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ABSTRACT. We consider properties of residuated lattices with universal
quantifier and show that, for a residuated lattice X, (X, V) is a residuated
lattice with a quantifier if and only if there is an m-relatively complete
substructure of X. We also show that, for a strong residuated lattice X,
N{Px | Px is an m—filter} = {1} and hence that any strong residuated
lattice is a subdirect product of a strong residuated lattice with a universal
quantifier {X/Py}, where Py is a prime m-filter. As a corollary of this
result, we prove that every strong monadic MTL-algebra (BL- and MV-
algebra) is a subdirect product of linearly ordered strong monadic MTL-
algebras (BL- and MV-algebras, respectively).
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1. Introduction

The notion of monadic MV-algebras (MMV-algebras) was firstly introduced
and investigated their properties in [4] as an algebraic semantics for the Lukasie-
wicz infinite valued logic. Since then, many papers about similar algebraic
structures deeply considered their properties for various logics, such as monadic
intuitionistic logic ([1]), monadic many valued logic ([2]), monadic basic logic
([3]) and so on. On the other hand these algebraic semantics have common
algebras - residuated lattices - as support algebras. In [5], several important
results were proved in general forms, in particular a characterization theorem
of monadic R¢-monoids (Theorem 4 and 5): For an R¢-monoids M, there exists
a universal quantifier V such that (M,V) is a monadic R¢-monoid if and only
if there exists an m-relatively complete substructure My and M satisfies the

condition
(%) /\xz — Y= \/(l’i = y).
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residuated lattices with universal quantifiers 924

In this paper we further generalize the result above to the case of residuated
lattices and give a simpler characterization theorem of monadic residuated
lattices, which says the condition (*) above is redundant even in the case of
residuated lattices: For a residuated lattice X, (X,V) is a residuated lattice
with a universal quantifier if and only if there is an m-relatively complete
substructure of X.

We also show that, for a strong residuated lattice X,

ﬂ{PA | Py is an m—filter} = {1}

and hence that any strong residuated lattice is a subdirect product of strong
residuated lattices { X/ Py}, where Py is a prime m-filter. As a corollary of this
result, we prove that every strong monadic MTL-algebra (BL- and MV-algebra)
is a subdirect product of linearly ordered strong monadic MTL-algebras (BL-
and MV-algebras, respectively).

2. Residuated lattices with universal quantifiers

We recall a definition of bounded integral commutative residuated lattices.
An algebraic structure (X;A,V,®,—,0,1) is called a bounded integral com-
mutative residuated lattice (simply called residuated lattice) if

(1) (X;A,V,0,1) is a bounded lattice;
(2) (X;0,1) is a commutative monoid;
(3) For all z,y,z € L, x @y < z if and only if x <y — 2.

For all z € X, we define ' by z — 0. The following result is easy to prove.

Proposition 2.1. For all x,y,z € X, we have
() 0'=1,1=0,
(2) (zVvy) =2 Ny,
B)az<y << z—y=1,
4 2<y = 202<y0z 20x<20y,
B)r<y = z—or<z-y y—z<z—2
6) z—=>y<(y—2)—(x—2),
(M zx—=y<(z—2)—=(z—y).

Some well-known algebras, MTL-algebras, BL-algebras, MV-algebras, Heyt-
ing algebras and so on, are considered as algebraic semantics for so-called fuzzy
logics, monoidal t-norm logic, Basic logic, many valued logic, intuitionistic logic
and so on, respectively.

Any residuated lattice satisfying the divisibility condition

(div) z0(x—y) =z Ay

is called an R¢-monoid ([5]). For example, an MV-algebra is a residuated lattice
with satisfying the conditions
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(div) : 2@ (x > y) =z Ay,

(dn) : 2" ==,

(p-lin) : (x—=y)V(y—2z)=1
Moreover, those algebras are axiomatic extensions of residuated lattices as fol-
lows:

MTL = RL + {p — lin}

BL = RL + {div} + {p — lin}
MTL + {div}
MV = BL + {dn}

AmapV: X — X is called a universal quantifier if it satisfies the conditions:

(m1) Va < z,

(m2) Y(z Ay) = Vo AVy,
(m3) V((Va)) = (Vz)',

(md) Y(Vz O Vy) = Vo © Yy,
(mb) Y(x © ) =V @V,

(m6) V(x ¢ x) =V d Ve, where z Gy = (' ©y')".
Let V be a universal quantifier on a residuated lattice X. Then the algebra
(X5A,V,0,—,0,1,V), or briefly (X,V), is called a residuated lattice with a
universal quantifier. We note that (X, V) is called a monadic R{-monoid in [5]
in the case of X being a R¢-monoid. Therefore, our notion of residuated lattices
with universal quantifiers is a generalization of monadic residuated lattices. We
also note that the following result can be proved without using (div).

Proposition 2.2. ([5]) For any residuated lattice with a universal quantifier
(X,V), we have,

(1)

(1) Y0 =0,V1 = 1,

(2) Wax =V,

(3) z<y=Va <Vy,

(4) Y(Vz @ Vy) = Va d Yy,

(b) VzoVy <V(zoy), Ve dVy <V(zay),
(6) V(z —y) < Vo — vy,

(7) vz’ < (Va),

8) 1Oy <z=VroVy<Vz

(9) V(' & Vy) < (Vz)' & Vy.

Proof. We only show the last case which was proved in [5] under the assumption
of normality:(z ® y)” = z” © y” and Rf-monoid. We here provide a proof
without using such assumptions. Since V(2" © (Vy)') © (Vz)”" © (Vy) < (2" ©
(Vy)) © 2" o (V) = (@ — (V)") o z" o (V) < (V)" o (V) = 0, we
have V(z" @ (Vy)') ® (Vz)” ® (Vy)’ = 0 and this means that V(z' & Vy) =
V(" o (vy)) < ((vo)" © (Vy)')' = (Vo) & Vy. O
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Let (X,V) be a residuated lattice with a universal quantifier. We put
VX ={Vze X|ze X}

It follows from the result YWa = Vx above that VX is identical with the set
{z € X |Va =zx}.

Lemma 2.3. The set VX is closed under the operations A,V,®,V,”,0 and 1.
Thus, ¥X is a subalgebra of the reduct (X;A,V,©,V,,0,1) of the residuated
lattice with a universal quantifier (X,V).

Proof. We only show the case of V(z Vy) =z V y for z,y € VX. Suppose that
x,y € VX. Since Vo = x and Vy = y, we have V(z Vy) <z Vy =Va VVy <
V(z Vy) and thus V(z Vy) =z Vy. O

Proposition 2.4. For all elements x,y € VX, V(z — y) is a greatest element
w n VX such that x ©®w < y.

Proof. Suppose that x,y € VX. It is obvious that x ©V(z — y) =Vz O V(x —
y) < Vy =y. For all w € VX such that x ® w < y, since w < & — y, we
have w = Yw < V(z — y). This means that V(z — y) is the greatest element
w € VX such that x ©w < y. O

We note that (VX;A,V,®,—v,0,1) is a residuated lattice, where —v is
defined by x —v y = V(z — y) for all z,y € VX.

According to [5], we define an m-relatively complete substructure. Let
(X,V) be a residuated lattice and further Xy be a subalgebra of the reduct
(X;A,V,0,,0,1), which is moreover a residuated lattice. We call X, a rel-
atively complete substructure of X, if for any a € X there exists a greatest
element of the set {x € Xo|x < a}. Further, Xy is called an m-relatively
complete substructure of X if Xy is a relatively complete substructure and the
following conditions are satisfied:

(MRL1) For any a € X and « € X such that z < a ® a there
isv € Xgsuch that v < g and z <v® .
(MRL2) For any a € X and x € X, such that z < a @ a there
is v € X such that v <a and z < v P .

It is easy to prove the next result.

Theorem 2.5. If (X,V) is a residuated lattice with a universal quantifier, then
VX is an m-relatively complete substructure of X.

Conversely, we have the following result.

Theorem 2.6. Let X be a residuated lattice. If there exists an m-relatively
complete substructure X, then the algebra (X,V) is a residuated lattice with a
universal quantifier, where ¥V operator is defined by Va = max{z € Xy |z < a}.



927 Kondo

Proof. Suppose that X is an m-relatively complete substructure of a residu-
ated lattice X. Since X is also a relatively complete substructure, we note
that there is a greatest element of the set {x € Xo|x < a} for all a € X. We
denote such an element by Va, that is,

Va = max{x € Xo |z < a}.

We show that V-operator is a monadic operator. We only show the cases of
(m2), (mb) and (m6).

Case of (m2): Y(a Ab) =Va AVD for a,b € X. For all u € Xy, if u < aAb,
since © < a and u < b, then u < Va and v < Vb and thus u < Va AVb. This
means that V(a A b) < Va AVb. Conversely, if u < Va A Vb, since u < Va and
u < Vb, then we have u < a A b and hence u < V(a A b). Since Xy is closed
under A and Va A Vb € Xy, it follows that V(a A b) < Va A Vb.

For the case of (m5):V(a ® a) = Va © Va, if we take any u € Xy such that
u < Va ® Va, since u < a® a and Ya ® Va € Xy, we have Va © Va < V(a ® a).
Conversely, suppose that © < a ® a for © € X;. It follows from (MRL1) that
there exists v € Xg such that v < a and x < v ®v. Since v = Vv < Va and
x < Va®Va. This means that V(a®a) < Ya®Va. Therefore V(a®a) = Va©®Va.

For the last case (m6): V(a ® a) = Va & Va. For any u € Xy such that
u < Va @ Va, since Va < a, we have u < a ® a and hence u < V(a @ a) by
definition of V. We note that Va € Xy and X is closed under ® and ’. This
implies Ya @ Va = ((Va)' ® (Va)') € Xy and hence that Va @ Va < Va @ a).
Conversely, if u < a @ a for u € X then there exists v € Xy such that v < a
and u < v @ v by (MRL2). Since v = Vo < Va, we have u < v @ v < Va ® Va
and hence V(a @ a) < Va @ Va by definition of V. O

We note that the result above is stronger than that of Theorem 4 and 5 in [5],
where the same result was proved under the conditions (div) of R¢-monoid and

Nzi—=y=\ (v
i€l icl
Our proof does not require such assumptions to get the result. Thus, we have

a characterization theorem of residuated lattices with universal quantifiers.

Theorem 2.7. For a residuated lattice X, there exists a universal quantifier ¥V
satisfying (m1)-(m6) if and only if there is an m-relatively complete substruc-
ture of X.

3. Filter and m-filter

Let (X,V) be a residuated lattice with a universal quantifier. A non-empty
subset F' of X is called a filter of X if it satisfies the conditions

[(F1)]
Ifz,y € Fthen x Oy € F}
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(2) fx € Fand z <y theny € F.

Moreover a filter F' is called an m-filter of X if it satisfies the condition that
x € F implies Vz € F.

For a non-empty subset S C X, By [S) we mean the smallest filter containing
S. Similarly we denote [S),, the smallest m-filter containing S. We also denote
the class of all filters of X by Fil(X) and the class of all m-filters by Fil,,(X).
It is easy to show that Fil(X) and F'il,,(X) are both distributive lattices with
respect to the set-inclusion order.

It is easy to show that

Proposition 3.1. For a non-empty subset S of a monadic residuated lattice
(X,v),
(1) [S) = {z € X |there are elements s1,---,s, € S such that s ©--- ©
Sn < x}
(2) [S)m = [VS)

Proof. We only show that [VS) is an m-filter in the case (2). Let z € [VS).
There are elements s; € S such that Vs; © --- ©® Vs, < z. Since V(Vs; @ -+ ®
Vsn) <Vzand V(Vs1 0 - -OVs,) = Vs10- - -OVs,, we have Vs1 O - -OVs,, < V.
This means that Vz € [VS) and thus [VS) is the m-filter. O

Let F' be an m-filter of X. For all x,y € X, we define x =p y by x — y,y —
x € F. It is clear that the relation =g is a congruence. Since the class of
all monadic residuated lattices forms a variety, a quotient algebra X/F by the
congruence = induced from the m-filter is also a monadic residuated lattice.
Moreover, it is easy to prove that F'il,,(X) is isomorphic to the set Con(X) of
all congruences, that is,,

Fil,(X) =2 Con(X).
Lemma 3.2. Let F' be an m-filter of X and a € X. Then the smallest m-filter
[FU{a})m containing F U {a} is
{z € X |there exist n > 1 and u € F such that u ® (Va)" <z} = FV [Va).

Proof. The result can be proved easily from the fact [FU{a}),, = [FU{Va}) =
F V |Va). O

A residuated lattice with a universal quantifier (X,V) is called strong ( [5])
if V(z Vy) =VeVvVy for z,y € X. An m-filter P is called primeif xt Vy € P
implies z € P or y € P for all z,y € X. It is easy to prove that a filter P is
prime if and only if P = F'N G implies P = F or P = G for any filter F' and
G of X.

Lemma 3.3. Let (X,V) be a strong residuated lattice with a universal quantifier
and a € X such that a # 1. Then there is a prime m-filter P such that a ¢ P.
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Proof. Let I' = {F'|a ¢ F,F is an m — filter}. It follows from Zorn’s lemma
that there exists a maximal element P in I". We only show that P is prime.
Suppose that P is not prime. There are z,y € X such that x Vy € P but
x,y ¢ P. Since P is maximal, we have a € [P U {z}),, = PV [Vx) and
a € [PU{y})m = PV [Vy). It follows from strong property that
a € (PV[Vz))A(PV[Vy))

— P ([¥a) A )

= PV [Vz VVy)

=PV [V(zVy)) =P
But this is a contradiction. Hence P is prime. |

If we take the class {P\}xea of all prime m-filters of X, then it follows from
the result above that [),., Px = {1}. It follows from the above

Theorem 3.4. Any strong residuated lattice with a universal quantifier is a
subdirect product of a strong residuated lattice with a universal quantifier X/ Py,
where {Px}xea is the set of all prime m-filters of X.

If X satisfies the condition (p-lin): (x — y) V (y — x) = 1, then it is easy to
show that the quotient algebra X/P by a prime m-filter P is linearly ordered
monadic residuated lattice. It follows that

Corollary 3.5.
(1) Every strong monadic MTL-algebra is a subdirect product
of linearly ordered strong monadic MTL-algebras.
(2) Every strong monadic BL-algebra is a subdirect product of
linearly ordered strong monadic BL-algebras.
(3) Every strong monadic MV-algebra is a subdirect product of
linearly ordered strong monadic MV-algebras.
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