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Abstract. We consider properties of residuated lattices with universal

quantifier and show that, for a residuated lattice X, (X, ∀) is a residuated
lattice with a quantifier if and only if there is an m-relatively complete
substructure of X. We also show that, for a strong residuated lattice X,∩
{Pλ |Pλ is an m−filter} = {1} and hence that any strong residuated

lattice is a subdirect product of a strong residuated lattice with a universal
quantifier {X/Pλ}, where Pλ is a prime m-filter. As a corollary of this
result, we prove that every strong monadic MTL-algebra (BL- and MV-

algebra) is a subdirect product of linearly ordered strong monadic MTL-
algebras (BL- and MV-algebras, respectively).
Keywords: residuated lattice, universal quantifier, m-filter.
MSC(2010): Primary: 06B10 ; Secondary: 03G10.

1. Introduction

The notion of monadic MV-algebras (MMV-algebras) was firstly introduced
and investigated their properties in [4] as an algebraic semantics for the  Lukasie-
wicz infinite valued logic. Since then, many papers about similar algebraic
structures deeply considered their properties for various logics, such as monadic
intuitionistic logic ([1]), monadic many valued logic ([2]), monadic basic logic
( [3]) and so on. On the other hand these algebraic semantics have common
algebras - residuated lattices - as support algebras. In [5], several important
results were proved in general forms, in particular a characterization theorem
of monadic Rℓ-monoids (Theorem 4 and 5): For an Rℓ-monoids M , there exists
a universal quantifier ∀ such that (M,∀) is a monadic Rℓ-monoid if and only
if there exists an m-relatively complete substructure M0 and M satisfies the
condition

(∗)
∧
i∈I

xi → y =
∨
i∈I

(xi → y).
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In this paper we further generalize the result above to the case of residuated
lattices and give a simpler characterization theorem of monadic residuated
lattices, which says the condition (*) above is redundant even in the case of
residuated lattices: For a residuated lattice X, (X, ∀) is a residuated lattice
with a universal quantifier if and only if there is an m-relatively complete
substructure of X.

We also show that, for a strong residuated lattice X,∩
{Pλ |Pλ is an m−filter} = {1}

and hence that any strong residuated lattice is a subdirect product of strong
residuated lattices {X/Pλ}, where Pλ is a prime m-filter. As a corollary of this
result, we prove that every strong monadic MTL-algebra (BL- and MV-algebra)
is a subdirect product of linearly ordered strong monadic MTL-algebras (BL-
and MV-algebras, respectively).

2. Residuated lattices with universal quantifiers

We recall a definition of bounded integral commutative residuated lattices.
An algebraic structure (X;∧,∨,⊙,→, 0, 1) is called a bounded integral com-
mutative residuated lattice (simply called residuated lattice) if

(1) (X;∧,∨, 0, 1) is a bounded lattice;
(2) (X;⊙, 1) is a commutative monoid;
(3) For all x, y, z ∈ L, x⊙ y ≤ z if and only if x ≤ y → z.

For all x ∈ X, we define x′ by x → 0. The following result is easy to prove.

Proposition 2.1. For all x, y, z ∈ X, we have

(1) 0′ = 1, 1 = 0,
(2) (x ∨ y)′ = x′ ∧ y′,
(3) x ≤ y ⇐⇒ x → y = 1,
(4) x ≤ y =⇒ x⊙ z ≤ y ⊙ z, z ⊙ x ≤ z ⊙ y,
(5) x ≤ y =⇒ z → x ≤ z → y, y → z ≤ x → z,
(6) x → y ≤ (y → z) → (x → z),
(7) x → y ≤ (z → x) → (z → y).

Some well-known algebras, MTL-algebras, BL-algebras, MV-algebras, Heyt-
ing algebras and so on, are considered as algebraic semantics for so-called fuzzy
logics, monoidal t-norm logic, Basic logic, many valued logic, intuitionistic logic
and so on, respectively.

Any residuated lattice satisfying the divisibility condition

(div) x⊙ (x → y) = x ∧ y

is called an Rℓ-monoid ([5]). For example, an MV-algebra is a residuated lattice
with satisfying the conditions
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(div) : x⊙ (x → y) = x ∧ y,
(dn) : x′′ = x,
(p-lin) : (x → y) ∨ (y → x) = 1.

Moreover, those algebras are axiomatic extensions of residuated lattices as fol-
lows:

MTL = RL + {p − lin}
BL = RL + {div} + {p − lin}

= MTL + {div}
MV = BL + {dn}

A map ∀ : X → X is called a universal quantifier if it satisfies the conditions:

(m1) ∀x ≤ x,
(m2) ∀(x ∧ y) = ∀x ∧ ∀y,
(m3) ∀((∀x)′) = (∀x)′,
(m4) ∀(∀x⊙ ∀y) = ∀x⊙ ∀y,
(m5) ∀(x⊙ x) = ∀x⊙ ∀x,
(m6) ∀(x⊕ x) = ∀x⊕ ∀x, where x⊕ y = (x′ ⊙ y′)′.

Let ∀ be a universal quantifier on a residuated lattice X. Then the algebra
(X;∧,∨,⊙,→, 0, 1, ∀), or briefly (X, ∀), is called a residuated lattice with a
universal quantifier. We note that (X, ∀) is called a monadic Rℓ-monoid in [5]
in the case of X being a Rℓ-monoid. Therefore, our notion of residuated lattices
with universal quantifiers is a generalization of monadic residuated lattices. We
also note that the following result can be proved without using (div).

Proposition 2.2. ([5]) For any residuated lattice with a universal quantifier
(X, ∀), we have,

[(1)]
(1) ∀0 = 0, ∀1 = 1,
(2) ∀∀x = ∀x,
(3) x ≤ y =⇒ ∀x ≤ ∀y,
(4) ∀(∀x⊕ ∀y) = ∀x⊕ ∀y,
(5) ∀x⊙ ∀y ≤ ∀(x⊙ y), ∀x⊕ ∀y ≤ ∀(x⊕ y),
(6) ∀(x → y) ≤ ∀x → ∀y,
(7) ∀x′ ≤ (∀x)′,
(8) x⊙ y ≤ z =⇒ ∀x⊙ ∀y ≤ ∀z,
(9) ∀(x′ ⊕ ∀y) ≤ (∀x)′ ⊕ ∀y.

Proof. We only show the last case which was proved in [5] under the assumption
of normality:(x ⊙ y)′′ = x′′ ⊙ y′′ and Rℓ-monoid. We here provide a proof
without using such assumptions. Since ∀(x′′ ⊙ (∀y)′)′ ⊙ (∀x)′′ ⊙ (∀y)′ ≤ (x′′ ⊙
(∀y)′)′ ⊙ x′′ ⊙ (∀y)′ = (x′′ → (∀y)′′) ⊙ x′′ ⊙ (∀y)′ ≤ (∀y)′′ ⊙ (∀y)′ = 0, we
have ∀(x′′ ⊙ (∀y)′)′ ⊙ (∀x)′′ ⊙ (∀y)′ = 0 and this means that ∀(x′ ⊕ ∀y) =
∀(x′′ ⊙ (∀y)′)′ ≤ ((∀x)′′ ⊙ (∀y)′)′ = (∀x)′ ⊕ ∀y. □
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Let (X,∀) be a residuated lattice with a universal quantifier. We put

∀X = {∀x ∈ X |x ∈ X}.

It follows from the result ∀∀x = ∀x above that ∀X is identical with the set
{x ∈ X | ∀x = x}.

Lemma 2.3. The set ∀X is closed under the operations ∧,∨,⊙, ∀,′ , 0 and 1.
Thus, ∀X is a subalgebra of the reduct (X;∧,∨,⊙, ∀,′ , 0, 1) of the residuated
lattice with a universal quantifier (X,∀).

Proof. We only show the case of ∀(x ∨ y) = x ∨ y for x, y ∈ ∀X. Suppose that
x, y ∈ ∀X. Since ∀x = x and ∀y = y, we have ∀(x ∨ y) ≤ x ∨ y = ∀x ∨ ∀y ≤
∀(x ∨ y) and thus ∀(x ∨ y) = x ∨ y. □

Proposition 2.4. For all elements x, y ∈ ∀X, ∀(x → y) is a greatest element
w in ∀X such that x⊙ w ≤ y.

Proof. Suppose that x, y ∈ ∀X. It is obvious that x⊙∀(x → y) = ∀x⊙∀(x →
y) ≤ ∀y = y. For all w ∈ ∀X such that x ⊙ w ≤ y, since w ≤ x → y, we
have w = ∀w ≤ ∀(x → y). This means that ∀(x → y) is the greatest element
w ∈ ∀X such that x⊙ w ≤ y. □

We note that (∀X;∧,∨,⊙,→∀, 0, 1) is a residuated lattice, where →∀ is
defined by x →∀ y = ∀(x → y) for all x, y ∈ ∀X.

According to [5], we define an m-relatively complete substructure. Let
(X, ∀) be a residuated lattice and further X0 be a subalgebra of the reduct
(X;∧,∨,⊙,′ , 0, 1), which is moreover a residuated lattice. We call X0 a rel-
atively complete substructure of X, if for any a ∈ X there exists a greatest
element of the set {x ∈ X0 |x ≤ a}. Further, X0 is called an m-relatively
complete substructure of X if X0 is a relatively complete substructure and the
following conditions are satisfied:

(MRL1) For any a ∈ X and x ∈ X0 such that x ≤ a⊙ a there
is v ∈ X0 such that v ≤ a and x ≤ v ⊙ v.
(MRL2) For any a ∈ X and x ∈ X0 such that x ≤ a⊕ a there
is v ∈ X0 such that v ≤ a and x ≤ v ⊕ v.

It is easy to prove the next result.

Theorem 2.5. If (X,∀) is a residuated lattice with a universal quantifier, then
∀X is an m-relatively complete substructure of X.

Conversely, we have the following result.

Theorem 2.6. Let X be a residuated lattice. If there exists an m-relatively
complete substructure X0, then the algebra (X,∀) is a residuated lattice with a
universal quantifier, where ∀ operator is defined by ∀a = max{x ∈ X0 |x ≤ a}.
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Proof. Suppose that X0 is an m-relatively complete substructure of a residu-
ated lattice X. Since X0 is also a relatively complete substructure, we note
that there is a greatest element of the set {x ∈ X0 |x ≤ a} for all a ∈ X. We
denote such an element by ∀a, that is,

∀a = max{x ∈ X0 |x ≤ a}.

We show that ∀-operator is a monadic operator. We only show the cases of
(m2), (m5) and (m6).

Case of (m2): ∀(a ∧ b) = ∀a ∧ ∀b for a, b ∈ X. For all u ∈ X0, if u ≤ a ∧ b,
since u ≤ a and u ≤ b, then u ≤ ∀a and u ≤ ∀b and thus u ≤ ∀a ∧ ∀b. This
means that ∀(a ∧ b) ≤ ∀a ∧ ∀b. Conversely, if u ≤ ∀a ∧ ∀b, since u ≤ ∀a and
u ≤ ∀b, then we have u ≤ a ∧ b and hence u ≤ ∀(a ∧ b). Since X0 is closed
under ∧ and ∀a ∧ ∀b ∈ X0, it follows that ∀(a ∧ b) ≤ ∀a ∧ ∀b.

For the case of (m5):∀(a ⊙ a) = ∀a ⊙ ∀a, if we take any u ∈ X0 such that
u ≤ ∀a⊙ ∀a, since u ≤ a⊙ a and ∀a⊙ ∀a ∈ X0, we have ∀a⊙ ∀a ≤ ∀(a⊙ a).
Conversely, suppose that x ≤ a ⊙ a for x ∈ X0. It follows from (MRL1) that
there exists v ∈ X0 such that v ≤ a and x ≤ v ⊙ v. Since v = ∀v ≤ ∀a and
x ≤ ∀a⊙∀a. This means that ∀(a⊙a) ≤ ∀a⊙∀a. Therefore ∀(a⊙a) = ∀a⊙∀a.

For the last case (m6): ∀(a ⊕ a) = ∀a ⊕ ∀a. For any u ∈ X0 such that
u ≤ ∀a ⊕ ∀a, since ∀a ≤ a, we have u ≤ a ⊕ a and hence u ≤ ∀(a ⊕ a) by
definition of ∀. We note that ∀a ∈ X0 and X0 is closed under ⊙ and ′. This
implies ∀a ⊕ ∀a = ((∀a)′ ⊙ (∀a)′)′ ∈ X0 and hence that ∀a ⊕ ∀a ≤ ∀a ⊕ a).
Conversely, if u ≤ a ⊕ a for u ∈ X0 then there exists v ∈ X0 such that v ≤ a
and u ≤ v ⊕ v by (MRL2). Since v = ∀v ≤ ∀a, we have u ≤ v ⊕ v ≤ ∀a ⊕ ∀a
and hence ∀(a⊕ a) ≤ ∀a⊕ ∀a by definition of ∀. □

We note that the result above is stronger than that of Theorem 4 and 5 in [5],
where the same result was proved under the conditions (div) of Rℓ-monoid and∧

i∈I

xi → y =
∨
i∈I

(xi → y).

Our proof does not require such assumptions to get the result. Thus, we have
a characterization theorem of residuated lattices with universal quantifiers.

Theorem 2.7. For a residuated lattice X, there exists a universal quantifier ∀
satisfying (m1)-(m6) if and only if there is an m-relatively complete substruc-
ture of X.

3. Filter and m-filter

Let (X, ∀) be a residuated lattice with a universal quantifier. A non-empty
subset F of X is called a filter of X if it satisfies the conditions

[(F1)]

If x, y ∈ F then x⊙ y ∈ F ;
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(1)(2) If x ∈ F and x ≤ y then y ∈ F .

Moreover a filter F is called an m-filter of X if it satisfies the condition that
x ∈ F implies ∀x ∈ F .

For a non-empty subset S ⊆ X, By [S) we mean the smallest filter containing
S. Similarly we denote [S)m the smallest m-filter containing S. We also denote
the class of all filters of X by Fil(X) and the class of all m-filters by Film(X).
It is easy to show that Fil(X) and Film(X) are both distributive lattices with
respect to the set-inclusion order.

It is easy to show that

Proposition 3.1. For a non-empty subset S of a monadic residuated lattice
(X, ∀),

(1) [S) = {x ∈ X | there are elements s1, · · · , sn ∈ S such that s1 ⊙ · · · ⊙
sn ≤ x}

(2) [S)m = [∀S)

Proof. We only show that [∀S) is an m-filter in the case (2). Let x ∈ [∀S).
There are elements si ∈ S such that ∀s1 ⊙ · · · ⊙ ∀sn ≤ x. Since ∀(∀s1 ⊙ · · · ⊙
∀sn) ≤ ∀x and ∀(∀s1⊙· · ·⊙∀sn) = ∀s1⊙· · ·⊙∀sn, we have ∀s1⊙· · ·⊙∀sn ≤ ∀x.
This means that ∀x ∈ [∀S) and thus [∀S) is the m-filter. □

Let F be an m-filter of X. For all x, y ∈ X, we define x ≡F y by x → y, y →
x ∈ F . It is clear that the relation ≡F is a congruence. Since the class of
all monadic residuated lattices forms a variety, a quotient algebra X/F by the
congruence ≡F induced from the m-filter is also a monadic residuated lattice.
Moreover, it is easy to prove that Film(X) is isomorphic to the set Con(X) of
all congruences, that is,,

Film(X) ∼= Con(X).

Lemma 3.2. Let F be an m-filter of X and a ∈ X. Then the smallest m-filter
[F ∪ {a})m containing F ∪ {a} is

{x ∈ X | there exist n ≥ 1 and u ∈ F such that u⊙ (∀a)n ≤ x} = F ∨ [∀a).

Proof. The result can be proved easily from the fact [F ∪{a})m = [F ∪{∀a}) =
F ∨ [∀a). □

A residuated lattice with a universal quantifier (X, ∀) is called strong ( [5])
if ∀(x ∨ y) = ∀x ∨ ∀y for x, y ∈ X. An m-filter P is called prime if x ∨ y ∈ P
implies x ∈ P or y ∈ P for all x, y ∈ X. It is easy to prove that a filter P is
prime if and only if P = F ∩ G implies P = F or P = G for any filter F and
G of X.

Lemma 3.3. Let (X, ∀) be a strong residuated lattice with a universal quantifier
and a ∈ X such that a ̸= 1. Then there is a prime m-filter P such that a /∈ P .
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Proof. Let Γ = {F | a /∈ F, F is an m − filter}. It follows from Zorn’s lemma
that there exists a maximal element P in Γ. We only show that P is prime.
Suppose that P is not prime. There are x, y ∈ X such that x ∨ y ∈ P but
x, y /∈ P . Since P is maximal, we have a ∈ [P ∪ {x})m = P ∨ [∀x) and
a ∈ [P ∪ {y})m = P ∨ [∀y). It follows from strong property that

a ∈ (P ∨ [∀x)) ∧ (P ∨ [∀y))
= P ∨ ([∀x) ∧ [∀y))
= P ∨ [∀x ∨ ∀y)
= P ∨ [∀(x ∨ y)) = P.

But this is a contradiction. Hence P is prime. □
If we take the class {Pλ}λ∈Λ of all prime m-filters of X, then it follows from

the result above that
∩

λ∈Λ Pλ = {1}. It follows from the above

Theorem 3.4. Any strong residuated lattice with a universal quantifier is a
subdirect product of a strong residuated lattice with a universal quantifier X/Pλ,
where {Pλ}λ∈Λ is the set of all prime m-filters of X.

If X satisfies the condition (p-lin): (x → y)∨ (y → x) = 1, then it is easy to
show that the quotient algebra X/P by a prime m-filter P is linearly ordered
monadic residuated lattice. It follows that

Corollary 3.5.
(1) Every strong monadic MTL-algebra is a subdirect product
of linearly ordered strong monadic MTL-algebras.
(2) Every strong monadic BL-algebra is a subdirect product of
linearly ordered strong monadic BL-algebras.
(3) Every strong monadic MV-algebra is a subdirect product of
linearly ordered strong monadic MV-algebras.
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