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Abstract. In this paper we focus on a special class of commutative lo-
cal rings called SPAP-rings and study the relationship between this class
and other classes of rings. We characterize the structure of modules and
especially, the prime submodules of free modules over an SPAP-ring and

derive some basic properties. Then we answer the question of Lam and
Reyes about strongly Oka ideals family. Finally, we characterize the struc-
ture of SPAP-ring in special cases.
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1. Introduction

Throughout, R will be a commutative ring with identity. Prime ideals and
factorization of ideals into prime ideals are two major topics in the history
of ring theory. Recently the concept of prime ideals have been generalized
and the factorization of ideals into generalized prime ideals have been studied.
Bhatwadekar and Sharma in [9], defined a proper ideal I of R to be almost
prime if for a, b ∈ R with ab ∈ I − I2, either a ∈ I or b ∈ I.

D. D. Anderson and M. Bataineh in [4], have extended the concept of al-
most prime ideals to φ-prime ideals and then considered factorization into such
ideals. They characterized rings for which all ideals can be factored into al-
most prime ideals and went on to discover and define a subclass of local rings of
this type. They also defined a ring (R,m) which is a special product of almost
prime ideals ring (abbreviated, SPAP-ring), as a local ring such that for each
x ∈ m−m2, (x2) = m2 and m3 = 0. They [4], Theorem 22, verified that if R
is a Noetherian ring, then every proper ideal of R is a product of almost prime
ideals if and only if R is a finite direct product of Dedekind domains, Special
Principal Ideal Rings (abbreviated, SPIRs ), and (Noetherian) SPAP-rings.
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Note that the SPAP-ring is not Noetherian in general. For example D. D. An-
derson and M. Bataineh in [4], Example 20, have constructed an SPAP-ring
that is not Noetherian in general.

T.Y. Lam and M. L. Reyes [26] and [27], introduced an elementary ” Prime
Ideal Principle ” which states that for suitable ideal families F in a ring, every
ideal maximal with respect to not being in F is prime. This principle not only
subsumes and unifies the some familiar results in commutative algebra, but also
applies readily to retrieve all other results of the same kind in the literature
that the authors are aware of. The key notion making this work possible is
that of an Oka family and strongly Oka family of ideals in a ring, defined
below. T.Y. Lam and M. L. Reyes gave some examples of rings such that the
family of finitely generated ideals are strongly Oka, i.e. for ideals I and A of
R, if I + A and (I : A) are finitely generated then, so is I. These include von
Neumann regular rings, Bezout domains (in particular, all valuation domains)
and Noetherian rings. However, they asked the following question:

Are there other rings R for which the family of finitely generated ideals is
strongly Oka?

We answer this question affirmatively for SPAP-rings.
In this paper we consider SPAP-rings and state some basic properties of this

class of rings. In section 1, we introduce the concept of strongly irreducible
elements and characterize SPAP-rings with element factorization. In section
2, we consider quasi-Frobenius rings (abbreviated QF-rings) and Gorenstein
rings, and state some of their properties. We then discuss the relation between
these classes of rings and SPAP-rings and give a characterization of SPAP-
rings in terms of QF-rings and Gorenstein rings. In section 3, we characterize
the structure of R-modules and especially, the prime submodules of a free R-
module over SPAP-rings. In section 4, we show that in SPAP-rings the family of
finitely generated ideals is strongly Oka and consider some related results that
are useful for answering the question of Lam and Reyes. Finally, in section 5,
we consider the structure of SPAP-rings in special cases and we prove a version
of the Cohen structure theorem for SPAP-rings.

2. SPAP-rings and unique factorization

For a commutative integral domain the terminology concerning divisibility
and factorization is more or less standard. Much of the theory of factorization
in an integral domain can be generalized to commutative rings with zero divisor,
see [1], [2] and [3]. In this section we consider the factorization of elements in
SPAP-rings.

Definition 2.1. Let R be a ring. An element a ∈ R is called strongly irreducible
if a = bc for b, c ∈ R implies that b or c is unit. A ring R is called strongly
atomic if each non-zero and non-unit element of R is a product of a unit and
strongly irreducible elements. Also a ring R is called a bounded factorization
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ring (abbreviated BFR) if for each non-zero and non-unit element a ∈ R, there
exists a natural number N(a) such that for non-units ai’s, if a = a1...an then,
n ≤ N(a).

Lemma 2.2. Let (R,m) be an SPAP-ring with m ̸= m2. Then R is strongly
atomic.

Proof. Let 0 ̸= x ∈ R be a non-unit. Let x ∈ m−m2 and assume that x = rs
for r, s ∈ R. If r and s are non-units then, r, s ∈ m and hence x ∈ m2, a
contradiction. Thus r or s must be unit. So x is strongly irreducible. Now
let x ∈ m2. Since m ̸= m2, there exists y ∈ m −m2 and we have m2 = (y2).
Therefore there exists r ∈ R such that x = ry2. If r ∈ m then x ∈ m3 = 0, a
contradiction. Thus r is unit and since y ∈ m −m2, y is strongly irreducible.
So R is strongly atomic.

□

An R-module M is called multiplication, if for each submodule N of M
there exists an ideal I of R such that N = IM . Clearly cyclic R-modules are
multiplication.

Theorem 2.3. Let R be a ring. Then R is an SPAP-ring with m2 ̸= 0 if and
only if R is a BFR and contains a maximal ideal m such that m2 is a minimal
ideal of R and for all x ∈ m−m2, x ̸∈ ann(x).

Proof. Let (R,m) be an SPAP-ring with m2 ̸= 0. By Lemma 1.2, R is strongly
atomic and since m3 = 0, hence N(a) ≤ 3, for all a ∈ R and therefore R is a
BFR. Now we show that m2 is a minimal ideal. If m = m2 then m2 = m3 = 0,
a contradiction. Therefore m ̸= m2 and hence we can select y ∈ m −m2. By
definition of SPAP-ring, m2 = (y2). Thus m2 is a cyclic R-module and hence is
a multiplication R-module. Now if J is a submodule(ideal) of m2, there exists
an ideal K of R such that J = Km2. If K = R then J = m2 and if K ̸= R
then J = Km2 ⊆ m3 = 0, hence J = 0. Therefore m2 is a minimal ideal of R.
Now let x ∈ m − m2 and x ∈ ann(x). Since m2 = (x2), we have x2 = 0. So
m2 = 0, a contradiction.

Conversely, let m be a maximal ideal such that m2 is minimal and x ̸∈
ann(x), for all x ∈ m − m2. If m3 = m2, since m2 is minimal, then it is
cyclic and [13], Proposition 2, Page 38, there exists 0 ̸= a ∈ m such that
(1 − a)m2 = 0. Now if x ∈ m then x2 = ax2 and hence for all natural
numbers n, x2 = anx2. Since m is a maximal ideal, a is not unit and this is
a contradiction. So m3 ̸= m2 and since m2 is a minimal ideal we deduce that
m3 = 0. Now if P ∈ Spec(R) then m3 = 0 ⊆ P and hence m ⊆ P . Since m
is maximal, hence m = P and so Spec(R) = {m}. Thus R is a local ring with
maximal ideal m and m3 = 0. Now if x ∈ m − m2, since x ̸∈ ann(x), then
0 ̸= x2 ∈ m2 and so by minimality of m2, we have m2 = (x2). Thus R is an
SPAP-ring. □
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Remark 2.4. By proof of Theorem 1.3, for an SPAP-ring (R,m) with m2 ̸= 0,
the ideal m2 is a (unique) minimal ideal. Let I be a proper ideal in an SPAP-
ring (R,m). If I ⊆ m2, by part one, I = 0 or I = m2. If I ̸⊆ m2, then there
exists y ∈ I − m2. Now m2 = (y2), hence m2 = (y2) ⊆ I2. Thus I2 = m2.
Therefore for every ideal I ̸= R, we have I = 0 or I = m2 or I2 = m2. Also in
the SPAP-ring (R,m), Spec(R) = {m} and hence dim(R) = 0. Furthermore,
by the Cohen Theorem, R is Noetherian if and only if it is Artinian if and only
if m is finitely generated.

3. SPAP-rings, QF-rings and Gorenstein rings

In this section we introduce some classes of rings and consider the relation-
ship between them and SPAP-rings. We begin by the concept of perfect rings.
A subset A of a ring R is called T -nilpotent, if for any sequence of elements
{a1, a2, a3, ...} ⊆ A, there exists a natural number n > 1 such that a1...an = 0.
A ring R is called semisimple (or completely reducible) if every ideal of R is a
direct summand of R. For a ring R with Jacobson radical J(R), we say that
R is perfect if R/J(R) is semisimple and J(R) is T -nilpotent. The pioneering
work on perfect rings was done by H. Bass( see [5] ). Now we have the following
Lemma.

Lemma 3.1. Let (R,m) be an SPAP-ring. Then R is a perfect ring.

Proof. Since for an SPAP-ring (R,m), J(R)3 = 0, hence J(R) is T-nilpotent.
By [23], Page 345, R is a semiprimary ring and so is perfect. □

Note that, in general the converse of Lemma 2.1 is not true. For example,
let F be a field and R = F × F . By [23], Theorem 23.24, R is a perfect ring
and since it is not local, it can not be an SPAP-ring.

Lemma 3.2. Let (R,m) be an SPAP-ring. For an R-module M , the concepts
flat, projective, free and faithfully flat are equivalent.

Proof. Flat means projective, by [5], Theorem 28.4 and Lemma 2.1. Projective
R-modules are free, by [5], Corollary 26.7. Clearly free implies faithfully flat
and faithfully flat implies flat(also see [14]).

□

Now we assume that m is a finitely generated ideal of R. This leads us to
consider a class of rings that are self-injective (a ring R which is an injective R-
module). The class of rings that are self-injective has been under close scrutiny
by ring theorists and there is a vast literature on the structure of self-injective
rings satisfying various conditions. We focus our attention on QF-ring, which
are self-injective and Noetherian ring (see [24], for more information). The
socle of a an R-module M (abbreviated Soc(M)) is defined to be the sum of
all simple submodules of M (see [23], [25]). According to Remark 1.4, for an
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SPAP-ring (R,m) with m2 ̸= 0, we have Soc(R) = m2 and hence Soc(R) is
the unique minimal ( and so simple R-module ) ideal of R.

Lemma 3.3. Let (R,m) be an SPAP-ring with m2 ̸= 0. Then the following
statements are equivalent:
a) m is finitely generated;
b) R is a Noetherian ring;
c) R is an Artinian ring;
d) For every R-module, the concepts projective, injective, free and flat are equiv-
alent;
e) R is a QF-ring.

Proof. By Remark 1.4, (a), (b) and (c) are equivalent. Parts (d) and (e) are
equivalent by [24], Theorem 15.1, Theorem 15.9 and Lemma 2.2. Clearly, (e)
implies (b). Since for an SPAP-ring (R,m), Soc(R) is a minimal ideal and hence
is a simple R-module in R, thus (b) implies (e) by [24], Theorem 15.27. □

Note that if (R,m) is an SPAP-ring with finitely generated m and m2 ̸= 0,
then R is a QF-ring and so is self-injective.
Now we introduce another important class of local rings and derive some rela-
tions between this class of rings and SPAP-rings. A Noetherian local ring R
is called a Gorenstein ring if injdimR < ∞, where injdim(R) is the injective
dimension of R.

Remark 3.4. By [20], Section 3.4, Theorem 17 and [10], Exercise 3.2.15, a
zero dimensional Noetherian ring R is a Gorenstein ring if and only if R has a
unique minimal ideal. Also since a QF-ring is Noetherian and ann(ann(I)) =
I, for every ideal I of R, [24], Theorem 15.1 and Theorem 15.9, hence R is
a Gorenstein ring. Thus by Lemma 2.3, every SPAP-ring (R,m) with finitely
generated m is a Gorenstein ring.

The embedding dimension of a local ring (R,m) denoted by ν(m) is defined
as the minimum number of elements of m that generate m as an ideal. Also the
codimension of a ring R (denoted by codim(R)) is defined to be ν(m)− dimR.

Let (R,m) be a d-dimensional Noetherian local ring and M be a finitely gen-
eratedR-module. We know that the Samuel function χm

M (n) = lengthR(
M

mn+1M
),

can be expressed for n >> 0 as a polynomial in n with rational coefficients and
degree equal to dimM and therefore at most d.
It is well-known that, this polynomial is of the form, χm

M (n) = e
d!n

d+(terms of
lower order), where e is an integer. If M = R, the integer number e is called
the multiplicity of R and denoted by e = e(R).
By [21], page 3462, If R is a Gorenstein ring with codimR ≥ 2 then the mul-
tiplicity of R is at least codimR + 2 and when codimR ≤ 1, the multiplicity
is at least codimR + 1. In either case, when equality holds we say that R is
Gorenstein of minimal multiplicity. Furthermore, if R is a Gorenstein Artinian
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ring then R is of minimal multiplicity if and only if m3 = 0 (see [30] and [35]
for more details).

Theorem 3.5. Let (R,m) be a local ring. Then the following statements are
equivalent:

1) R is an SPAP-ring with finitely generated m and m2 ̸= 0;
2) R is a QF-ring with m3 = 0 and for all x ∈ m−m2, x ̸∈ ann(x);
3) R is a Gorenstein ring of minimal multiplicity and for all x ∈ m −m2,

x ̸∈ ann(x).

Proof. By Lemma 2.3 and Theorem 1.3, (1) implies (2). Suppose that (2) holds.
Since m3 = 0, we have dim(R) = 0. So by Remark 2.4, R is a Gorenstein ring
and is of minimal multiplicity. Now let (3) hold. By Remark 2.4, m3 = 0 and
since R is a Gorenstein ring, hence R is Noetherian. Therefore m is finitely
generated. Now suppose that x ∈ m − m2 and r, s ∈ m. If rs = 0 then
rs ∈ (x2). Now assume that rs ̸= 0. Since m3 = 0, thus mrs = 0. Therefore
m ⊆ ann(rs) ̸= R and hence m = ann(rs). By assumption x ̸∈ ann(x), thus
x2 ̸= 0 and so ann(x2) ̸= R. By a similar argument, ann(x2) = m. Therefore
ann(rs) ⊆ ann(x2). Now by [20], Section 3.4, Theorem 17 and [10], Exercise
3.2.15, R is injective and hence is divisible. Since ann(rs) ⊆ ann(x2), there
exists t ∈ R such that x2 = trs. Now if t ∈ m then x2 = trs ∈ m3 = 0, a
contradiction. Thus t ̸∈ m and therefore t is unit. So rs ∈ (x2), thus m2 ⊆ (x2)
and hence m2 = (x2). This shows that R is an SPAP-ring. □
Remark 3.6. A ring R is called Kasch if every simple R-module is isomorphic
to a (minimal) ideal of R. Clearly for an SPAP-ring (R,m), M = R

m is the

unique simple R-module (up to isomorphism). If m ̸= m2 ̸= 0 and x ∈ m−m2,
hence (x2) = m2 and so the map 1 + m → x2 is an isomorphism between M
and m2. Now m2 is simple and thus R is a Kasch ring (for more details
see [24], Section 8 and [32]). A ring R is said to be secular, if every nonzero
R-module has nonzero socle. By [5], Theorem 28.4 and Lemma 2.1, every
nonzero module has a nonzero simple submodule and hence its socle is nonzero.
Therefore SPAP-rings are secular(for more information see [12], Proposition
22, 10 A).

4. Prime submodules of free module over Quasi-Frobenius and
SPAP-rings

A proper submodule N of an R-module M is called prime, if for r ∈ R and
m ∈ M such that rm ∈ N we have m ∈ N or rM ⊆ N . One of the most
important aims in module theory is to find and distinguish the structure of
modules and more recently, prime submodules of a module. For this purpose,
authors limit their attentions to a special class of rings and modules. For
example, in [15], [16] and [17], the authors determined the structure of prime
submodules of a free module over PIDs and UFDs. In this section we do this
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for QF-rings and specially for SPAP-rings. A submodule N of M is called small
(or superfluous) in M , if for every submodule L of M , N + L = M implies
L = M . Also an R-module M is called a small module, if M is small (or
superfluous) in E(M)(where E(M) is the injective hull of M). Now let R be a
perfect ring. We say that the family of all injective R-modules is closed under
small covers, if for any epimorphism φ : M → E such that E is an injective
R-module and Kerφ is small in M , M is also injective. In the early 1980s,
Harada found a new class of Artinian rings which contain QF-rings. A ring R is
a Harada ring (abbreviated H-ring), if it is a perfect ring and every non-small
R-module contains a non-zero injective submodule(see [7] for more details of
Harada rings). Now we consider the relation between SPAP-rings and H-rings.

Let (R,m) be an SPAP-ring with finitely generated m and m2 ̸= 0. By
Lemma 2.3, R is a QF-ring. Since every QF-ring is H-ring, hence R is an
H-ring. In Lemma 3.1, we give another proof of this statement.

Lemma 4.1. Let (R,m) be an SPAP-ring with finitely generated m and m2 ̸=
0. Then R is an H-ring.

Proof. By Lemma 2.1, R is a perfect ring. Now let φ : M → E be an epimor-
phism such that E is an injective R-module and Kerφ is small in M . So we
have the following exact sequence:

0 → Kerφ ↪→ M → E → 0.

Since E is injective, by Lemma 2.3 it is projective and hence there exists a
submodule N of M such that N ∼= E and M = Kerφ ⊕ N . Since Kerφ is
small in M , thus M = N . Therefore M ∼= E and so M is injective. It follows
that the family of all injective R-modules is closed under small covers. So
by [7], Theorem 3.1.12, R is an H-ring. □

Corollary 4.2. Let R be a QF-ring. Then every R-module can be expressed
as a direct sum of a free module and a small module. In particular, if (R,m)
is an SPAP-ring with finitely generated m and m2 ̸= 0, then every R-module
can be expressed as a direct sum of a free module and a small module.

Proof. By [24], Theorem 15.9 and [5], Corollary 26.7, an injective R-module
over an QF-ring is projective and so is free. Since every QF-ring is H-ring,
by [7], Theorem 3.1.12, every R-module can be expressed as a direct sum of a
free module and a small module. Now if (R,m) is an SPAP-ring with finitely
generated m and m2 ̸= 0, by Theorem 2.5, R is QF-ring. □

Let K be a prime submodule of an R-module M . Clearly if (K : M) = {r ∈
R : rM = K} is a maximal ideal of R, then K is a prime submodule of M (for
more information see [31]).

Theorem 4.3. Let (R,m) be a local QF-ring with Spec(R) = {m}. Let
ϕ : F → ⊕KR be an R−isomorphism ( i.e. F is a free R-module) and P
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a submodule of F . Then P is a prime submodule of F if and only if there exist
two sets I and J with J ̸= Ø and K = I ∪ Jsuch that P is isomorphic with
(⊕α∈IR)⊕ (⊕β∈Jm) under the isomorphism ϕ.

Proof. Let P be a submodule of F and isomorphic with (⊕α∈IR) ⊕ (⊕β∈Jm)
which is a submodule of ⊕KR. Since J ̸= ∅, we have (P : F ) ̸= R. But
m(⊕KR) ⊆ (⊕KR) ⊕ (⊕β∈Jm). Hence mF ⊆ P and we have (P : F ) = m ∈
Max(R). This implies that P is a prime submodule of F .

Conversely, let P be a prime submodule of free R-module F . Since every
QF-ring is H-ring, so by [7], Theorem 3.1.12, P can be expressed as a direct
sum of a free module and a small module. Let P = (⊕α∈IR) ⊕ M , where
M is a small module. Since R is an injective R-module and R is Noetherian,
by [24], Theorem 3.46 , ⊕α∈IR is an injective R-module and hence it is a
direct summand of F . Therefore there exists a submodule N of F , such that
F = (⊕α∈IR) ⊕ N . Thus N is a projective R-module and since R is local,
by [5], Corollary 26.7, is free (note that M ⊆ N). Let N ∼= ⊕β∈JR. Then

F ∼= (⊕α∈IR) ⊕ (⊕β∈JR). Now if M
′
is the image of M in (⊕β∈JR), hence

P ∼= (⊕α∈IR)⊕M
′ ≤ (⊕α∈IR) ⊕ (⊕β∈JR). Since P is a prime submodule of

F and Spec(R) = {m}, we have (P : F ) = m. Thus m((⊕α∈IR)⊕ (⊕β∈JR)) ⊆
(⊕α∈IR) ⊕ M

′
. So we have m(⊕β∈JR) ⊆ M

′
. Then ⊕β∈Jm ⊆ M

′
. By the

injectivity of ⊕β∈JR and the definition of injective hull E(M
′
) of M

′
, we have

M
′ ⊆ E(M

′
) ⊆ ⊕β∈JR. Now since M

′
is a small module, hence it is a small

submodule of E(M
′
) and thus is small in ⊕β∈JR (see [29]). Now if x ∈ M

′
,

then x ∈ ⊕β∈JR. Therefore x = (xβ)β∈J , where a finite number of xβ ’s are
non-zero.

We now show that xβ ∈ m for β ∈ J . We verify this for the first com-
ponent. The proof for other components is similar. Assume that x1 ̸∈ m.
So x1 is unit and we have x = (x1, x2, . . . , xn, 0, 0, . . . ) and hence x−1

1 x =

(1, x−1
1 x2, . . . , x

−1
1 xn, 0, 0, . . . ) ∈ M

′
. We claim that M

′
+(0⊕(⊕β∈J−{1}R)) =

⊕β∈JR. Clearly, M
′
+ (0 ⊕ (⊕β∈J−{1}R)) ⊆ ⊕β∈JR. If y ∈ ⊕β∈JR, we can

write y = (yβ)β∈J , where finite number of yβ ’s are non- zero. So we have

y = (y1, y2, . . . , yn, 0, 0, . . . ) = y1x
−1
1 (x1, x2, . . . , xn, 0, 0, . . . )

−(0, y1x
−1
1 x2, . . . , y1x

−1
1 xn, 0, 0, . . . )

+(o, y2, . . . , yn, 0, 0, . . . ) ∈ M
′
+ (0⊕ (⊕β∈J−{1}R)).

Therefore, y ∈ M
′
+(0⊕ (⊕β∈J−{1}R)) and thus M

′
+(0⊕ (⊕β∈J−{1}R)) =

⊕β∈JR. Now since M
′
is small in ⊕β∈JR, hence (0⊕ (⊕β∈J−{1}R)) = ⊕β∈JR,

which is a contradiction. So x1 ∈ m. Similarly, for all β ∈ J , xβ ∈ m .

Therefore M
′ ⊆ ⊕β∈Jm and since ⊕β∈Jm ⊆ M

′
, we have M

′
= ⊕β∈Jm. Thus

P ∼= (⊕α∈IR)⊕M
′
= (⊕α∈IR)⊕(⊕β∈Jm) and F = (⊕α∈IR)⊕(⊕β∈JR). Now

if J = ∅, clearly P is not prime. So J ̸= ∅ and the proof is complete. □
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Corollary 4.4. Let (R,m) be an SPAP-ring with finitely generated m and
m2 ̸= 0. Let ϕ : F → ⊕KR be an R−isomorphism ( i.e. F is a free R-module)
and P be a submodule of F . Then P is a prime submodule of F if and only if
there exist two sets I and J with J ̸= Ø and K = I∪Jsuch that P is isomorphic
with (⊕α∈IR)⊕ (⊕β∈Jm) under the isomorphism ϕ.

Proof. By Theorem 2.5 and Theorem 3.3. □

Corollary 4.5. Let M be a small submodule of a free R-module ⊕β∈JR, over
a local ring (R,m). Then M ⊆ ⊕β∈Jm.

Proof. Similar to the proof of Theorem 3.3. □

5. Strongly Oka family and SPAP-rings

In [26] and [27], T. Y. Lam and M. L. Reyes gave some examples of rings such
that the family of finitely generated ideals are strongly Oka, i.e. if I + A and
(I : A) are finitely generated then so is I. These include von Neumann regular
rings, Bezout domains (in particular, all valuation domains) and Noetherian
rings. However, they asked the following question:

Are there other rings R for which the family of finitely generated ideals is
strongly Oka?
We begin this section by a basic Lemma that shows the relation between SPAP-
rings and strongly Oka families.

Lemma 5.1. Let (R,m) be an SPAP-ring, R is not Noetherian in general,
and I,A⊴ R such that I + A be a proper finitely generated ideal. Then I and
A are finitely generated.

Proof. Since I + A is finitely generated, hence for some n ∈ N, there exist
ai ∈ I and bi ∈ A such that I + A = (ai + bi)

n
i=1. Suppose that {ai + bi}ni=1

is a minimal generating set for I +A with minimal number of nonzero bi. Let
k be the number of nonzero bi. Now let I + A = (a1 + b1, a2 + b2, . . . , ak +
bk, ak+1, . . . , an). Let x ∈ I − m2, there exist ri ∈ R such that x = r1(a1 +
b1) + · · · + rk(ak + bk) + rk+1ak+1 + · · · + rnan. If for i = 1, . . . , k, ri ∈ m
then we have I ⊆ m2 + (ai)

n
k+1 and since m2 is the unique minimal ideal,

hence I ⊇ m2 + (ai)
n
i=k+1. So I = m2 + (ai)

n
k+1 and I is finitely generated.

Suppose there exists x ∈ I −m2 and say, r1 ̸∈ m, then r1 is unit and we have
a1 + b1 = r−1

1 (x− (r2(a2 + b2)+ · · ·+ rk(ak + bk)+ rk+1ak+1+ · · ·+ rnan)). So
we have I + A = (r−1

1 (x− (r2(a2 + b2) + · · ·+ rk(ak + bk) + rk+1ak+1 + · · ·+
rnan)), a2+b2, . . . , ak+bk, ak+1, . . . , an) = (x, a2+b2, . . . , ak+bk, ak+1, . . . , an).

Clearly {x, a2 + b2, . . . , ak + bk, ak+1, . . . , an} is a minimal generating set
for I + A with {x, a2, . . . , ak, ak+1, . . . , an} ⊆ I and {b2, . . . , bk} ⊆ A. By
minimality of k, this is a contradiction and the proof is complete. So I is
finitely generated. Similarly this statement holds for A. □
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Let (R,m) be an SPAP-ring, I be a finitely generated proper ideal of R
and J ⊆ I be another ideal of R. By Lemma 4.1, J is finitely generated
and µ(J) ≤ µ(I), where µ(I) denotes the least cardinal µ such that I can be
generated by µ elements.

Corollary 5.2. Let (R,m) be an SPAP-ring. Then the family of finitely gen-
erated ideals is strongly Oka.

Proof. Let I, A ⊴ R and I + A and (I : A) be finitely generated ideals. If
I + A = R then I = (I : R) = (I : I + A) = (I : A). So I = (I : A) and hence
I is finitely generated. Suppose that I + A is a proper ideal. By Lemma 4.1,
I is finitely generated. So the family of finitely generated ideals is an strongly
Oka. □
Theorem 5.3. If every proper (principal) ideal of the ring R is almost prime
then the family of finitely generated ideals is strongly Oka.

Proof. By [4], Theorem 17, R is von Neumann regular or (R,m) is local with
m2 = 0. If R is Von Neumann regular then by [26] and [27], the family of finitely
generated ideals is strongly Oka. But if (R,m) is a local ring with m2 = 0,
then R is an SPAP-ring. Thus by Corollary 4.2, the theorem holds. □

There is also another kind of rings such that the family of finitely generated
ideals is strongly Oka. For example, if for all proper ideals I and J of a ring
R we have IJ = J or IJ = I or IJ = 0, then by [18], Proposition 3, every
ideal of R is weakly prime. Since any weakly prime ideal is almost prime, by
Theorem 4.3 the family of finitely generated ideals is strongly Oka.

In the proof of Lemma 4.1, we proved that for ideals J ⊆ I of R, if we have a
special minimal generating set for I then we can produce a generating set for J
by this minimal generating set of I . Now we consider the inverse: if we have a
generating set for J , can we extend this set to a generating set for I? To answer
this question we need the concept of Steinitz rings. We recall that a Steinitz
ring is such that for any free R-module F and any free submodule U of F , F/U
is again free (and U a direct summand of F ). Now let (R,m) be an SPAP-ring.
By Lemma 2.1, R is perfect. Since R is local hence by [28], Theorem, part(e),
R is an Steinitz ring. This means that any linearly independent subset of a
free R-module F can be extended to a basis of F . So we have a partial answer
for above question.

6. Structure of SPAP-rings

D. D. Anderson and M. Bataineh in [4], Example 20, construct an SPAP-
ring that is not Noetherian as follows:
Let k be an ordered field and {xα}α∈Λ a nonempty set of indeterminates. Put
R = k[[{xα}α∈Λ]],m = ({xα}α∈Λ) and I = ({xαxβ , x

2
α − x2

β}α ̸=β , {x3
α}α). Let

R = R/I. Then R is an SPAP-ring. If the index set Λ is infinite then m = m
I ,
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the maximal ideal of R is not finitely generated. So R is not Noetherian.
Note that not all SPAP-rings are of this form. For example, let S be a ring
and n a maximal ideal of S. Put R = S

n2 . Clearly R is a local ring with

maximal ideal n = n
n2 . Since n2 = 0, R is an SPAP-ring. Suppose that there

exists a field k and {xα}α∈Λ is a nonempty set of indeterminates such that
R ∼= k[[{xα}α∈Λ]]/({xαxβ , x

2
α − x2

β}α ̸=β , {x3
α}α). Clearly the maximal ideal

of k[[{xα}α∈Λ]]/({xαxβ , x
2
α − x2

β}α ̸=β , {x3
α}α) is ({xα}α∈Λ)

({xαxβ ,x2
α−x2

β}α ̸=β ,{x3
α}α)

and

( ({xα}α∈Λ)
({xαxβ ,x2

α−x2
β}α̸=β ,{x3

α}α)
)2 ̸= 0, which is contradiction with n2 = 0. So R is

not of the above form.
We now state a conjecture and verify it in a special case.

Conjecture: For any SPAP-ring (R,m) with finitely generatedm andm2 ̸= 0.
There exists a regular local ring (S, n) and a nonempty subset {xα}α∈Λ of n
such that R ∼= S/I, where I =< {xαxβ}α ̸=β , {x2

α}α ̸=1, {x2
αuαx

2
1} >.

The embedding dimension of a local ring (R,m) denoted by v(m), is the
number of elements of a minimal generating set for m. Suppose that I is an
ideal of the regular local ring (R,n) such that I ⊆ n2. Put A := R/I, m := n/I,
k := R/n ∼= A/m. Let d = dim(A), e be its multiplicity and h = v(m) the
embedding dimension of A. In this notation we say that an Artinian local ring
(A,m), not necessarily Gorenstein, is stretched if µ(m2) = 1( where µ is the
minimum number of generator of an ideal). We denote the Hilbert function of

A by HA(n) := dimk
mn

mn+1 , n ≥ 0. The socle degree of an Artinian ring A is
the least integer s such that HA(s) ̸= 0, denoted by s = s(R), and the Cohen-
Macaulay type of A, denoted by τ(A), is defined as τ(A) := dimk(0 : m).

Sally in [34], studied several properties of stretched local rings and proved
a structure theorem for stretched Artinian local rings in the Gorenstein case.
J. Elias and G. Valla in [11] proved another structure theorem for stretched
Artinian local rings(also see [19]). The following theorem verifies our conjecture
in a special case.

Theorem 6.1. Let (R,m) be an SPAP-ring with finitely generated m and
m2 ̸= 0. Let h = v(m). If there exists a regular local ring (S, n) with dim(S) ≤
h and char(Sn ) ̸= 2 such that R ∼= S

I , then there exists {xα}1≤α≤h ⊆ n such

that ({xα}1≤α≤h) = n and R ∼= S
({xixj}i ̸=j ,{x2

i−uix2
1}2≤i≤h)

, where ui ∈ U(R).

Proof. Let {a1, . . . , ah} be a minimal generating set for m. Since R is an
SPAP-ring and m2 ̸= 0, there exists g ∈ R such that m2 = (g). We know
that m

m2 is an R
m -vector space, with an R

m− basis {a1 +m2, . . . , ah +m2}. Let
i, j ∈ {1, 2, ..., h}. Since aiaj ∈ m2 = (g), there exists uij ∈ R such that

aiaj = uijg. We now define an R
m -bilinear form F : m

m2 × m
m2 → R

m as follows:

F (ai +m2, aj +m2) = uij +m.
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Clearly F is symmetric. Now if v = b+m2 =
∑n

j=1 rjaj +m2 is an arbitrary

element of m
m2 such that F (v, w) = 0 for all w ∈ m

m2 , then F (v, ai + m2) = 0
for all i = 1, . . . , h. Therefore, by the definition of F ,

∑n
j=1 rjuji ∈ m. So

bai =
∑n

j=1 rjujig ∈ m3 = 0, for all i = 1, . . . , h and hence b ∈ (0 : m).

Now, since (0 : m) = m2, we have b ∈ m2. Thus v = 0 and hence F is a
non-degenerate form. By [33], Theorem 9.8, since char(Sn = R

m ) ̸= 2, F can be

diagonalized. This means that there exists a basis {z1 +m2, . . . , zh +m2} of
m
m2 such that F (zi + m2, zj + m2) = 0 for all i ̸= j and F (zi + m2, zi + m2)

is unit for all i(non zero). Now let F (zi + m2, zi + m2) = ui + m, where
ui is unit in R. From F (zi + m2, zj + m2) = 0 and the definition of F ,
we have zizj = 0 for all i ̸= j. Since zi ∈ m, so zi =

∑n
k=1 rkak. Then

F (zi +m2, zi +m2) = F (
∑n

k=1 rkak,
∑n

k=1 rkak) =
∑n

k=1

∑n
k′=1 rkrk′F (ak +

m2, ak′ + m2) =
∑n

k=1

∑n
k′=1 rkrk′ukk′ + m. Since F (zi + m2, zi + m2) is

unit, so
∑n

k=1

∑n
k′=1 rkrk′ukk′ /∈ m. Thus

∑n
k=1

∑n
k′=1 rkrk′ukk′ is unit in

R, and z2i = zizi =
∑n

k=1

∑n
k′=1 rkrk′akak′ =

∑n
k=1

∑n
k′=1 rkrk′ukk′g. Now,

putting ui =
∑n

k=1

∑n
k′=1 rkrk′ukk′ , we have z2i = uig, and thus for all i,

u−1
i z2i = u−1

1 z1 = g. So for all i, z2i = viz1, where vi = uiu
−1
1 ∈ U(R)

( we can also write z2i − viz1 = 0). Now let R ∼= S
I with dim(S) = h.

Then there exist xi, wi ∈ S such that zi = xi + I and vi = wi + I ( clearly
wi ∈ U(S)). Let J = ({xixj}i ̸=j , {x2

i − wix
2
1}) in S. Since R

m = S
n , we have

h = dim R
m
( m
m2 ) = dimS

n
(

n
I

n2+I
I

) = dimS
n
( n
n2+I ), so dimS

n
( n
n2+I ) = h and since

(S, n) is a regular local ring of dimension h, we have dimS
n
( n
n2 ) = h. This shows

that dimS
n
( n
n2 ) = dimS

n
( n
n2+I ), which implies that the surjection n

n2 −→ n
n2+I ,

as an S
n−space is an isomorphism, and so n2 + I = n2. Hence I ⊆ n2 and

m
m2

∼= n
n2 . Now, since zi + m2 forms a basis for R

m−space m
m2 , hence xi + n2

forms a basis for n
n2 as S

n−space. Therefore n = (x1, x2, ..., xh). Now we have
the following surjection of S-modules

S

({xixj}i ̸=j , {x2
i − wix2

1}2≤i≤h)
→ S

I
→ 0.

If we show that both of these S-modules have the same finite length h+ 1, we
reach the desired conclusion.

Since {zi + m2} is a basis for the R
m−space m

m2 , so clearly the chain 0 ⊆
(z1) ⊆ (z1, z2) ⊆ ... ⊆ (z1, z2, ..., zh) = m ⊆ R, is a composition series for R
as S-module. Hence lengthS(

S
I ) = lengthS(R) = h + 1. By the definition

of {xi}, {xi + n2} is a basis for S
n−space n

n2 , so dimS
n
( (x1,x2,...,xr+1)

(x1,x2,...,xr)
) ≤ 1,

and dimS
n
(J+(x1,x2,...,xr+1)

J+(x1,x2,...,xr)
) ≤ 1. Thus, after omitting the same factor, the

chain 0 ⊆ J+(x1)
J ⊆ J+(x1,x2)

J ⊆ ... ⊆ J+(x1,x2,...,xh)
J ⊆ S

J , is a composition

series as S-module. So lengthS(
S
J ) ≤ h + 1, and by the above surjection, we

have lengthS(
S
J ) ≥ h + 1, and hence the equality holds. Now if dim(S) < h,
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put S′ = S[[X]] and I ′ = (I,X) . Clearly S′ is a regular local ring with

dim(S′) = dim(S)+1 and R ∼= S
I
∼= S′

I′ . By this argument over dim(S) we can
assume that dim(S) = h. □

A subring A of R is called a coefficient ring of R if A is a complete local
ring such that the inclusion A ↪→ R is local and induces an isomorphism on the
residue fields and the maximal ideal of A is pA, where p = char(Rm )(see [8]).

Proposition 6.2. (Cohen structure theorem for SPAP-rings ) Let (R,m) be an
SPAP-ring with finitely generated m and m2 ̸= 0 such that char(R) = p3 and
h = v(m), where p is a prime number. Then there exists a complete discrete
valuation ring W such that R is a quotient of S = W [[x1, x2, . . . , xh−1]] as
W -algebra.

Proof. Since R is an Artinian ring andm3 = 0, R is complete with respect tom-
adic topology. Now by char(R) = p3, R is inequicharacteristic and hence by [8],
Theorem 10.2, there exists a subring A of R and complete discrete valuation
ring W with regular parameter p such that A is a coefficient ring of R and A ∼=
W or A ∼= W

ptW , for some t ≥ 2. Suppose that p ∈ m2. Since for an SPAP-ring,

m3 = 0 hence p2 = 0, is contradiction with char(R) = p3. Therefore p ̸∈ m2,
hence p+m2 is a nonzero element of the R

m -vector space m
m2 . So we can extend

it to a basis for m
m2 (since m is finitely generated, this basis is finite). Thus

there exists a1, a2, . . . , ah−1 ∈ m such that {p+m2, a1+m2, . . . , ah−1+m2} is
a basis. Recall that since char(Rm ) = p, hence by definition of coefficient ring
of R, pA is the unique maximal ideal of A and since (A, pA) is a coefficient ring
of (R,m) and (p, a1, a2, . . . , ah−1) = m, by [8], Lemma 8.3, R is a quotient of
A[[x1, x2, . . . , xh−1]] as A-algebras. Since A ∼= W or A ∼= W

P tW , hence R is a
quotient of W [[x1, x2, ..., xh−1]]. The proof is complete. □
Proposition 6.3. (Structure of SPAP-rings) Let (R,m) be an SPAP-ring with
finitely generated m and h := v(m) where m2 ̸= 0. If char(R) ̸= p2 and
char(R/m) ̸= 2, where p is a prime number then there exists a regular local
ring (S, n) and {xα}1≤α≤h a subset of n such that R ∼= S/I and I is minimally
generated by the elements {xixj}1≤i<j≤h, {x2

j}2≤j≤τ and {x2
iuix

2
1}τ+1≤i≤h,

where the ui are units in R and τ is the Cohen-Macaulay type of A.

Proof. Since R is an SPAP-ring, we have one of the following cases.
Case 1. char(R) = 0. Since R is an Artinian ring andm3 = 0, R is complete

with respect to m-adic topology. So by Cohen Structure Theorem [8], Theorem
8.1, R is a quotient of a regular local ring (S, n). Let R ∼= S/I. If I ̸⊆ n2 then
there exists x ∈ I − n2. Since x is a nonzero divisor, S′ = S/(x) is again a
regular ring. Put A ∼= S′/I ′ where I ′ = I + (x)/(x) in S′. Now we can write
R as a quotient of a ring of dimension smaller than dim(S). Since dim(S) is
finite then there exists an expression R ∼= S/I of R as a quotient of a regular
local ring (S, n) with I ⊆ n2. Furthermore, in an SPAP-ring since m2 is cyclic,
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µ(m2) = 1 and hence the ring is stretched. Now since m2 ̸= 0, s = s(R) = 2.
Therefore in all cases τ ≤ h, and so by [11], Theorem 3.1, the statement holds.

Case 2. char(R) = p. Then char (R/m) = p and hence R is an equichar-
acteristic complete Noetherian local ring. So by [8], Theorem 8.1, there exists
a subfield K of R such that R ∼= K[[x1, x2, . . . , xn]]/I as K-algebras, for some
ideal I. By Remark 2.4, n = v(m) = h. So R is a quotient of a regular local
ring S = K[[x1, x2, . . . , xn]] such that dim(S) = h. Therefore, the Proposition
is true by Theorem 5.1.

Case 3. char(R) = p3. If R is an SPAP-ring with char(R) = p3 then by
Proposition 5.2, there exists a complete discrete valuation ring W such that R
is a quotient of S = W [[x1, x2, . . . , xn−1]]. Clearly dim(S) = n and hence by
Theorem 5.1, the statement is true. □
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