0. So that

P
(
|Xt − Yt| = 0 for all t ∈ Q ∩ [0, T ]

)
= 1,
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where Q denotes the set of rational numbers. Since t −→ |Xt−Yt| is continuous,
then

P
(
|Xt − Yt| = 0 for all t ∈ [0, T ]

)
= 1,

and uniqueness is proved. □

4. Approximation of the solution

In this section we will show that there exists a sequence Xn
t converging to

the unique strong solution Xt of the SDE (3.1), and the moments of DXn
t are

uniformly bounded with respect to n and t. This way we can use Lemma 1.2.3
in [15] to deduce the Malliavin differentiability of Xt and show that Xt ∈ D∞.
Here we show how to construct this sequence.

Lemma 4.1. There exist smooth functions ϕn : Rd −→ R with compact support
such that ϕn(x) = 1 on Bnξ(0), ϕn(x) = 0 outside B2nξ(0) ( ξ is defined in
Hypothesis 3.1) and for each multi-index L with |L| = l ≥ 1,

(4.1) sup
n≥1,x∈Rd

(
∥∂

L
ϕn∥+ |b(x)∂Lϕn(x)⟩|

)
≤Ml

for some Ml > 0.

Proof. This proof is motivated by Berhanu in [4, Theorem 2.9]. Assume that
U = Br1

(0) and V = Br2
(0) are two sets in Rd with distance a := r2 − r1 > 0.

For 0 ≤ ϵ ≤ a, define Uϵ = {x; d(x,U) < ϵ}. Then Uϵ =
∪

x∈U Bϵ(x) and
U ⊆ Uϵ ⊆ V . Fix ϵ such that 0 < 2ϵ ≤ a and let hϵ(x) be the characteristic
function of Uϵ. Let ψ ∈ C∞

0 (Rd) with supp ψ ⊆ B1(0) and
∫
ψ(x)dx = 1. Set

ψϵ(x) =
1
ϵd
ψ(xϵ ). Consider now the convolution functions function ψϵ ⋆ h

ϵ for
0 < 2ϵ < d. Since supp ψϵ ⊆ Bϵ(0), then ψϵ ⋆ h

ϵ = 1 on U and ψϵ ⋆ h
ϵ = 0

outside U2ϵ. Note that for each multi-index α,

∂α(ψϵ ⋆ h
ϵ)(x) =

∫
∂α(ψϵ(y))h

ϵ(x− y)dy =
1

ϵd+|α|

∫
(∂αψ)(

y

ϵ
)hϵ(x− y)dy

=
1

ϵ|α|

∫
(∂αψ)(z)h

ϵ(x− ϵz)dz ≤∥ ψ ∥∞
1

ϵ|α|
(4.2)

Now, for every n ≥ 1 consider U = Bnξ(0), V = B2nξ(0) and ϵ = nξ. Then
there exist functions ϕn(x) := ψϵ ⋆ h

ϵ(x) such that ϕn(x) = 1 on U and
ϕn(x) = 0 outside V . Since supp ϕn(x) ⊆ B2nξ(0), by (4.2) and (3.3) for
each multi-index α with |α| = c ≥ 1, we have
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|b(x)∂αϕn(x)| ≤ |b(x)χ|x|≤2nξ | ∥ ψ ∥∞
1

nξ|α|

≤ γc(1 + 2ξnξ) ∥ ψ ∥∞
1

nξ|α|
≤ 2ξ+1γc ∥ ψ ∥∞,

and

|∂αϕn(x)| ≤∥ ψ ∥∞ .

□

Now, for ϕn (from Lemma 4.1), set

bn(x) := ϕn(x)b(x),

for every x ∈ Rd and n > 0. Then bns are globally Lipschitz and continuously
differentiable. By (3.3) for each x ∈ Rd and each multi-index L with |L| = l,
there exist positive constants Γl and pl such that

(4.3) |∂Lbn(x)|2 ≤ Γl(1 + |x|pl).

Now by Proposition 2.1, for every n ≥ 1, there exists a strong solution to the
following SDE, which is unique, is in D∞ and satisfies

(4.4) Xn
t = x0 +

∫ t

0

[bn(X
n
s ) + f(Xn

s )]ds+

∫ t

0

σ(Xn
s )dWs.

We use Ln to show the infinitesimal operators associated to SDEs (4.4):

Ln =
1

2

d∑
i,j=1

(σσ∗)i
j
(x)∂i∂j +

d∑
i=1

[bin(x) + f i(x)]∂i.

We will show that the sequence Xn
t converges to the unique strong solution

Xt to SDE (3.1).

Lemma 4.2. For each t ∈ [0, T ] and every integer p > 1, the sequence Xn
t

converges to Xt in L
p(Ω).

Proof. To proceed, first we prove the almost sure convergence of Xn
t to Xt.

Then by showing the uniform integrability of Xn
t we will conclude.

Let Xτn denotes X stopped at τn. By the choice of ϕn(.), it follows that
Xτ2n

t = Xτn
t for all t ≤ τn. So, for fixed t ∈ [0, T ], letting n tend to ∞,

limn→∞X
n
t = limn→∞X

τn
t = Xt a.s.

Now, we are going to prove that the sequence Xn
t is uniformly integrable. In

fact, we will show that for every integer p > 1,

(4.5) sup
n≥1

sup
0≤t≤T

E
[
|Xn

t |p
]
≤ cp.

By the definition of Ln, we have
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Ln|Xn
t − x0|p = p|Xn

t − x0|p−2⟨Xn
t − x0, bn(X

n
t ) + f(Xn

t )⟩

+
p

2
|Xn

t − x0|p−2|σ(Xn
t )|2

+
p(p− 2)

2
|Xn

t − x0|p−4|⟨Xn
t − x0, σ(X

n
t )⟩|2

= p|Xn
t − x0|p−2⟨Xn

t − x0, bn(X
n
t )− b(x0)ϕn(X

n
t )⟩

+ p|Xn
t − x0|p−2⟨Xn

t − x0, b(x0)ϕn(X
n
t ) + f(Xn

t )⟩

+
p

2
|Xn

t − x0|p−2|σ(Xn
t )|2

+
p(p− 2)

2
|Xn

t − x0|p−4|⟨Xn
t − x0, σ(X

n
t )⟩|2.

Using the inequality −ac ≤ a2/2 + c2/2 for a = K and c = ϕn(X
n
t ) (note that

ϕn(.) ≤ 1), by (3.2) and (3.5), we have

Ln|Xn
t − x0|p ≤ −Kp|Xn

t − x0|pϕn(Xn
t )

+ p|Xn
t − x0|p−2⟨Xn

t − x0, b(x0)ϕn(X
n
t ) + f(Xn

t )⟩
]

+
p(p− 1)

2
|Xn

t − x0|p−2|σ(Xn
t )|2

≤ K2 + 1

2
p|Xn

t − x0|pϕn(Xn
t )

+ p|Xn
t − x0|p−2

[1
2
|Xn

t − x0|2 +
(
|b(x0)|2 + |f(Xn

t )|2
)]

+
p(p− 1)

2
|Xn

t − x0|p−2|σ(Xn
t )|2

≤ αp|Xn
t − x0|p + βp|Xn

t − x0|p−2,(4.6)

for some constants αp, βp > 0. Using Itô’s formula, we have

d

dt
E
[
|Xn

t − x0|p
]
= E

[
Ln(|Xn

t − x0|p)
]

≤ αpE
[
|Xn

t − x0|p
]
+ βpE

[
|Xn

t − x0|p−2
]

≤ αpE
[
|Xn

t − x0|p
]
+ βp

(
E
[
|Xn

t − x0|p−1
])1− 1

p−1

.

Applying Gronwall’s inequality for p = 2 and then using mathematical induc-
tion on p, (4.5) will be proved for every integer p ≥ 2.

Now the almost sure convergence of Xn
t to Xt and inequality (4.5) complete

the proof of lemma. □

We prove the uniform boundedness of the moments of DXn
t in the next

section.
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5. Weak differentiability in the Wiener space

In this section, we will mainly use Lemma 1.2.3 from [15] to deduce Malliavin
differentiability of the solution to (3.1). Then we show that Xt ∈ D∞. Note
that by Proposition 2.1, the solutions to SDEs (4.4) are in D∞.

Lemma 5.1. Assume that Hypothesis 3.1 holds, then the unique strong solu-
tion of SDE (3.1) is in D1,p for every integer p > 1. Moreover, for r ≤ t

DrX
i
t = σi(Xr) +

∫ t

r

[∇bi(Xs) +∇f i(Xs)].DrXsds

+

∫ t

r

∇σi
l(Xs).DrXsdW

l
s

and for r > t, DrX
i
t = 0, where σl(Xs) is the l-th column of σ(Xs) and u.C

denotes the product C∗u of vector u and matrix C.

Proof. By Proposition 2.1 we know that for every r ≤ t and 1 ≤ i ≤ d

Dr(X
n
t )

i = σi(Xn
r ) +

∫ t

r

[∇bin(Xn
s ) +∇f i(Xn

s )].DrX
n
s ds

+

∫ t

r

∇σi
l(X

n
s ).DrX

n
s dW

l
s,

and for every r > t, Dr(X
n
t )

i = 0.
Now by Lemma 1.2.3 in [15], it is sufficient to show that

(5.1) sup
n≥1

sup
0≤t≤T

E
[
∥DXn

t ∥
p
H

]
≤ cp.

To this end, note that for every 1 ≤ i ≤ d by Itô’s formula

(5.2) E
[
|Dr(X

n
t )

i|p
]
= E

[
|σi(Xn

r )|p
]
+ E

[ ∫ t

r

Gn

(
|Dr(X

n
s )

i|p
)
ds
]
+ E

[
Mn

t

]
,

where

Gn

(
|Dr(X

n
s )

i|p
)
= p|Dr(X

n
s )

i|p−2Si,s +
p

2
|Dr(X

n
s )

i|p−4Ui,s

+ p|Dr(X
n
s )

i|p−2⟨Dr(X
n
s )

i,∇f i(Xn
s ).DrX

n
s ⟩

in which

Si,s := ⟨Dr(X
n
s )

i,∇bin(Xn
s ).DrX

n
s ⟩,

Ui,s := |Dr(X
n
s )

i|2|∇σi
l(X

n
s ).DrX

n
s |2

+ (p− 2)|⟨Dr(X
n
s )

i,∇σi
l(X

n
s ).DrX

n
s ⟩|2,

and

Mn
t :=

∫ t

r

p|Dr(X
n
s )

i|p−2⟨Dr(X
n
s )

i,∇σi
l(X

n
s ).DrX

n
s dW

l
s⟩.
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Note that by Proposition 2.1, Mn
t is a local martingale and thus E[Mn

t ] = 0.
Since σ and f have bounded derivatives, there exists some γ > 0 such that

p

2
|Dr(X

n
s )

i|p−4Ui,s ≤ γ
p(p− 1)

2
|Dr(X

n
s )

i|p−2|DrX
n
s |2,(5.3)

and

p|Dr(X
n
s )

i|p−2⟨Dr(X
n
s )

i,∇f i(Xn
s ).DrX

n
s ⟩ ≤

p

2
|Dr(X

n
s )

i|p + γ
p

2
|Dr(X

n
s )

i|p−2|DrX
n
s |2.(5.4)

By using (3.7) and (4.1) for every 0 ≤ t ≤ T , we have

d∑
i=1

Si,s =
d∑

j=1

< ∇bn(Xn
s )D

j
rX

n
s , D

j
rX

n
s >

=
d∑

j=1

ϕn(X
n
s )⟨∇b(Xn

s )D
j
rX

n
s , D

j
rX

n
s ⟩

+
d∑

j=1

⟨⟨b(Xn
s ),∇ϕn(Xn

s )⟩Dj
rX

n
s , D

j
rX

n
s ⟩

≤ (−Kϕn(Xn
s ) +M1)

d∑
j=1

|Dj
rX

n
s |2 ≤M1

d∑
j=1

|Dj
rX

n
s |2(5.5)

where Dj
rX

n
t is the j-th column of DXn

t . As for every Y = (Y 1, · · · , Y d) ∈ Rd

and for every 1 ≤ i ≤ d

(5.6) A : |Y i|p ≤ |Y |p, B : |Y |p ≤ d
p
2−1

d∑
i

|Y i|p.

Substituting (5.5), (5.3) and (5.4) in (5.2) and taking summation on i we derive:
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E
[
|DrX

n
t |p

]
≤ d

p
2−1

d∑
i=1

E
[
|Dr(X

n
t )

i|p
]

≤ d
p
2−1

d∑
i=1

E
[
|σi(Xn

r )|p
]

+ d
p
2−1pdM1

d∑
i=1

∫ t

r

E
[
|Dr(X

n
s )

i|p−2|DrX
n
s |2

]
ds

+ d
p
2−1

d∑
i=1

∫ t

r

E
[p
2
|Dr(X

n
s )

i|p
]
ds

+ d
p
2−1

d∑
i=1

γ
p

2

∫ t

r

E
[
|Dr(X

n
s )

i|p−2|DrX
n
s |2

]
ds

+ d
p
2−1

d∑
i=1

γ
p(p− 1)

2

∫ t

r

E
[
|Dr(X

n
s )

i|p−2|DrX
n
s |2

]
ds

Now by part A of (5.6), we can find a constant α′
p > 0 such that

E
[
|DrX

n
t |p

]
≤ d

p
2−1

d∑
i=1

E
[
|σi(Xn

r )|p
]
+ α′

p

∫ t

r

E
[
|DrX

n
s |p

]
ds.

Using Gronwall’s inequality, we have

E
[
|DrX

n
t |p

]
≤ d

p
2−1

d∑
i=1

E
[
|σi(Xn

r )|p
]
exp{α′

pT}.

From which by the Lipschitz property of σ and inequality (4.5) the result
follows. □

Here we are going to prove higher order differentiability of Xt. To avoid
complexity, we will only show the second order differentiability. Higher order
differentiability could be proved similarly. For every real-valued function f and
random variables F and G, we set △f(x)FG := ∂i∂jf(x)F

iGj and Dj,k
r,τF =

Dk
τD

j
rF .

Lemma 5.2. Assuming Hypothesis 3.1, for every p > 1 the unique strong
solution of SDE (3.1) is in D2,p and



Weak derivative and semi-monotone drifts 884

Dj,k
r,τX

i
t = Aij

τ,r

+

∫ t

τ∨r

[
⟨∇σi

l(Xs), D
j,k
r,τXs⟩+△σi

l(Xs)D
k
τXsD

j
rXs

]
dW l

s

+

∫ t

τ∨r

⟨∇bi(Xs) +∇f i(Xs), D
j,k
r,τXs⟩ds

+

∫ t

τ∨r

[
△bi(Xs) +△f i(Xs)

]
Dk

τXsD
j
rXsds,

where

Aij
τ,r = ⟨∇σi

j(Xr), D
k
τXr⟩+

d∑
l=1

⟨∇σi
l(Xτ ), D

j
rXτ ⟩,

and DτXr = 0 for τ > r, and DrXτ = 0 for τ < r.

Proof. Since Xn
t ∈ D∞, by Proposition 2.1 for τ0 := τ ∨ r we have

Dj,k
r,τ (X

n
t )

i = Aij
n,τ,r

+

∫ t

τ0

[
⟨∇σi

l(X
n
s ), D

j,k
r,τX

n
s ⟩+△σi

l(X
n
s )D

k
τX

n
sD

j
rX

n
s

]
dW l

s

+

∫ t

τ0

⟨∇bin(Xn
s ) +∇f i(Xs), D

j,k
r,τX

n
s ⟩ds

+

∫ t

τ0

[
△bin(Xn

s ) +△f i(Xn
s )

]
Dk

τX
n
sD

j
rX

n
s ds,

where

Aij
n,τ,r = ⟨∇σi

j(X
n
r ), D

k
τX

n
r ⟩+

d∑
l=1

⟨∇σi
l(X

n
τ ), D

j
rX

n
τ ⟩,

and DτX
n
r = 0 for τ > r. Similarly we have DrX

n
τ = 0 for τ < r. By Lemma

1.2.3 in [15], now it is sufficient to find some c2 > 0 such that

(5.7) sup
n

E
[
∥Dj,kXn

t ∥
p
H⊗H

]
< c2.

By Itô’s formula, for every 1 ≤ i ≤ d we have
(5.8)

E
[
|Dj,k

r,τ (X
n
t )

i|p
]
= E

[
|Aij

n,τ,r|p
]
+ E

[ ∫ t

τ

Gij
n

(
|Dj,k

r,τ (X
n
s )

i|p
)
ds
]
+ E

[
M ij

n (t))
]
,

where

Gij
n

(
|Dj,k

r,τ (X
n
s )

i|p
)
= p|Dj,k

r,τ (X
n
s )

i|p−2I1 +
p

2
|Dj,k

r,τ (X
n
s )

i|p−2
d∑

l=1

I2(l)

+
p(p− 2)

2
|Dj,k

r,τ (X
n
s )

i|p−4I3,

in which
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I1 :=Dj,k
r,τ (X

n
s )

i
(
⟨∇bin(Xn

s ) +∇f i(Xn
s ), D

j,k
r,τX

n
s ⟩

)
+
[
△bin(Xn

s ) +△f i(Xn
s )

]
Dk

τX
n
sD

j
rX

n
s ,

I2(l) :=
[
|△σi

l(X
n
s )D

k
τX

n
sD

j
rX

n
s |+ |⟨∇σi

l(X
n
s ), D

j,k
r,τX

n
s ⟩|

]2
,

I3 :=|Dj,k
r,τ (X

n
s )

i
(
△σi

l(X
n
s )D

k
τX

n
sD

j
rX

n
s + ⟨∇σi

l(X
n
s ), D

j,k
r,τX

n
s ⟩

)
|2,

and

M ij
n (t) :=

∫ t

r

p|Dj,k
r,τ (X

n
s )

i|p−2⟨Dj,k
r,τ (X

n
s )

i, I2(l)dW
l
s⟩.

Note that by Proposition 2.1,M ij
n (t) is a local martingale and thus E[M ij

n (t)] =
0.

Now, we are going to find appropriate upper bounds for I1, I2(l) and I3. As
σ has bounded derivatives, we can find some γ′1 > 0 such that

p

2
|Dj,k

r,τ (X
n
s )

i|p−2
d∑

l=1

I2(l) +
p(p− 2)

2
|Dj,k

r,τX
n
s |p−4I3 ≤

γ′1
p(p− 1)

2

(
|Dj,k

r,τ (X
n
s )

i|p−2|Dj,k
r,τX

n
s |2 + |Dj,k

r,τ (X
n
s )

i|p−2|Dj
rX

n
s |2|Dk

τX
n
s |2

)
.

(5.9)

Also by the boundedness of f and the derivatives of σ, the polynomial growth
of the derivatives of b and (4.3), there exist some γ′2 > 0 and q > 0 such that

p|Dj,k
r,τ (X

n
s )

i|p−2I1 = p|Dj,k
r,τ (X

n
s )

i|p−2J1 + p|Dj,k
r,τ (X

n
s )

i|p−2J2

+ p|Dj,k
r,τ (X

n
s )

i|p−2Dj,k
r,τ (X

n
s )

i⟨∇f i(Xn
s ), D

j,k
r,τX

n
s ⟩

≤ p|Dj,k
r,τ (X

n
s )

i|p−2J1

+ γ′2p|Dj,k
r,τ (X

n
s )

i|p−2|Dk
τX

n
s |2|Dj

rX
n
s |2(1 + |Xn

s |p2 )2

+ pγ′2|Dj,k
r,τ (X

n
s )

i|p + pγ′2|Dj,k
r,τ (X

n
s )

i|p−2|Dj,k
r,τ (X

n
s )

i|2,(5.10)

where

J1 := Dj,k
r,τ (X

n
s )

i⟨∇bin(Xn
s ), D

j,k
r,τX

n
s ⟩,

and

J2 := Dj,k
r,τ (X

n
s )

i
([

△bin(Xn
s ) +△f i(Xn

s )
]
Dk

τX
n
sD

j
rX

n
s

)
.

By using (3.7) and (4.1) for every 0 ≤ t ≤ T , we have
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d∑
i=1

J1 = ⟨∇bn(Xn
s )D

j,k
r,τX

n
s , D

j,k
r,τX

n
s ⟩ = ϕn(X

n
s )⟨∇b(Xn

s )D
j,k
r,τX

n
s , D

j,k
r,τX

n
s ⟩

+ ⟨⟨b(Xn
s ),∇ϕn(Xn

s )⟩Dj,k
r,τX

n
s , D

j,k
r,τX

n
s ⟩

≤ (−Kϕn(Xn
s ) +M1)|Dj,k

r,τX
n
s |2 ≤M1|Dj,k

r,τX
n
s |2.(5.11)

Now, substitute (5.10) and (5.9) in (5.8), sum up on i and then use (5.11) and
part A of (5.6) to derive

d∑
i=1

E
[
|Dj,k

r,τ (X
n
t )

i|p
]
=

d∑
i=1

E
[
|Aij

n,τ,r|p
]
+ p(M1 + 2dγ′2 + dγ′1

p(p− 1)

2
)

∫ t

τ0

E
[
|Dj,k

r,τX
n
s |p

]
ds

+
d∑

i=1

γ′2p

∫ t

τ0

E
[
|Dj,k

r,τ (X
n
s )

i|p−2|Dk
τX

n
s |2|Dj

rX
n
s |2(1 + |Xn

s |p2 )2
]
ds

+
d∑

i=1

γ′1
p(p− 1)

2

∫ t

τ0

E
[
|Dj,k

r,τ (X
n
s )

i|p−2|Dj
rX

n
s |2|Dk

τX
n
s |2

]
ds.(5.12)

To bound the terms in the right hand side of the above inequality, we need
the following version of the Young’s inequality. For p ≥ 2 and for all a, c and
△1 > 0 we have:

(5.13) ap−2c2 ≤ △2
1

p− 2

p
ap +

2

p△p−2
1

cp.

Using (5.13) with △1 = 1 we find some bounds for the last four terms in

(5.12) which depend only on
∫ t

τ0
E
[
|Dj,k

r,τX
n
s |p

]
ds and some terms which could

be bounded by a constant. For the last term in (5.12) we have
d∑

i=1

γ′1
p(p− 1)

2

∫ t

τ0

E
[
|Dj,k

r,τ (X
n
s )

i|p−2|Dj
rX

n
s |2|Dk

τX
n
s |2

]
ds ≤

dγ′1

∫ t

τ0

( (p− 1)(p− 2)

2
E
[
|Dj,k

r,τX
n
s |p

]
+ (p− 1)E

[
|Dj

rX
n
s |p|Dk

τX
n
s |p

])
ds,

and for the third term in (5.12) we have
d∑

i=1

γ′2p

∫ t

τ0

E
[
|Dj,k

r,τ (X
n
s )

i|p−2|Dk
τX

n
s |2|Dj

rX
n
s |2(1 + |Xn

s |p2 )2
]
ds ≤

dγ′2

∫ t

τ0

(
(p− 2)E

[
|Dj,k

r,τX
n
s |p

]
+ 2E

[
|Dk

τX
n
s |p|Dj

rX
n
s |p(1 + |Xn

s |p2 )p
])
ds.

Substituting these bounds in the right hand side of (5.8) and using (4.5), (5.1)
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and part B of (5.6), we can find some positive constants c1(p) and c2(p) such
that

E
[
|Dj,k

r,τX
n
s |p

]
≤ d

p
2−1

d∑
i=1

E
[
|Aij

n,τ,r|p
]
+ c2(p) + c1(p)

∫ t

τ0

E
[
|Dj,k

r,τX
n
s |p

]
ds.

Now, from (5.1), (4.5) and the definition of Aij
n,τ,r (in which we have used the

boundedness of the derivatives of σ) and Gronwall’s inequality, (5.7) will be
derived. □

In the same way, one can easily show that for every multi-index α

(5.14) sup
n

E(∥DαXn
t ∥

p
H⊗α) <∞

and then by Lemma 1.2.3 in [15] deduce the following theorem.

Theorem 5.3. The SDE (3.1) has a unique strong solution in D∞.

Here we give an example that will help us figure all this out.

Example 5.4. Consider the following scalar SDE;

(5.15) dXt = (−X3
t +Xt)dt+ (sin2(Xt) + 1)dWt, X0 = 0.

Let b(x) := −x3, f(x) := x and σ(x) := sin2(x) + 1, then Hypothesis 3.1 is
satisfied. Define bn(x) = b(x)ϕn(x) as Lemma 4.1 and consider the following
SDEs;

dXn
t = −(Xn

t )
3ϕn(X

n
t )dt+ (sin2(Xn

t ) + 1)dWt, X0 = 0.

By Theorem 5.3, SDE (5.15) has a unique strong solution in D∞ and for every
r ≤ t

dDXt =
(
− 3(Xn

t )
2 + 1

)
DXtdt+ 2sin(Xt)cos(Xt)DXtdWt.
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