ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 4, pp. 923-929

Title:

On residuated lattices with universal quantifiers

Author(s):

M. Kondo

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 41 (2015), No. 4, pp. 923–929 Online ISSN: 1735-8515

ON RESIDUATED LATTICES WITH UNIVERSAL QUANTIFIERS

M. KONDO

(Communicated by Ali Enayat)

ABSTRACT. We consider properties of residuated lattices with universal quantifier and show that, for a residuated lattice X, (X, \forall) is a residuated lattice with a quantifier if and only if there is an *m*-relatively complete substructure of X. We also show that, for a strong residuated lattice X, $\bigcap\{P_{\lambda} \mid P_{\lambda} \text{ is an } m\text{--filter}\} = \{1\}$ and hence that any strong residuated lattice is a subdirect product of a strong residuated lattice with a universal quantifier $\{X/P_{\lambda}\}$, where P_{λ} is a prime *m*-filter. As a corollary of this result, we prove that every strong monadic MTL-algebra (BL- and MV-algebras, respectively).

Keywords: residuated lattice, universal quantifier, *m*-filter. MSC(2010): Primary: 06B10; Secondary: 03G10.

1. Introduction

The notion of monadic MV-algebras (MMV-algebras) was firstly introduced and investigated their properties in [4] as an algebraic semantics for the Lukasiewicz infinite valued logic. Since then, many papers about similar algebraic structures deeply considered their properties for various logics, such as monadic intuitionistic logic ([1]), monadic many valued logic ([2]), monadic basic logic ([3]) and so on. On the other hand these algebraic semantics have common algebras - residuated lattices - as support algebras. In [5], several important results were proved in general forms, in particular a characterization theorem of monadic $\mathbb{R}\ell$ -monoids (Theorem 4 and 5): For an $\mathbb{R}\ell$ -monoids M, there exists a universal quantifier \forall such that (M, \forall) is a monadic $\mathbb{R}\ell$ -monoid if and only if there exists an *m*-relatively complete substructure M_0 and M satisfies the condition

(*)
$$\bigwedge_{i \in I} x_i \to y = \bigvee_{i \in I} (x_i \to y).$$

O2015 Iranian Mathematical Society

Article electronically published on August 16, 2015. Received: 15 April 2014, Accepted: 9 June 2014.

⁹²³

In this paper we further generalize the result above to the case of residuated lattices and give a simpler characterization theorem of monadic residuated lattices, which says the condition (*) above is redundant even in the case of residuated lattices: For a residuated lattice $X, (X, \forall)$ is a residuated lattice with a universal quantifier if and only if there is an *m*-relatively complete substructure of X.

We also show that, for a strong residuated lattice X,

$$\bigcap \{ P_{\lambda} \mid P_{\lambda} \text{ is an } m - \text{filter} \} = \{ 1 \}$$

and hence that any strong residuated lattice is a subdirect product of strong residuated lattices $\{X/P_{\lambda}\}$, where P_{λ} is a prime *m*-filter. As a corollary of this result, we prove that every strong monadic MTL-algebra (BL- and MV-algebra) is a subdirect product of linearly ordered strong monadic MTL-algebras (BL- and MV-algebras, respectively).

2. Residuated lattices with universal quantifiers

We recall a definition of bounded integral commutative residuated lattices. An algebraic structure $(X; \land, \lor, \odot, \rightarrow, 0, 1)$ is called a bounded integral commutative residuated lattice (simply called *residuated lattice*) if

- (1) $(X; \land, \lor, 0, 1)$ is a bounded lattice;
- (2) $(X; \odot, 1)$ is a commutative monoid;
- (3) For all $x, y, z \in L$, $x \odot y \leq z$ if and only if $x \leq y \to z$.

For all $x \in X$, we define x' by $x \to 0$. The following result is easy to prove.

Proposition 2.1. For all $x, y, z \in X$, we have

 $\begin{array}{ll} (1) \ 0' = 1, 1 = 0, \\ (2) \ (x \lor y)' = x' \land y', \\ (3) \ x \le y \iff x \to y = 1, \\ (4) \ x \le y \implies x \odot z \le y \odot z, \ z \odot x \le z \odot y, \\ (5) \ x \le y \implies z \to x \le z \to y, \ y \to z \le x \to z, \\ (6) \ x \to y \le (y \to z) \to (x \to z), \\ (7) \ x \to y \le (z \to x) \to (z \to y). \end{array}$

Some well-known algebras, MTL-algebras, BL-algebras, MV-algebras, Heyting algebras and so on, are considered as algebraic semantics for so-called fuzzy logics, monoidal t-norm logic, Basic logic, many valued logic, intuitionistic logic and so on, respectively.

Any residuated lattice satisfying the divisibility condition

(div)
$$x \odot (x \to y) = x \land y$$

is called an R ℓ -monoid ([5]). For example, an MV-algebra is a residuated lattice with satisfying the conditions

Kondo

$$\begin{aligned} (\text{div}) &: x \odot (x \to y) = x \land y, \\ (\text{dn}) &: x'' = x, \\ (\text{p-lin}) &: (x \to y) \lor (y \to x) = 1 \end{aligned}$$

Moreover, those algebras are axiomatic extensions of residuated lattices as follows:

$$\begin{split} \mathrm{MTL} &= \mathrm{RL} + \{\mathrm{p-lin}\}\\ \mathrm{BL} &= \mathrm{RL} + \{\mathrm{div}\} + \{\mathrm{p-lin}\}\\ &= \mathrm{MTL} + \{\mathrm{div}\}\\ \mathrm{MV} &= \mathrm{BL} + \{\mathrm{dn}\} \end{split}$$

A map $\forall : X \to X$ is called a *universal quantifier* if it satisfies the conditions:

(m1) $\forall x \leq x$, (m2) $\forall (x \wedge y) = \forall x \wedge \forall y$, (m3) $\forall ((\forall x)') = (\forall x)'$, (m4) $\forall (\forall x \odot \forall y) = \forall x \odot \forall y$, (m5) $\forall (x \odot x) = \forall x \odot \forall x$, (m6) $\forall (x \oplus x) = \forall x \oplus \forall x$, where $x \oplus y = (x' \odot y')'$.

Let \forall be a universal quantifier on a residuated lattice X. Then the algebra $(X; \land, \lor, \odot, \rightarrow, 0, 1, \forall)$, or briefly (X, \forall) , is called a *residuated lattice with a universal quantifier*. We note that (X, \forall) is called a *monadic Rl-monoid* in [5] in the case of X being a R*l*-monoid. Therefore, our notion of residuated lattices with universal quantifiers is a generalization of monadic residuated lattices. We also note that the following result can be proved without using (div).

Proposition 2.2. ([5]) For any residuated lattice with a universal quantifier (X, \forall) , we have,

- [(1)](1) $\forall 0 = 0, \forall 1 = 1,$ (2) $\forall \forall x = \forall x,$ (3) $x \leq y \Longrightarrow \forall x \leq \forall y,$ (4) $\forall (\forall x \oplus \forall y) = \forall x \oplus \forall y,$ (5) $\forall x \odot \forall y \leq \forall (x \odot y), \forall x \oplus \forall y \leq \forall (x \oplus y),$ (6) $\forall (x \to y) \leq \forall x \to \forall y,$ (7) $\forall x' \leq (\forall x)',$ (8) $x \odot y \leq z \Longrightarrow \forall x \odot \forall y \leq \forall z,$
- (9) $\forall (x' \oplus \forall y) \leq (\forall x)' \oplus \forall y.$

Proof. We only show the last case which was proved in [5] under the assumption of normality: $(x \odot y)'' = x'' \odot y''$ and $\mathbb{R}\ell$ -monoid. We here provide a proof without using such assumptions. Since $\forall (x'' \odot (\forall y)')' \odot (\forall x)'' \odot (\forall y)' \leq (x'' \odot (\forall y)') \odot x'' \odot (\forall y)' \odot (\forall y)' = 0$, we have $\forall (x'' \odot (\forall y)') \odot (\forall x)'' \odot (\forall y)' = 0$ and this means that $\forall (x' \oplus \forall y) = \forall (x'' \odot (\forall y)')' \leq ((\forall x)'' \odot (\forall y)') = (\forall x)' \oplus \forall y$.

925

Let (X, \forall) be a residuated lattice with a universal quantifier. We put

$$\forall X = \{ \forall x \in X \mid x \in X \}.$$

It follows from the result $\forall \forall x = \forall x$ above that $\forall X$ is identical with the set $\{x \in X \mid \forall x = x\}.$

Lemma 2.3. The set $\forall X$ is closed under the operations $\land, \lor, \odot, \forall, ', 0$ and 1. Thus, $\forall X$ is a subalgebra of the reduct $(X; \land, \lor, \odot, \forall, ', 0, 1)$ of the residuated lattice with a universal quantifier (X, \forall) .

Proof. We only show the case of $\forall (x \lor y) = x \lor y$ for $x, y \in \forall X$. Suppose that $x, y \in \forall X$. Since $\forall x = x$ and $\forall y = y$, we have $\forall (x \lor y) \le x \lor y = \forall x \lor \forall y \le \forall (x \lor y)$ and thus $\forall (x \lor y) = x \lor y$.

Proposition 2.4. For all elements $x, y \in \forall X, \forall (x \to y)$ is a greatest element w in $\forall X$ such that $x \odot w \leq y$.

Proof. Suppose that $x, y \in \forall X$. It is obvious that $x \odot \forall (x \to y) = \forall x \odot \forall (x \to y) \le \forall y = y$. For all $w \in \forall X$ such that $x \odot w \le y$, since $w \le x \to y$, we have $w = \forall w \le \forall (x \to y)$. This means that $\forall (x \to y)$ is the greatest element $w \in \forall X$ such that $x \odot w \le y$.

We note that $(\forall X; \land, \lor, \odot, \rightarrow_{\forall}, 0, 1)$ is a residuated lattice, where \rightarrow_{\forall} is defined by $x \rightarrow_{\forall} y = \forall (x \rightarrow y)$ for all $x, y \in \forall X$.

According to [5], we define an *m*-relatively complete substructure. Let (X, \forall) be a residuated lattice and further X_0 be a subalgebra of the reduct $(X; \land, \lor, \odot, ', 0, 1)$, which is moreover a residuated lattice. We call X_0 a relatively complete substructure of X, if for any $a \in X$ there exists a greatest element of the set $\{x \in X_0 \mid x \leq a\}$. Further, X_0 is called an *m*-relatively complete substructure of X if X_0 is a relatively complete substructure and the following conditions are satisfied:

(MRL1) For any $a \in X$ and $x \in X_0$ such that $x \leq a \odot a$ there is $v \in X_0$ such that $v \leq a$ and $x \leq v \odot v$. (MRL2) For any $a \in X$ and $x \in X_0$ such that $x \leq a \oplus a$ there is $v \in X_0$ such that $v \leq a$ and $x \leq v \oplus v$.

It is easy to prove the next result.

Theorem 2.5. If (X, \forall) is a residuated lattice with a universal quantifier, then $\forall X$ is an *m*-relatively complete substructure of *X*.

Conversely, we have the following result.

Theorem 2.6. Let X be a residuated lattice. If there exists an m-relatively complete substructure X_0 , then the algebra (X, \forall) is a residuated lattice with a universal quantifier, where \forall operator is defined by $\forall a = \max\{x \in X_0 \mid x \leq a\}$.

Kondo

Proof. Suppose that X_0 is an *m*-relatively complete substructure of a residuated lattice X. Since X_0 is also a relatively complete substructure, we note that there is a greatest element of the set $\{x \in X_0 \mid x \leq a\}$ for all $a \in X$. We denote such an element by $\forall a$, that is,

$$\forall a = \max\{x \in X_0 \mid x \le a\}.$$

We show that \forall -operator is a monadic operator. We only show the cases of (m2), (m5) and (m6).

Case of (m2): $\forall (a \land b) = \forall a \land \forall b$ for $a, b \in X$. For all $u \in X_0$, if $u \leq a \land b$, since $u \leq a$ and $u \leq b$, then $u \leq \forall a$ and $u \leq \forall b$ and thus $u \leq \forall a \land \forall b$. This means that $\forall (a \land b) \leq \forall a \land \forall b$. Conversely, if $u \leq \forall a \land \forall b$, since $u \leq \forall a$ and $u \leq \forall b$, then we have $u \leq a \land b$ and hence $u \leq \forall (a \land b)$. Since X_0 is closed under \land and $\forall a \land \forall b \in X_0$, it follows that $\forall (a \land b) \leq \forall a \land \forall b$.

For the case of (m5): $\forall (a \odot a) = \forall a \odot \forall a$, if we take any $u \in X_0$ such that $u \leq \forall a \odot \forall a$, since $u \leq a \odot a$ and $\forall a \odot \forall a \in X_0$, we have $\forall a \odot \forall a \leq \forall (a \odot a)$. Conversely, suppose that $x \leq a \odot a$ for $x \in X_0$. It follows from (MRL1) that there exists $v \in X_0$ such that $v \leq a$ and $x \leq v \odot v$. Since $v = \forall v \leq \forall a$ and $x \leq \forall a \odot \forall a$. This means that $\forall (a \odot a) \leq \forall a \odot \forall a$. Therefore $\forall (a \odot a) = \forall a \odot \forall a$.

For the last case (m6): $\forall (a \oplus a) = \forall a \oplus \forall a$. For any $u \in X_0$ such that $u \leq \forall a \oplus \forall a$, since $\forall a \leq a$, we have $u \leq a \oplus a$ and hence $u \leq \forall (a \oplus a)$ by definition of \forall . We note that $\forall a \in X_0$ and X_0 is closed under \odot and '. This implies $\forall a \oplus \forall a = ((\forall a)' \odot (\forall a)')' \in X_0$ and hence that $\forall a \oplus \forall a \leq \forall a \oplus a)$. Conversely, if $u \leq a \oplus a$ for $u \in X_0$ then there exists $v \in X_0$ such that $v \leq a$ and $u \leq v \oplus v$ by (MRL2). Since $v = \forall v \leq \forall a$, we have $u \leq v \oplus v \leq \forall a \oplus \forall a$ and hence $\forall (a \oplus a) \leq \forall a \oplus \forall a$ by definition of \forall .

We note that the result above is stronger than that of Theorem 4 and 5 in [5], where the same result was proved under the conditions (div) of $R\ell$ -monoid and

$$\bigwedge_{i \in I} x_i \to y = \bigvee_{i \in I} (x_i \to y)$$

Our proof does not require such assumptions to get the result. Thus, we have a characterization theorem of residuated lattices with universal quantifiers.

Theorem 2.7. For a residuated lattice X, there exists a universal quantifier \forall satisfying (m1)-(m6) if and only if there is an m-relatively complete substructure of X.

3. Filter and *m*-filter

Let (X, \forall) be a residuated lattice with a universal quantifier. A non-empty subset F of X is called a *filter* of X if it satisfies the conditions

$$[(F1)]$$

If $x, y \in F$ then $x \odot y \in F$

(2) If $x \in F$ and $x \leq y$ then $y \in F$.

Moreover a filter F is called an *m*-filter of X if it satisfies the condition that $x \in F$ implies $\forall x \in F$.

For a non-empty subset $S \subseteq X$, By [S) we mean the smallest filter containing S. Similarly we denote $[S]_m$ the smallest *m*-filter containing S. We also denote the class of all filters of X by Fil(X) and the class of all m-filters by $Fil_m(X)$. It is easy to show that Fil(X) and $Fil_m(X)$ are both distributive lattices with respect to the set-inclusion order.

It is easy to show that

Proposition 3.1. For a non-empty subset S of a monadic residuated lattice $(X, \forall),$

- (1) $[S] = \{x \in X \mid \text{there are elements } s_1, \dots, s_n \in S \text{ such that } s_1 \odot \dots \odot$ $\begin{array}{c}
 s_n \leq x \\
 (2) \quad [S)_m = [\forall S)
 \end{array}$

Proof. We only show that $[\forall S)$ is an *m*-filter in the case (2). Let $x \in [\forall S)$. There are elements $s_i \in S$ such that $\forall s_1 \odot \cdots \odot \forall s_n \leq x$. Since $\forall (\forall s_1 \odot \cdots \odot \forall s_n \leq x)$. $\forall s_n \leq \forall x \text{ and } \forall (\forall s_1 \odot \cdots \odot \forall s_n) = \forall s_1 \odot \cdots \odot \forall s_n, \text{ we have } \forall s_1 \odot \cdots \odot \forall s_n \leq \forall x.$ This means that $\forall x \in [\forall S)$ and thus $[\forall S)$ is the *m*-filter.

Let F be an m-filter of X. For all $x, y \in X$, we define $x \equiv_F y$ by $x \to y, y \to y$ $x \in F$. It is clear that the relation \equiv_F is a congruence. Since the class of all monadic residuated lattices forms a variety, a quotient algebra X/F by the congruence \equiv_F induced from the *m*-filter is also a monadic residuated lattice. Moreover, it is easy to prove that $Fil_m(X)$ is isomorphic to the set Con(X) of all congruences, that is,,

$$Fil_m(X) \cong Con(X).$$

Lemma 3.2. Let F be an m-filter of X and $a \in X$. Then the smallest m-filter $[F \cup \{a\})_m$ containing $F \cup \{a\}$ is

 $\{x \in X \mid \text{there exist } n \ge 1 \text{ and } u \in F \text{ such that } u \odot (\forall a)^n \le x\} = F \lor [\forall a).$

Proof. The result can be proved easily from the fact $[F \cup \{a\})_m = [F \cup \{\forall a\}) =$ $F \vee [\forall a).$

A residuated lattice with a universal quantifier (X, \forall) is called *strong* ([5]) if $\forall (x \lor y) = \forall x \lor \forall y$ for $x, y \in X$. An *m*-filter P is called *prime* if $x \lor y \in P$ implies $x \in P$ or $y \in P$ for all $x, y \in X$. It is easy to prove that a filter P is prime if and only if $P = F \cap G$ implies P = F or P = G for any filter F and G of X.

Lemma 3.3. Let (X, \forall) be a strong residuated lattice with a universal quantifier and $a \in X$ such that $a \neq 1$. Then there is a prime m-filter P such that $a \notin P$.

Kondo

Proof. Let $\Gamma = \{F \mid a \notin F, F \text{ is an } m - \text{filter}\}$. It follows from Zorn's lemma that there exists a maximal element P in Γ . We only show that P is prime. Suppose that P is not prime. There are $x, y \in X$ such that $x \lor y \in P$ but $x, y \notin P$. Since P is maximal, we have $a \in [P \cup \{x\})_m = P \lor [\forall x)$ and $a \in [P \cup \{y\})_m = P \lor [\forall y)$. It follows from strong property that

$$a \in (P \lor [\forall x)) \land (P \lor [\forall y))$$

= $P \lor ([\forall x) \land [\forall y))$
= $P \lor [\forall x \lor \forall y)$
= $P \lor [\forall (x \lor y)) = P.$

But this is a contradiction. Hence P is prime.

If we take the class $\{P_{\lambda}\}_{\lambda \in \Lambda}$ of all prime *m*-filters of X, then it follows from the result above that $\bigcap_{\lambda \in \Lambda} P_{\lambda} = \{1\}$. It follows from the above

Theorem 3.4. Any strong residuated lattice with a universal quantifier is a subdirect product of a strong residuated lattice with a universal quantifier X/P_{λ} , where $\{P_{\lambda}\}_{\lambda \in \Lambda}$ is the set of all prime m-filters of X.

If X satisfies the condition (p-lin): $(x \to y) \lor (y \to x) = 1$, then it is easy to show that the quotient algebra X/P by a prime *m*-filter *P* is linearly ordered monadic residuated lattice. It follows that

Corollary 3.5.

(1) Every strong monadic MTL-algebra is a subdirect product

of linearly ordered strong monadic MTL-algebras.

(2) Every strong monadic BL-algebra is a subdirect product of

linearly ordered strong monadic BL-algebras.

(3) Every strong monadic MV-algebra is a subdirect product of linearly ordered strong monadic MV-algebras.

Acknowledgments

This work was supported by JSPS KAKENHI No. 24500024.

References

- G. Bezhanishvili, Varieties of monadic Heyting algebras I, Studia Logica 61 (1998), no. 1, 367–402.
- [2] A. Di Nola and R. Grigolia, On monadic MV-algebras, Ann. Pure Appl. Logic 128 (2004), no. 1-3, 125–139.
- [3] R. Grigolia, Monadic BL-algebras, Georgian Math. J. 13 (2006), no. 2, 267–276.
- [4] J. D. Rutledge, A preliminary investigation of the infinitely many-valued predicate calculs, Ph.D. Thesis, Cornell University, 1959.
- [5] J. Rachůnek and F. Švrček, Monadic bounded commutative residuated *l*-monoids, Order, 25 (2008), no. 2, 157–175.

(Michiro Kondo) School of Information Environment, Tokyo Denki University, P.O. Box 270-1382, Inzai, Japan

E-mail address: mkondo@mail.dendai.ac.jp

929