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Abstract. Let X =

(
x1 . . . xn−1 xn

x2 . . . xn xn+1

)
be the Hankel matrix

of size 2× n and let G be a closed graph on the vertex set [n]. We study

the binomial ideal IG ⊂ K[x1, . . . , xn+1] which is generated by all the
2-minors of X which correspond to the edges of G. We show that IG is
Cohen-Macaulay. We find the minimal primes of IG and show that IG is
a set theoretical complete intersection. Moreover, a sharp upper bound

for the regularity of IG is given.
Keywords: Rational normal scroll, closed graph, set-theoretic complete
intersection, Cohen-Macaulay.
MSC(2010): Primary: 13H10; Secondary: 13P10.

Introduction

Let K be a field and S = K[x1, . . . , xn+1] the polynomial ring in n+1 vari-

ables over the fieldK. The 2-minors of the matrixX =

(
x1 . . . xn−1 xn

x2 . . . xn xn+1

)
generate the ideal IX of the rational normal curve X ⊂ Pn. It is well-known
that S/IX is Cohen- Macaulay and has an S–linear resolution. We refer the
reader to [5], [4], [1] for properties of the ideal of the rational normal scroll.

On the other hand, in the last few years, the so-called binomial edge ideals
have been intensively studied. They are defined as follows. Given a simple
graphG on the vertex set [n] with edge set E(G), one considers the ideal JG gen-

erated by all the minors fij = xiyj−xjyi of the matrix

(
x1 . . . xn−1 xn

y1 . . . yn−1 yn

)
in the polynomial ring R = K[x1, . . . , xn, y1, . . . , yn]. Binomial edge ideals were
defined in [8] and [9].
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Binomial edge ideals and rational normal scrolls 972

In analogy to this construction, in this paper we consider the following ideals
in S. For a simple graph G on the vertex set [n], let IG be the ideal generated
by the 2-minors gij = xixj+1 − xjxi+1 of X with i < j and {i, j} ∈ E(G). We
call IG the binomial edge ideal of X.

It is clear already from the beginning that unlike the case of classical bino-
mial edge ideals, the ideal IG strongly depends on the labeling of the graph G.
For example, if G is the graph displayed in Figure 2, we get dim(S/IG) = 3
for the labeling given in Figure 2 (a) and dim(S/IG) = 4 for the labeling of G
given in Figure 2 (b).

However, for some classes of graphs G which admit a natural labeling, we
may associate with G a unique ideal IG and study its properties. This is the
case, for instance, for closed graphs. We recall from [8] that G is closed if it
has a labeling with respect to which is closed. A graph G is called closed with
respect to its given labeling if for all edges {i, j} and {i, k} with j > i < k or
j < i > k, one has {j, k} ∈ E(G). A closed graph G is chordal and, therefore,
by Dirac’s Theorem, its clique complex ∆(G) is a quasi-forest. We recall that
the clique complex ∆(G) of G is a simplicial complex whose facets are the
maximal cliques of G, that is, the maximal complete subgraphs of G. ∆(G)
is a quasi-forest if the facets F1, . . . , Fr of ∆(G) have a leaf order, that is, Fi

is a leaf of the simplicial complex generated by F1, . . . , Fi for all i > 1. For a
simplicial complex ∆, a facet F is called a leaf if there is another facet G of ∆
such that for any facet H ̸= F, one has H ∩F ⊆ G∩F. It was shown in [6] that
if G is closed, then we may label the vertices of G such that the facets of ∆(G),
say F1, . . . , Fr, are intervals, Fi = [ai, bi] ⊂ [n] and if we order F1, . . . , Fr such
that a1 < a2 < · · · < ar, then this is a leaf order.

The paper is structured as follows. In Section 1, we show that the generators
of IG form a Gröbner basis with respect to the reverse lexicographic order if and
only if G is closed with the given labeling. As a consequence of this theorem, we
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derive that for a closed graph G, the ideal IG is Cohen-Macaulay of dimension
1 + c, where c is the number of connected components of G.

In Section 2, we study the properties of IG for a closed graph G. We compute
the minimal prime ideals of IG in Theorem 2.2. By using this theorem, we
characterize those connected closed graphs G for which IG is a radical ideal
(Proposition 2.3). In addition, we show in Corollary 2.4, that IG is a set-
theoretic complete intersection if G is connected and closed. In the last part of
Section 2, we a give sharp upper bound for the regularity of IG (Theorem 2.7)
and we show that IG has a linear resolution if and only if G is a complete
graph.

1. Gröbner bases

Let G be a graph on the vertex set [n] and IG ⊂ S = K[x1, . . . , xn] its
associated ideal. The main result of this section is the following.

thm 1.1. The generators of IG form the reduced Gröbner basis of IG with
respect to the reverse lexicographic order induced by x1 > · · · > xn > xn+1 if
and only if G is closed with respect to its given labeling.

Proof. Let us first assume that the generators form a Gröbner basis of IG.
This implies that for any pair of generators gij = xixj+1 − xjxi+1 and gkℓ =
xkxℓ+1 − xℓxk+1 of IG, the S–polynomial Srev(gij , gkℓ) reduces to zero. Now
let 1 ≤ i < j < k ≤ n such that {i, j}, {i, k} ∈ E(G). We have to show that
{j, k} is also an edge of G. We have

Srev(gij , gik) = xixj+1xk − xixjxk+1.

Since its initial monomial is xixj+1xk, gjk must be a generator of IG, thus
{j, k} is an edge of G. In a similar way we argue if n ≥ i > j > k ≥ 1.

For the converse, let us assume that G is closed. We show that the S–
polynomial Srev(gij , gkℓ) reduces to zero with respect to the generators of
IG for any two generators gij , gkℓ of IG. Note that inrev(gij) = xjxi+1 and
inrev(gkℓ) = xℓxk+1. If these two monomials have disjoint supports we know
that Srev(gij , gkℓ) reduces to zero with respect to gij , gkℓ. Assuming that, for
instance, i < k, we have to consider the following remaining cases.

Case 1. ℓ = j. Then one may check that Srev(gij , gkℓ) = xj+1gik which is
obviously a standard representation.

Case 2. j = k + 1. If ℓ = k + 1 we get Srev(gij , gkℓ) = xk+2gik. If ℓ >
k + 1, we obtain Srev(gij , gkℓ) = xigk+1,ℓ − xℓ+1gik which is again a standard
representation.

Therefore, in all cases, the S-polynomials Srev(gij , gkℓ) reduce to zero with
respect to the generators of IG. □

As in the case of classical binomial edge ideals associated with graphs, the
ideal IG where G is the line graph on n vertices has nice properties.
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Let G be a line graph on [n] with E(G) = {{i, i + 1} : 1 ≤ i ≤ n − 1}.
Then IG is minimally generated by {gi,i+1 = x2

i+1 − xixi+2 : 1 ≤ i ≤ n}
and inrev(IG) = (x2

2, x
2
3, . . . , x

2
n). As x

2
2, x

2
3, . . . , x

2
n is a regular sequence in S, it

follows that the generators of IG form a regular sequence as well. Consequently,
the Koszul complex of the generators of IG gives the minimal free resolution of
S/IG over S.

The following proposition shows that, for a closed graph G, the initial ideal
of IG with respect to the reverse lexicographic order has a simple structure.

Proposition 1.2. Let G be a closed graph on [n] with ∆(G) = ⟨F1, . . . , Fr⟩
where Fi = [ai, bi] for 1 ≤ i ≤ r, and 1 = a1 < · · · < ar < br = n. Then
inrev(IG) is a primary monomial ideal, hence it is Cohen-Macaulay.

Proof. We only need to observe that IF , where F = [a, b] is a clique, has the
initial ideal inrev(IF ) = (xa+1, . . . , xb)

2. Then, as inrev(IG) = inrev(IF1)+ · · ·+
inrev(IFr ), the conclusion follows. □

Corollary 1.3. Let G be a closed graph. Then IG is a Cohen-Macaulay ideal
of dim(S/IG) = 1 + c where c is the number of connected components of G.

Proof. IG is a Cohen-Macaulay ideal by [7, Corollary 3.3.5] and

dim(S/IG) = dim(S/ inrev(IG)) = 1 + c,

the last equality being obvious by the form of inrev(IG). □

2. Properties of the scroll binomial edge ideals of closed graphs

In this section we study several algebraic and homological properties of the
ideal IG where G is a closed graph on the vertex set [n].

2.1. Associated primes. We recall that IX denotes the binomial edge ideal
associated with the complete graph Kn. It is well known that IX is a prime
ideal.

Proposition 2.1. Let G be an arbitrary connected graph on the vertex set [n].
Then IX is a minimal prime of IG. If P is a minimal prime ideal of IG which
contains no variable, then P = IX .

Proof. Let x =
∏n+1

i=1 xi. We claim that IX is equal to the saturation of IG with
respect to x, that is, IX = IG : x∞. This will be enough to prove the statement
of our proposition. Indeed, if P is a minimal prime ideal of IG which does not
contain any variable, then P ⊃ IG : x∞ = IX ⊃ IG. Since IX is a prime ideal,
it follows that P = IX .

To prove our claim we first observe that IG ⊂ IX implies that IG : x∞ ⊂
IX : x∞ = IX . For the other inclusion, we show that any minimal generator
δij = xixj+1 − xjxi+1 belongs to IG : x∞. Let 1 ≤ i < j ≤ n. Since G is
connected, there exists a path in G from i to j. We prove that δij ∈ IG : x∞
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by induction on the length r of the path. If {i, j} ∈ E(G), there is nothing
to prove. Let r > 1 and let i, i1, . . . , ir−1, ir = j be a path from i to j. By
induction, δi,ir−1 ∈ IG : x∞. We also have δir−1j ∈ IG : x∞. Then xir−1+1δij =
xj+1δiir−1 + xi+1δir−1j ∈ IG : x∞, therefore, δij ∈ IG : x∞. □

Now we restrict our study to ideals associated with connected closed graphs.

thm 2.2. Let G ̸= Kn be a connected closed graph on the vertex set [n] and
IG its associated ideal. Then

Ass(S/IG) = Min(IG) = {IX , (x2, . . . , xn)}.

Proof. By Corollary 1.3 and Proposition 2.1, we only need to show that if P is a
minimal prime of IG which contains at least one variable, then P = (x2, . . . , xn).
Let P ∈ Min(IG) such that xi ∈ P for some 2 ≤ i ≤ n. Let i < n. Then, as
{i, i + 1} ∈ E(G), we get xi+1 ∈ P. Thus, (xi, . . . , xn) ⊂ P. If i = 2, we
get P ⊃ (x2, . . . , xn) ⊃ IG, thus we have P = (x2, . . . , xn). Let now i > 2.
Since {i − 2, i − 1} ∈ E(G), we get xi−1 ∈ P. Thus, for i > 2, we get as well
P = (x2, . . . , xn).

Let us now assume that P ∈ Min(IG) and x1 ∈ P. Since {i, i + 1} ∈ E(G)
for all i, we get (x1, . . . , xn) ⊂ P, which is impossible since P is minimal. A
similar argument shows that P cannot contain xn+1. □

As a consequence of the above theorem, we may characterize the radical
ideals IG.

Proposition 2.3. Let G be a connected closed graph on the vertex set [n].
Then IG is a radical ideal if and only if G = Kn or ∆(G) = ⟨[1, n− 1], [2, n]⟩.

Proof. The claim is evident if G = Kn. Let now G ̸= Kn. Then, by the above
theorem, we have

√
IG = IX ∩ (x2, . . . , xn). We claim that IX ∩ (x2, . . . , xn) =

IH where H is the closed graph on [n] whose clique complex is generated by
the intervals [1, n−1] and [2, n]. We obviously have IH ⊂ IX ∩(x2, . . . , xn). Let
f ∈ IX ∩ (x2, . . . , xn). Then f =

∑
1≤i<j≤n hijδij where δij are the generators

of IX and hij are polynomials in S. We have to show that h1nδ1n ∈ IH because
δij ∈ IH for all i < j with (i, j) ̸= (1, n). Since δij ∈ (x2, . . . xn) for all i < j
such that (i, j) ̸= (1, n), it follows that h1nδ1n ∈ (x2, . . . , xn) which implies that
x1xn+1h1n ∈ (x2, . . . , xn). But x1xn+1 is regular on S/(x2, . . . , xn). Thus h1n ∈
(x2, . . . , xn). We show that for all 2 ≤ j ≤ n, we have xjδ1n ∈ IH which will end
our proof. For j = 2 we have xjδ1n = x2(x1xn+1−x2xn) = x1δ2n+xnδ12 ∈ IH .
For j ≥ 3, we obtain xjδ1n = xn+1δ1,j−1 + x2δj−1,n ∈ IH . □

Theorem 2.2 has the following nice consequence.

Corollary 2.4. Let G be a connected closed graph. Then IG is a set-theoretic
complete intersection.
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Proof. The statement is known for G = Kn [1]. Let now G ̸= Kn and let Pn be
the line graph on n vertices. Obviously, the generators of IPn are generators for

IG as well. By Theorem 2.2, we have
√
IG =

√
IPn . The ideal IPn is generated

by n − 1 = height(IG) polynomials. Therefore, IG is a set-theoretic complete
intersection. □

2.2. Regularity. Let G be a closed graph on the vertex set [n] and IG ⊂ S its
associated ideal. The first question we may ask is under which conditions on
the graph G the ideal IG has a linear resolution. The next proposition answers
this question. We first need the following known statement.

Lemma 2.5. [3, Exercise 4.1.17 (c)] Let R = K[x1, . . . , xn]/I be a homoge-
neous Cohen-Macaulay ring. The ring R has an m-linear resolution if and only
if Ij = 0 for j < m and dimK Im =

(
m+g−1

m

)
where g = height I.

Proposition 2.6. Let G be a closed graph on [n]. Then the following are
equivalent:

(a) G is a complete graph;
(b) IG has a linear resolution;
(c) All powers of IG have a linear resolution.

Proof. (a)⇒(b) is well known. Let us prove (b)⇒(a). Let G be closed with c
connected components, say G1, . . . , Gc. Since IG has a 2–linear resolution, by
Lemma 2.5 and Corollary 1.3, it follows that dimK(IG)2 =

(
n−c+1

2

)
. Hence, we

get (
n− c+ 1

2

)
=

c∑
i=1

dimK(IGi)2 ≤
c∑

i=1

(
ni

2

)
where ni = |V (Gi)| for 1 ≤ i ≤ c. The above inequality is equivalent to

(n− c)(n− c+ 1) ≤
c∑

i=1

ni(ni − 1).

Set mi = ni − 1 for 1 ≤ i ≤ c. Then we get the equivalent inequality

(

c∑
i=1

mi)(

c∑
i=1

mi + 1) ≤
c∑

i=1

mi(mi + 1)

or

(
c∑

i=1

mi)
2 ≤

c∑
i=1

m2
i .

This inequality holds if and only if c = 1, thus G must be connected. Moreover,
in this case, since IG has a linear resolution, we must have dimK(IG)2 =

(
n
2

)
=

dimK(IKn)2, hence G = Kn.
The implication (c) ⇒ (b) is trivial, and (a) ⇒ (c) is known; see, for example,

[4, Theorem 1] and [2, Corollary 3.9]. □
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In the next theorem we give an upper bound for the regularity of IG when
G is a closed graph.

thm 2.7. Let G be a closed graph on the vertex set [n]. Then reg(S/IG) ≤ r
where r is the number of maximal cliques of G.

Proof. Let HS/IG(t) be the Hilbert series of S/IG. Then, since dim(S/IG) =
1 + c, where c is the number of connected components of G, we have

HS/IG(t) =
P (t)

(1− t)1+c

where P (t) ∈ Z[t] with P (1) ̸= 0. Since IG is Cohen-Macaulay, we have
reg(S/IG) = deg(P ).

On the other hand, we have

HS/IG(t) = HS/ inrev(IG)(t).

Let us first suppose that G is connected and let F1, . . . Fr be the maximal
cliques of G where Fi = [ai, bi] for 1 ≤ i ≤ r with 1 = a1 < a2 < · · · < ar <
br = n. Then

inrev(IG) = inrev(IF1) + · · ·+ inrev(IFr )

= (x2, . . . , xb1)
2 + (xa2+1, . . . , xb2)

2 + · · ·+ (xar−1+1, . . . , xn)
2

Then, as x1 and xn+1 are regular on S/ inrev(IG), we get

P (t) = HS/(inrev(IG),x1,xn+1)(t) = h0 + h1t+ · · ·+ hqt
q

where q = deg(P ) and hi = dim(S/(inrev(IG), x1, xn+1))i for 0 ≤ i ≤ q.
In order to prove our statement, it is enough to show that q ≤ r. Let i > r.We

have to show that dim(S/(inrev(IG), x1, xn+1))i = 0. But dim(S/(inrev(IG), x1,
xn+1))i is equal to the number of squarefree monomials w = xF in the variables
x2, . . . , xn such that xF /∈ in<(IG) and deg xF = i. Let F = {j1, . . . , ji} with
2 ≤ j1 < · · · < ji ≤ n. Since deg xF ≥ r + 1, there exists 1 ≤ p < q ≤ i
such that jp and jq belong to the same clique Fℓ of G. This implies that
xF ∈ in<(IG). Therefore, dim(S/(in<(IG), x1, xn+1))i = 0 and, consequently,
reg(S/IG) = deg(P ) ≤ r.

Now, let G1, . . . , Gc be the connected components of G and let ri the number
of cliques of Gi for 1 ≤ i ≤ c. We may assume that V (Gi) = [ni + 1, ni+1] for
some integers 0 = n1 < · · · < nc < nc+1 = n. We set Si = K[{xj : ni + 1 ≤
j ≤ ni+1}] for 1 ≤ i ≤ c. Let Mi be the set of minimal monomial generators
of inrev(JGi) for all i. One observes that any two monomials u ∈ Mi, v ∈ Mj

with i ̸= j, have disjoint supports. This implies that

S/ inrev(JG) ∼=
c⊗

i=1

Si/ inrev(JGi).
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Consequently,

reg(S/JG) = reg(S/ inrev(JG)) =
c∑

i=1

reg(Si/ inrev(JGi)) ≤
c∑

i=1

ri = r

□
Remark 2.8. The upper bound given in the above theorem is sharp. Indeed,
let G be a closed graph with the maximal cliques Fi = [ai, ai+1] where 1 =
a1 < a2 < · · · < ar < ar+1 = n. In this case, we have

inrev(IG) = (x2, . . . , xa2)
2 + (xa2+1, . . . , xa3)

2 + · · ·+ (xar+1, . . . , xn)
2.

Therefore,

S/(inrev(IG), x1, xn+1) ∼= (S1/(x2, . . . , xa2)
2)⊗K · · · ⊗K (Sr/(xar+1, . . . , xn)

2)

where Si = K[xai+1, . . . , xai+1 ] for all i, which implies that

HS/(inrev(IG),x1,xn+1)(t) =
r∏

i=1

(1 + (ai+1 − ai)t).

This shows that reg(S/IG) = r.

From Proposition 2.6 and Theorem 2.7, we derive the following consequence.

Corollary 2.9. Let G be a closed graph with two maximal cliques. Then
reg(S/IG) = 2.

The following example shows that the inequality given in Theorem 2.7 may
be also strict.

Example 2.10. Let G be the closed graph on the vertex set [6] with the
maximal cliques F1 = [1, 4], F2 = [3, 5], and F3 = [4, 6]. We have reg(S/IG) =
2 < 3.
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