ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 4, pp. 971-979

Title:

Binomial edge ideals and rational normal scrolls

Author(s):

F. Chaudhry, A. Dokuyucu, V. Ene

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 41 (2015), No. 4, pp. 971–979 Online ISSN: 1735-8515

BINOMIAL EDGE IDEALS AND RATIONAL NORMAL SCROLLS

F. CHAUDHRY, A. DOKUYUCU, V. ENE*

(Communicated by Siamak Yassemi)

ABSTRACT. Let $X = \begin{pmatrix} x_1 & \dots & x_{n-1} & x_n \\ x_2 & \dots & x_n & x_{n+1} \end{pmatrix}$ be the Hankel matrix of size $2 \times n$ and let G be a closed graph on the vertex set [n]. We study the binomial ideal $I_G \subset K[x_1, \dots, x_{n+1}]$ which is generated by all the 2-minors of X which correspond to the edges of G. We show that I_G is

Cohen-Macaulay. We find the minimal primes of I_G and show that I_G is a set theoretical complete intersection. Moreover, a sharp upper bound for the regularity of I_G is given.

Keywords: Rational normal scroll, closed graph, set-theoretic complete intersection, Cohen-Macaulay.

MSC(2010): Primary: 13H10; Secondary: 13P10.

Introduction

Let K be a field and $S = K[x_1, \ldots, x_{n+1}]$ the polynomial ring in n+1 variables over the field K. The 2-minors of the matrix $X = \begin{pmatrix} x_1 & \ldots & x_{n-1} & x_n \\ x_2 & \ldots & x_n & x_{n+1} \end{pmatrix}$ generate the ideal I_X of the rational normal curve $\mathcal{X} \subset \mathbb{P}^n$. It is well-known that S/I_X is Cohen-Macaulay and has an S-linear resolution. We refer the reader to [5], [4], [1] for properties of the ideal of the rational normal scroll.

On the other hand, in the last few years, the so-called binomial edge ideals have been intensively studied. They are defined as follows. Given a simple graph G on the vertex set [n] with edge set E(G), one considers the ideal J_G generated by all the minors $f_{ij} = x_i y_j - x_j y_i$ of the matrix $\begin{pmatrix} x_1 & \dots & x_{n-1} & x_n \\ y_1 & \dots & y_{n-1} & y_n \end{pmatrix}$ in the polynomial ring $R = K[x_1, \dots, x_n, y_1, \dots, y_n]$. Binomial edge ideals were defined in [8] and [9].

©0 Iranian Mathematical Society

Article electronically published on August 16, 2015.

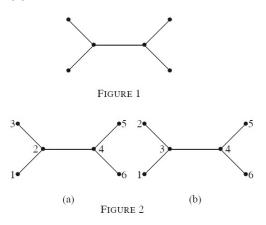
Received: 21 May 2014, Accepted: 26 June 2014.

 $^{^{*}}$ Corresponding author.

⁹⁷¹

In analogy to this construction, in this paper we consider the following ideals in S. For a simple graph G on the vertex set [n], let I_G be the ideal generated by the 2-minors $g_{ij} = x_i x_{j+1} - x_j x_{i+1}$ of X with i < j and $\{i, j\} \in E(G)$. We call I_G the binomial edge ideal of X.

It is clear already from the beginning that unlike the case of classical binomial edge ideals, the ideal I_G strongly depends on the labeling of the graph G. For example, if G is the graph displayed in Figure 2, we get $\dim(S/I_G) = 3$ for the labeling given in Figure 2 (a) and $\dim(S/I_G) = 4$ for the labeling of G given in Figure 2 (b).



However, for some classes of graphs G which admit a natural labeling, we may associate with G a unique ideal I_G and study its properties. This is the case, for instance, for closed graphs. We recall from [8] that G is closed if it has a labeling with respect to which is closed. A graph G is called closed with respect to its given labeling if for all edges $\{i, j\}$ and $\{i, k\}$ with j > i < k or j < i > k, one has $\{j, k\} \in E(G)$. A closed graph G is chordal and, therefore, by Dirac's Theorem, its clique complex $\Delta(G)$ is a quasi-forest. We recall that the clique complex $\Delta(G)$ of G is a simplicial complex whose facets are the maximal cliques of G, that is, the maximal complete subgraphs of G. $\Delta(G)$ is a quasi-forest if the facets F_1, \ldots, F_r of $\Delta(G)$ have a leaf order, that is, F_i is a leaf of the simplicial complex generated by F_1, \ldots, F_i for all i > 1. For a simplicial complex Δ , a facet F is called a leaf if there is another facet G of Δ such that for any facet $H \neq F$, one has $H \cap F \subseteq G \cap F$. It was shown in [6] that if G is closed, then we may label the vertices of G such that the facets of $\Delta(G)$, say F_1, \ldots, F_r , are intervals, $F_i = [a_i, b_i] \subset [n]$ and if we order F_1, \ldots, F_r such that $a_1 < a_2 < \cdots < a_r$, then this is a leaf order.

The paper is structured as follows. In Section 1, we show that the generators of I_G form a Gröbner basis with respect to the reverse lexicographic order if and only if G is closed with the given labeling. As a consequence of this theorem, we

derive that for a closed graph G, the ideal I_G is Cohen-Macaulay of dimension 1 + c, where c is the number of connected components of G.

In Section 2, we study the properties of I_G for a closed graph G. We compute the minimal prime ideals of I_G in Theorem 2.2. By using this theorem, we characterize those connected closed graphs G for which I_G is a radical ideal (Proposition 2.3). In addition, we show in Corollary 2.4, that I_G is a settheoretic complete intersection if G is connected and closed. In the last part of Section 2, we a give sharp upper bound for the regularity of I_G (Theorem 2.7) and we show that I_G has a linear resolution if and only if G is a complete graph.

1. Gröbner bases

Let G be a graph on the vertex set [n] and $I_G \subset S = K[x_1, \ldots, x_n]$ its associated ideal. The main result of this section is the following.

thm 1.1. The generators of I_G form the reduced Gröbner basis of I_G with respect to the reverse lexicographic order induced by $x_1 > \cdots > x_n > x_{n+1}$ if and only if G is closed with respect to its given labeling.

Proof. Let us first assume that the generators form a Gröbner basis of I_G . This implies that for any pair of generators $g_{ij} = x_i x_{j+1} - x_j x_{i+1}$ and $g_{k\ell} = x_k x_{\ell+1} - x_\ell x_{k+1}$ of I_G , the *S*-polynomial $S_{rev}(g_{ij}, g_{k\ell})$ reduces to zero. Now let $1 \leq i < j < k \leq n$ such that $\{i, j\}, \{i, k\} \in E(G)$. We have to show that $\{j, k\}$ is also an edge of *G*. We have

$$S_{\text{rev}}(g_{ij}, g_{ik}) = x_i x_{j+1} x_k - x_i x_j x_{k+1}.$$

Since its initial monomial is $x_i x_{j+1} x_k$, g_{jk} must be a generator of I_G , thus $\{j, k\}$ is an edge of G. In a similar way we argue if $n \ge i > j > k \ge 1$.

For the converse, let us assume that G is closed. We show that the S-polynomial $S_{\text{rev}}(g_{ij}, g_{k\ell})$ reduces to zero with respect to the generators of I_G for any two generators $g_{ij}, g_{k\ell}$ of I_G . Note that $\text{in}_{\text{rev}}(g_{ij}) = x_j x_{i+1}$ and $\text{in}_{\text{rev}}(g_{k\ell}) = x_\ell x_{k+1}$. If these two monomials have disjoint supports we know that $S_{\text{rev}}(g_{ij}, g_{k\ell})$ reduces to zero with respect to $g_{ij}, g_{k\ell}$. Assuming that, for instance, i < k, we have to consider the following remaining cases.

Case 1. $\ell = j$. Then one may check that $S_{rev}(g_{ij}, g_{k\ell}) = x_{j+1}g_{ik}$ which is obviously a standard representation.

Case 2. j = k + 1. If $\ell = k + 1$ we get $S_{rev}(g_{ij}, g_{k\ell}) = x_{k+2}g_{ik}$. If $\ell > k + 1$, we obtain $S_{rev}(g_{ij}, g_{k\ell}) = x_i g_{k+1,\ell} - x_{\ell+1}g_{ik}$ which is again a standard representation.

Therefore, in all cases, the S-polynomials $S_{rev}(g_{ij}, g_{k\ell})$ reduce to zero with respect to the generators of I_G .

As in the case of classical binomial edge ideals associated with graphs, the ideal I_G where G is the line graph on n vertices has nice properties.

Let G be a line graph on [n] with $E(G) = \{\{i, i+1\} : 1 \leq i \leq n-1\}$. Then I_G is minimally generated by $\{g_{i,i+1} = x_{i+1}^2 - x_i x_{i+2} : 1 \leq i \leq n\}$ and $\operatorname{in}_{\operatorname{rev}}(I_G) = (x_2^2, x_3^2, \ldots, x_n^2)$. As $x_2^2, x_3^2, \ldots, x_n^2$ is a regular sequence in S, it follows that the generators of I_G form a regular sequence as well. Consequently, the Koszul complex of the generators of I_G gives the minimal free resolution of S/I_G over S.

The following proposition shows that, for a closed graph G, the initial ideal of I_G with respect to the reverse lexicographic order has a simple structure.

Proposition 1.2. Let G be a closed graph on [n] with $\Delta(G) = \langle F_1, \ldots, F_r \rangle$ where $F_i = [a_i, b_i]$ for $1 \leq i \leq r$, and $1 = a_1 < \cdots < a_r < b_r = n$. Then $\operatorname{in}_{\operatorname{rev}}(I_G)$ is a primary monomial ideal, hence it is Cohen-Macaulay.

Proof. We only need to observe that I_F , where F = [a, b] is a clique, has the initial ideal $\operatorname{in}_{\operatorname{rev}}(I_F) = (x_{a+1}, \ldots, x_b)^2$. Then, as $\operatorname{in}_{\operatorname{rev}}(I_G) = \operatorname{in}_{\operatorname{rev}}(I_{F_1}) + \cdots + \operatorname{in}_{\operatorname{rev}}(I_{F_r})$, the conclusion follows.

Corollary 1.3. Let G be a closed graph. Then I_G is a Cohen-Macaulay ideal of $\dim(S/I_G) = 1 + c$ where c is the number of connected components of G.

Proof. I_G is a Cohen-Macaulay ideal by [7, Corollary 3.3.5] and

$$\dim(S/I_G) = \dim(S/\operatorname{in}_{\operatorname{rev}}(I_G)) = 1 + c,$$

the last equality being obvious by the form of $in_{rev}(I_G)$.

2. Properties of the scroll binomial edge ideals of closed graphs

In this section we study several algebraic and homological properties of the ideal I_G where G is a closed graph on the vertex set [n].

2.1. Associated primes. We recall that I_X denotes the binomial edge ideal associated with the complete graph K_n . It is well known that I_X is a prime ideal.

Proposition 2.1. Let G be an arbitrary connected graph on the vertex set [n]. Then I_X is a minimal prime of I_G . If P is a minimal prime ideal of I_G which contains no variable, then $P = I_X$.

Proof. Let $x = \prod_{i=1}^{n+1} x_i$. We claim that I_X is equal to the saturation of I_G with respect to x, that is, $I_X = I_G : x^\infty$. This will be enough to prove the statement of our proposition. Indeed, if P is a minimal prime ideal of I_G which does not contain any variable, then $P \supset I_G : x^\infty = I_X \supset I_G$. Since I_X is a prime ideal, it follows that $P = I_X$.

To prove our claim we first observe that $I_G \subset I_X$ implies that $I_G : x^{\infty} \subset I_X : x^{\infty} = I_X$. For the other inclusion, we show that any minimal generator $\delta_{ij} = x_i x_{j+1} - x_j x_{i+1}$ belongs to $I_G : x^{\infty}$. Let $1 \leq i < j \leq n$. Since G is connected, there exists a path in G from i to j. We prove that $\delta_{ij} \in I_G : x^{\infty}$

by induction on the length r of the path. If $\{i, j\} \in E(G)$, there is nothing to prove. Let r > 1 and let $i, i_1, \ldots, i_{r-1}, i_r = j$ be a path from i to j. By induction, $\delta_{i,i_{r-1}} \in I_G : x^{\infty}$. We also have $\delta_{i_{r-1}j} \in I_G : x^{\infty}$. Then $x_{i_{r-1}+1}\delta_{i_j} = x_{j+1}\delta_{i_{i_{r-1}}} + x_{i+1}\delta_{i_{r-1}j} \in I_G : x^{\infty}$, therefore, $\delta_{i_j} \in I_G : x^{\infty}$.

Now we restrict our study to ideals associated with connected closed graphs.

thm 2.2. Let $G \neq K_n$ be a connected closed graph on the vertex set [n] and I_G its associated ideal. Then

$$Ass(S/I_G) = Min(I_G) = \{I_X, (x_2, \dots, x_n)\}.$$

Proof. By Corollary 1.3 and Proposition 2.1, we only need to show that if P is a minimal prime of I_G which contains at least one variable, then $P = (x_2, \ldots, x_n)$. Let $P \in \operatorname{Min}(I_G)$ such that $x_i \in P$ for some $2 \leq i \leq n$. Let i < n. Then, as $\{i, i+1\} \in E(G)$, we get $x_{i+1} \in P$. Thus, $(x_i, \ldots, x_n) \subset P$. If i = 2, we get $P \supset (x_2, \ldots, x_n) \supset I_G$, thus we have $P = (x_2, \ldots, x_n)$. Let now i > 2. Since $\{i-2, i-1\} \in E(G)$, we get $x_{i-1} \in P$. Thus, for i > 2, we get as well $P = (x_2, \ldots, x_n)$.

Let us now assume that $P \in Min(I_G)$ and $x_1 \in P$. Since $\{i, i+1\} \in E(G)$ for all i, we get $(x_1, \ldots, x_n) \subset P$, which is impossible since P is minimal. A similar argument shows that P cannot contain x_{n+1} .

As a consequence of the above theorem, we may characterize the radical ideals I_G .

Proposition 2.3. Let G be a connected closed graph on the vertex set [n]. Then I_G is a radical ideal if and only if $G = K_n$ or $\Delta(G) = \langle [1, n-1], [2, n] \rangle$.

Proof. The claim is evident if $G = K_n$. Let now $G \neq K_n$. Then, by the above theorem, we have $\sqrt{I_G} = I_X \cap (x_2, \ldots, x_n)$. We claim that $I_X \cap (x_2, \ldots, x_n) = I_H$ where H is the closed graph on [n] whose clique complex is generated by the intervals [1, n-1] and [2, n]. We obviously have $I_H \subset I_X \cap (x_2, \ldots, x_n)$. Let $f \in I_X \cap (x_2, \ldots, x_n)$. Then $f = \sum_{1 \leq i < j \leq n} h_{ij} \delta_{ij}$ where δ_{ij} are the generators of I_X and h_{ij} are polynomials in S. We have to show that $h_{1n}\delta_{1n} \in I_H$ because $\delta_{ij} \in I_H$ for all i < j with $(i, j) \neq (1, n)$. Since $\delta_{ij} \in (x_2, \ldots, x_n)$ for all i < j such that $(i, j) \neq (1, n)$, it follows that $h_{1n}\delta_{1n} \in (x_2, \ldots, x_n)$ which implies that $x_1x_{n+1}h_{1n} \in (x_2, \ldots, x_n)$. But x_1x_{n+1} is regular on $S/(x_2, \ldots, x_n)$. Thus $h_{1n} \in (x_2, \ldots, x_n)$. We show that for all $2 \leq j \leq n$, we have $x_j\delta_{1n} \in I_H$ which will end our proof. For j = 2 we have $x_j\delta_{1n} = x_2(x_1x_{n+1} - x_2x_n) = x_1\delta_{2n} + x_n\delta_{12} \in I_H$.

Theorem 2.2 has the following nice consequence.

Corollary 2.4. Let G be a connected closed graph. Then I_G is a set-theoretic complete intersection.

975

Proof. The statement is known for $G = K_n$ [1]. Let now $G \neq K_n$ and let P_n be the line graph on n vertices. Obviously, the generators of I_{P_n} are generators for I_G as well. By Theorem 2.2, we have $\sqrt{I_G} = \sqrt{I_{P_n}}$. The ideal I_{P_n} is generated by $n - 1 = \text{height}(I_G)$ polynomials. Therefore, I_G is a set-theoretic complete intersection.

2.2. **Regularity.** Let G be a closed graph on the vertex set [n] and $I_G \subset S$ its associated ideal. The first question we may ask is under which conditions on the graph G the ideal I_G has a linear resolution. The next proposition answers this question. We first need the following known statement.

Lemma 2.5. [3, Exercise 4.1.17 (c)] Let $R = K[x_1, \ldots, x_n]/I$ be a homogeneous Cohen-Macaulay ring. The ring R has an m-linear resolution if and only if $I_j = 0$ for j < m and $\dim_K I_m = \binom{m+g-1}{m}$ where g = height I.

Proposition 2.6. Let G be a closed graph on [n]. Then the following are equivalent:

- (a) G is a complete graph;
- (b) I_G has a linear resolution;
- (c) All powers of I_G have a linear resolution.

Proof. (a) \Rightarrow (b) is well known. Let us prove (b) \Rightarrow (a). Let G be closed with c connected components, say G_1, \ldots, G_c . Since I_G has a 2-linear resolution, by Lemma 2.5 and Corollary 1.3, it follows that $\dim_K(I_G)_2 = \binom{n-c+1}{2}$. Hence, we get

$$\binom{n-c+1}{2} = \sum_{i=1}^{c} \dim_K(I_{G_i})_2 \le \sum_{i=1}^{c} \binom{n_i}{2}$$

where $n_i = |V(G_i)|$ for $1 \le i \le c$. The above inequality is equivalent to

$$(n-c)(n-c+1) \le \sum_{i=1}^{c} n_i(n_i-1).$$

Set $m_i = n_i - 1$ for $1 \le i \le c$. Then we get the equivalent inequality

$$(\sum_{i=1}^{c} m_i)(\sum_{i=1}^{c} m_i + 1) \le \sum_{i=1}^{c} m_i(m_i + 1)$$

or

$$(\sum_{i=1}^{c} m_i)^2 \le \sum_{i=1}^{c} m_i^2.$$

This inequality holds if and only if c = 1, thus G must be connected. Moreover, in this case, since I_G has a linear resolution, we must have $\dim_K(I_G)_2 = \binom{n}{2} = \dim_K(I_{K_n})_2$, hence $G = K_n$.

The implication $(c) \Rightarrow (b)$ is trivial, and $(a) \Rightarrow (c)$ is known; see, for example, [4, Theorem 1] and [2, Corollary 3.9].

In the next theorem we give an upper bound for the regularity of I_G when G is a closed graph.

thm 2.7. Let G be a closed graph on the vertex set [n]. Then $reg(S/I_G) \leq r$ where r is the number of maximal cliques of G.

Proof. Let $H_{S/I_G}(t)$ be the Hilbert series of S/I_G . Then, since dim $(S/I_G) = 1 + c$, where c is the number of connected components of G, we have

$$H_{S/I_G}(t) = \frac{P(t)}{(1-t)^{1+c}}$$

where $P(t) \in \mathbb{Z}[t]$ with $P(1) \neq 0$. Since I_G is Cohen-Macaulay, we have $\operatorname{reg}(S/I_G) = \deg(P)$.

On the other hand, we have

$$H_{S/I_G}(t) = H_{S/\operatorname{in}_{rev}(I_G)}(t).$$

Let us first suppose that G is connected and let F_1, \ldots, F_r be the maximal cliques of G where $F_i = [a_i, b_i]$ for $1 \le i \le r$ with $1 = a_1 < a_2 < \cdots < a_r < b_r = n$. Then

Then, as x_1 and x_{n+1} are regular on $S/\ln_{\text{rev}}(I_G)$, we get

$$P(t) = H_{S/(in_{rev}(I_G), x_1, x_{n+1})}(t) = h_0 + h_1 t + \dots + h_q t^q$$

where $q = \deg(P)$ and $h_i = \dim(S/(\operatorname{in}_{\operatorname{rev}}(I_G), x_1, x_{n+1}))_i$ for $0 \le i \le q$.

In order to prove our statement, it is enough to show that $q \leq r$. Let i > r. We have to show that $\dim(S/(\operatorname{in}_{\operatorname{rev}}(I_G), x_1, x_{n+1}))_i = 0$. But $\dim(S/(\operatorname{in}_{\operatorname{rev}}(I_G), x_1, x_{n+1}))_i$ is equal to the number of squarefree monomials $w = x_F$ in the variables x_2, \ldots, x_n such that $x_F \notin \operatorname{in}_{\leq}(I_G)$ and $\deg x_F = i$. Let $F = \{j_1, \ldots, j_i\}$ with $2 \leq j_1 < \cdots < j_i \leq n$. Since $\deg x_F \geq r+1$, there exists $1 \leq p < q \leq i$ such that j_p and j_q belong to the same clique F_{ℓ} of G. This implies that $x_F \in \operatorname{in}_{\leq}(I_G)$. Therefore, $\dim(S/(\operatorname{in}_{\leq}(I_G), x_1, x_{n+1}))_i = 0$ and, consequently, $\operatorname{reg}(S/I_G) = \deg(P) \leq r$.

Now, let G_1, \ldots, G_c be the connected components of G and let r_i the number of cliques of G_i for $1 \leq i \leq c$. We may assume that $V(G_i) = [n_i + 1, n_{i+1}]$ for some integers $0 = n_1 < \cdots < n_c < n_{c+1} = n$. We set $S_i = K[\{x_j : n_i + 1 \leq j \leq n_{i+1}\}]$ for $1 \leq i \leq c$. Let M_i be the set of minimal monomial generators of $\inf_{\text{rev}}(J_{G_i})$ for all i. One observes that any two monomials $u \in M_i$, $v \in M_j$ with $i \neq j$, have disjoint supports. This implies that

$$S/\operatorname{in}_{\operatorname{rev}}(J_G) \cong \bigotimes_{i=1}^{\circ} S_i/\operatorname{in}_{\operatorname{rev}}(J_{G_i}).$$

977

Consequently,

$$\operatorname{reg}(S/J_G) = \operatorname{reg}(S/\operatorname{in}_{\operatorname{rev}}(J_G)) = \sum_{i=1}^c \operatorname{reg}(S_i/\operatorname{in}_{\operatorname{rev}}(J_{G_i})) \le \sum_{i=1}^c r_i = r$$

Remark 2.8. The upper bound given in the above theorem is sharp. Indeed, let G be a closed graph with the maximal cliques $F_i = [a_i, a_{i+1}]$ where $1 = a_1 < a_2 < \cdots < a_r < a_{r+1} = n$. In this case, we have

$$\operatorname{in}_{\operatorname{rev}}(I_G) = (x_2, \dots, x_{a_2})^2 + (x_{a_2+1}, \dots, x_{a_3})^2 + \dots + (x_{a_r+1}, \dots, x_n)^2.$$

Therefore,

 $S/(\operatorname{in}_{\operatorname{rev}}(I_G), x_1, x_{n+1}) \cong (S_1/(x_2, \dots, x_{a_2})^2) \otimes_K \dots \otimes_K (S_r/(x_{a_r+1}, \dots, x_n)^2)$ where $S_i = K[x_{a_i+1}, \dots, x_{a_{i+1}}]$ for all *i*, which implies that

$$H_{S/(\text{in}_{\text{rev}}(I_G), x_1, x_{n+1})}(t) = \prod_{i=1}^{n} (1 + (a_{i+1} - a_i)t).$$

This shows that $\operatorname{reg}(S/I_G) = r$.

From Proposition 2.6 and Theorem 2.7, we derive the following consequence.

Corollary 2.9. Let G be a closed graph with two maximal cliques. Then $reg(S/I_G) = 2$.

The following example shows that the inequality given in Theorem 2.7 may be also strict.

Example 2.10. Let G be the closed graph on the vertex set [6] with the maximal cliques $F_1 = [1, 4]$, $F_2 = [3, 5]$, and $F_3 = [4, 6]$. We have $\operatorname{reg}(S/I_G) = 2 < 3$.

Acknowledgment

The first author was supported by the Higher Education Commission of Pakistan and the Abdus Salam School of Mathematical Sciences, Lahore, Pakistan. The third author was supported by the grant UEFISCDI, PN-II-ID-PCE- 2011-3-1023. We would like to thank the referee for the valuable comments.

References

[3] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1998.

L. Bădescu and G. Valla, Grothendieck-Lefschetz theory, set-theoretic complete intersections and rational normal scrolls, J. Algebra 324 (2010), no. 7, 1636–1655.

^[2] W. Bruns, A. Conca and M. Varbaro, Maximal minors and linear powers, J. Reine Angew. Math. 702 (2015) 41–53.

^[4] A. Conca, Hilbert function and resolution of the powers of the ideal of the rational normal curve, J. Pure Appl. Algebra 152 (2000), no. 1-3, 65–74.

[5] D. Eisenbud, The Geometry of Syzygies: A Second Course in Commutative Algebra and Algebraic Geometry, Graduate Texts in Mathematics, 229, Springer-Verlag, New York, 2005.

[6] V. Ene, J. Herzog and T. Hibi, Cohen-Macaulay binomial edge ideals, Nagoya Math. J. 204 (2011) 57–68.

[7] J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, 260, Springer, 2010.

[8] J. Herzog, T. Hibi, F. Hreinsdotir, T. Kahle and J. Rauh, Binomial edge ideals and conditional independence statements, *Adv. Appl. Math.* **45** (2010), no. 3, 317–333.

[9] M. Ohtani, Graphs and Ideals generated by some 2-minors, Comm. Algebra 39 (2011), no. 3, 905–917.

(Faryal Chaudhry) Abdus Salam School of Mathematical Sciences, GC University, 68-B, New Muslim Town, Lahore 54600, Pakistan

E-mail address: chaudhryfaryal@gmail.com

(Ahmet Dokuyucu) Faculty of Mathematics and Computer Science, Ovidius University Bd. Mamaia 124, 900527 Constanta, and Lumina-The University of South-East Europe Sos. Colentina nr. 64b, Bucharest, Romania

E-mail address: ahmet.dokuyucu@lumina.org

(Viviana Ene) Faculty of Mathematics and Computer Science, Ovidius University, Bd. Mamaia 124, 900527 Constanta, Romania, and Simion Stoilow Institute of Mathematics of the Romanian Academy, Research group of the project ID-PCE-2011-1023, P.O.Box 1-764, Bucharest 014700, Romania

E-mail address: vivian@univ-ovidius.ro