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Abstract. In this paper, we study convergence behavior of the global
FOM (Gl-FOM) and global GMRES (Gl-GMRES) methods for solving
the matrix equation AXB = C where A and B are symmetric positive
definite (SPD). We present some new theoretical results of these methods

such as computable exact expressions and upper bounds for the norm
of the error and residual. In particular, the obtained upper bounds for
the Gl-FOM method help us to predict the behavior of the Frobenius
norm of the Gl-FOM residual. We also explore the worst-case convergence

behavior of these methods. Finally, some numerical experiments are given
to show the performance of the theoretical results.
Keywords: Convergence analysis; Global FOM; Global GMRES; Global

Lanczos algorithm; Worst-case behavior.
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1. Introduction

In this paper, we consider the matrix equation

(1.1) AXB = C,

where A ∈ Rn×n, B ∈ Rs×s, C ∈ Rn×s and the matrices A and B are symmetric
positive definite (SPD).

Different methods are devoted to find the special solution structures of the
matrix equation AXB = C such as diagonal, triangular, reflexive, symmetric,
centro-symmetric, skew-symmetric or least squares solution X; see [7,8,13,18]
and the references therein.

During the last years, several projection methods have been proposed to
solve the matrix equations. The main idea developed in these methods is to
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construct suitable bases of the Krylov subspace and project the large problem
into a smaller one; see [9–11, 20, 21] for more details. For examples, Beik and
Salkuyeh [2] have proposed two global Krylov subspace methods for solving the
following general coupled linear matrix equations

(1.2)

p∑
j=1

AijXjBij = Ci, i = 1, . . . , p.

Furthermore, using the Schur complement formula, Beik [1] has studied some
convergence results of the Gl-GMRES for solving the generalized Sylvester
equations and the matrix equations (1.2).

In the case where B is the identity matrix Is×s, Jbilou et al. [14] have pre-
sented the properties of the Gl-FOM and Gl-GMRES methods for solving a
matrix equation AX = C. Then, using the ⋄ product, Bouyouli et al. [4] have
studied the convergence properties of the Gl-FOM and Gl-GMRES methods.
When A is a SPD matrix and B = Is×s with s = 1, the Conjugate Gra-
dient (CG) and the MINRES methods are two well-known Krylov subspace
approaches for solving the linear system Ax = b. An overview of the conver-
gence analysis of these methods is given in [17]. Also, an interesting work was
recently done by Bouyouli et al. [5]. Based on the relationship between the CG
and Lanczos methods, they have derived some convergence results for the error
and the residual of the CG method.

In this paper, we discuss convergence analysis of the Gl-FOM and Gl-
GMRES methods for solving the matrix equation (1.1). Our main interest is
to understand the behavior of the error and residual of these methods. These
methods use a global Lanczos-based algorithm onto a matrix Krylov subspace.
In addition, since these methods are the global orthogonal residual and global
minimal residual methods, we call them the G-OR-L and G-MR-L methods,
respectively.

This paper is organized as follows. In section 2, we give some preliminary
tools. We also recall the matrix Krylov subspaces, then we give a brief descrip-
tion of the global Arnoldi algorithm and its properties. In section 3, we present
the G-OR-L and G-MR-L methods and their mathematical properties for solv-
ing the matrix equation (1.1). We also prove some convergence results of these
methods. In particular, we discuss the importance of the spectral information
of A and B on the convergence behavior of the Frobenius norm of the G-OR-
L residual. In section 4, we investigate the worst-case convergence behavior
of these methods. For the special case AX = C where A is a diagonalizable
matrix, we also prove the worst-case convergence behavior of the Gl-GMRES
method. Furthermore, in comparison with the proof given in [3], our proof is
shorter. Numerical experiments are presented in the last section.
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2. Preliminaries

We use the following notations. The notation Rn×s denotes the real vector
space of n × s matrices. ej denotes the jth column of an identity matrix
of a suitable dimension. Let X,Y ∈ Rn×s. The vector vec(X) denotes the
vector of Rns defined by vec(X) = [xT

1 , . . . , x
T
s ]

T where xi is the ith column of
X. The Frobenius inner product is defined by ⟨X,Y ⟩F = trace(Y TX) where
trace(·) denotes the trace of the square matrix Y TX. The associated norm
is the Frobenius norm denoted by ∥ · ∥F . The notation X⊥FY means that
⟨X,Y ⟩F = 0. The Kronecker product of matrices A ∈ Rk×l and B ∈ Rn×m is
defined by A⊗B = [aijB]. For this product, we have the following properties.
For more details we refer to [4].

(1) (A⊗B)(C ⊗D) = (AC ⊗BD), provided that AC and BD exist.
(2) (A⊗B)−1 = A−1 ⊗B−1, provided that A−1 and B−1 exist.
(3) (A⊗B)T = AT ⊗BT .
(4) vec(ABC) = (CT ⊗A)vec(B), provided that ABC exists.
(5) If A ∈ Rk×l, B ∈ Rl×m and C ∈ Rm×k, then

trace(ABC) = vec(AT )T (Ik ⊗B)vec(C).

We give the following proposition whose proof is straightforward.

Proposition 2.1. Assume that A ∈ Rn×n and B ∈ Rs×s are SPD. The map
⟨·, ·⟩(A,B) : Rn×s × Rn×s → R defined as ⟨X,Y ⟩(A,B) = trace(Y TAXB) is an
inner product denoted by the (A,B)-inner product. Moreover, the associated
norm of the (A,B)-inner product is

∥X∥(A,B) = ∥vec(X)∥B⊗A, ∀X ∈ Rn×s.

Let E = [E1, E2, . . . , Ep] ∈ Rn×ps and F = [F1, F2, . . . , Fl ] ∈ Rn×ls, where
Ei and Fj are n×s matrices. The matrices ET ⋄F and ET ⋄(A,B)F are defined

by (ET ⋄ F )ij = ⟨Ei, Fj⟩F and (ET ⋄(A,B) F )ij = ⟨Ei, Fj⟩(A,B), respectively.
One can see that the ⋄ product satisfies the following properties; see [4] for
more details.

Proposition 2.2. Let E,F,M ∈ Rn×ps, L ∈ Rp×p, K ∈ Rs×s, y ∈ Rs and
α ∈ R. Then we have

(1) ET ⋄ (F (L⊗ Is)(Ip ⊗K)) = (ET ⋄ (F (Ip ⊗K)))L.
(2) ET ⋄ (F (Is ⊗ L)(y ⊗ Ip)) = (ET ⋄ (F (Is ⊗ L)))y.

(3) ET ⋄ (AE(Ip ⊗B)) = ET ⋄(A,B) E = ẼT (B ⊗A)Ẽ,

where Ẽ = [vec(E1), vec(E2), . . . , vec(Ep)].

2.1. The generalized matrix Krylov subspace. Let A ∈ Rn×n, B ∈ Rs×s

be arbitrary matrices. The generalized matrix Krylov subspace associated with
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the triplet (A, V,B) where V ∈ Rn×s is defined by:

(2.1) GKi(A, V,B) = span{V,AV B, . . . , Ai−1V Bi−1}.
The following definition of [16, p. 411] is a basic tool to describe the structure
of GKi(A, V,B).

Definition 2.3. Let p(x, y) =
∑k

i,j=0 cijx
iyj be a polynomial in two variables,

x and y, with real coefficients cij. p(C :D) is to be defined a matrix of the form

p(C :D) =
∑k

i,j=0 cij(C
i ⊗Dj) where C ∈ Rm×m and D ∈ Rn×n.

Remark 2.4. Suppose that Ki(G, v) = span{v,Gv, . . . , Gi−1v} is the classi-
cal matrix Krylov subspace where v = vec(V ) and G = BT ⊗ A. The map
T : GKi(A, V,B) → Ki(G, v) given by Z 7→ vec(Z) is an isomorphism. So,
GKi(A, V,B) is the set of all matrices Z such that vec(Z) = pk(B

T : A)v in

which pk(x, y) =
∑k

j=0 cjx
jyj and k ≤ i− 1.

To construct an orthonormal basis of GKk(A, V,B), we apply the global
Arnoldi algorithm which can be summarized in Algorithm 1.

1: Set β = ∥V ∥F and V1 = V/β.
2: for j = 1, . . . , k do
3: Wj = AVjB
4: for i = 1, . . . , j do
5: hij = ⟨Wj , Vi⟩F
6: Wj = Wj − hijVi

7: end for
8: hj+1,j = ∥Wj∥F . If hj+1,j = 0 then stop.
9: Vj+1 = Wj/hj+1,j .

10: end for

Let Vk = [V1, . . . , Vk]. It is easy to see that VT
k ⋄ Vk = Ik and VT

k ⋄ Vk+1 =
0k×1. In addition, we have

AVk(Ik ⊗B) = [AV1B, . . . , AVkB].

From Algorithm 1, it follows that AVjB =
∑j+1

i=1 hijVi, for j = 1, . . . , k. Hence,
we get

AVk(Ik ⊗B) = [
2∑

i=1

hi1Vi, . . . ,
k∑

i=1

himVi] + hk+1,k[0, . . . , Vk+1].

So, it is clear that

(2.2) AVk(Ik ⊗B) = Vk(Hk ⊗ Is) + hk+1,kVk+1(e
T
k ⊗ Is),

where Hk = [hij ] is an upper Hessenberg matrix whose nonzero entries hij are
defined by the generalized global Arnoldi algorithm.
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Using the relation (2.2), the part (3) of Proposition 2.2 implies that Hk =

ṼT
k (B ⊗A)Ṽk, where Ṽk = [vec(V1), . . . , vec(Vk)]. In the particular case where

A,B are SPD, we state an important property of the matrix Hk, which is easy
to prove.

Proposition 2.5. If A,B are SPD, then the matrix Hk is SPD and tridiagonal.
Moreover, all entries of the three diagonals of Hk are positive.

As a consequence of the above proposition, when A and B are SPD, then
the matrices V1, V2, . . . , Vk constructed by Algorithm 1 satisfy the three-term
recurrence hj+1,jVj+1 = AVjB−hjjVj−hj−1,jVj−1. Therefore, the generalized
global Arnoldi algorithm is transformed to the following algorithm. In fact, this
algorithm is a version of the global Lanczos algorithm. We call this algorithm
the generalized global Lanczos (GGL) algorithm.

Algorithm 1 The generalized global Lanczos (GGL) algorithm

1: Set β = ∥V ∥F , V1 = V/β, h0,1 ≡ 0 and V0 ≡ 0.
2: for j = 1, . . . , k do
3: Wj = AVjB − hj−1,jVj−1

4: hjj = ⟨Wj , Vj⟩F
5: Wj = Wj − hjjVj

6: hj+1,j = ∥Wj∥F . If hj+1,j = 0 then stop.
7: Vj+1 = Wj/hj+1,j .
8: end for

3. Convergence analysis

In this section, we present some convergence results for the Gl-FOM and Gl-
GMRES methods for solving the matrix equation (1.1). Both of these methods
use the GGL algorithm to construct an orthonormal basis of a generalized ma-
trix Krylov subspace. In addition, since these methods are the global orthog-
onal residual and global minimal residual methods, we call them the G-OR-L
and G-MR-L methods, respectively.

3.1. The G-OR-L method. Assume that X0 ∈ Rn×s is an initial guess and
R0 = C − AX0B is its corresponding residual. The G-OR-L method consists
in generating approximate solutions of the form Xor

m = X0 + Zm with Zm ∈
GKm(A,R0, B) such that

(3.1) Ror
m := C −AXor

mB ⊥F GKm(A,R0, B),

where m = 1, 2, . . . . The matrix Ror
m is called the mth residual associated with

Xor
m .
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Let {V1, . . . , Vm} be the basis of GKm(A,R0, B) constructed by the GGL
algorithm. The approximation Xor

m can be written as

(3.2) Xor
m = X0 + Vm(αor

m ⊗ Is),

where Vm = [V1, . . . , Vm]. It is also easy to see that αor
m solves the linear system

(3.3) Hmαor
m = ∥R0∥F e1.

Moreover, as Hm is SPD, αor
m is the unique solution of (3.3).

Now, we show how to compute the Frobenius norm of the residual without
computing explicitly the residual.

Proposition 3.1. Under the same assumptions as in Proposition 2.5, the
residual matrix Ror

m satisfies the following relation

(3.4) ∥Ror
m∥F = ∥R0∥F

∏m
i=1 hi+1,i

det(Hm)
.

So, ∥Ror
m∥F = 0 if and only if hm+1,m = 0.

Proof. We have Ror
m = R0 − AVm(Im ⊗ B)(αor

m ⊗ Is). So, using the relations
(2.2) and (3.3), we obtain

Ror
m = R0 − Vm(Hmαor

m ⊗ Is)− hm+1,m(eTmαor
m )Vm+1

= −hm+1,m(eTmαor
m )Vm+1.

Therefore, ∥Ror
m∥F = hm+1,m|αor(m)

m | where α
or(m)
m is the last component of

αor
m . On the other hand, from (3.3) and the Cramer rule, it follows that

αor(m)
m = (−1)m+1∥R0∥F

∏m−1
i=1 hi+1,i

det(Hm)
.

Using Proposition 2.5, we have hi+1,i > 0, i = 1, . . . ,m− 1. Hence ∥Ror
m∥F = 0

if and only if hm+1,m = 0. □

We study further the G-OR-L method by considering the properties of the
error associated with Xor

m , i.e., X∗−Xor
m where X∗ is the solution of the matrix

equation (1.1).
Since the G-OR-L method is an orthogonal projection method onto the

generalized matrix Krylov subspace GKi(A,R0, B), we have the minimization
property of the error of the G-OR-L method. It is not hard to prove the
following theorem.

Theorem 3.2. Assume that X∗ is the solution of (1.1) and X0 ∈ Rn×s. Then
Xor

m is the mth approximation of the G-OR-L method if and only if

∥X∗ −Xor
m ∥(A,B) = min

X∈X0+GKm(A,R0,B)
∥X∗ −X∥(A,B).
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By considering the minimization property of the (A,B)−norm of the error
of the G-OR-L method, we will try to establish more properties of the error.
First, we give two expressions for ∥X∗−Xor

m ∥(A,B). In the following, we assume
that D0 = X∗ −X0 and Dm = X∗ −Xor

m .

Theorem 3.3. The error X∗−Xor
m associated with Xor

m satisfies the following
relation

(16-i) ∥X∗ −Xor
m ∥(A,B) = ∥Ror

m∥F
√
V T
m+1 ⋄(A−1,B−1) Vm+1.

Also, suppose that Km+1 = [R0, . . . , A
mR0B

m]. If {R0, . . . , A
mR0B

m} is a
linearly independent set, then

∥X∗ −Xor
m ∥2(A,B) =

1

eT1 (K
T
m+1 ⋄(A−1,B−1) Km+1)−1e1

.(16-ii)

Proof. (i) Since Dm = A−1Ror
mB−1, we have

∥X∗ −Xor
m ∥2(A,B) = vec(Dm)

T
(B ⊗A)vec(Dm)

= vec(Ror
m )

T
(B−1 ⊗A−1)vec(Ror

m )

= ∥Ror
m∥2Fvec(Vm+1)

T
(B−1 ⊗A−1)vec(Vm+1)

= ∥Ror
m∥2F (V T

m+1 ⋄(A−1,B−1) Vm+1).

(ii) We have Xor
m = X0 + Km(αor

m ⊗ Is) such that Ror
m = R0 − AKm(Im ⊗

B)(αor
m ⊗ Is), where Km = [R0, . . . , A

m−1R0B
m−1]. So,

∥X∗ −Xor
m ∥2(A,B) = trace ((X∗ −Xor

m )TA(X∗ −Xor
m )B)

= ⟨D0 −Km(αor
m ⊗ Is), R

or
m ⟩F

= ⟨D0, R
or
m ⟩F

= ⟨D0, R0 −AKm(Im ⊗B)(αor
m ⊗ Is)⟩F .

From [12, Theorem 7.2.10], the matrix KT
m ⋄(A,B) Km is nonsingular. Now,

the orthogonality relation (3.1) yields αor
m = (KT

m ⋄(A,B) Km)−1(KT
m ⋄ R0). In

addition, we have R0 = AD0B. Therefore,

∥X∗ −Xor
m ∥2(A,B) = DT

0 ⋄(A,B) D0 − (DT
0 ⋄(A,B) Km)αor

m

= DT
0 ⋄(A,B) D0−

(DT
0 ⋄(A,B) Km)(KT

m ⋄(A,B) Km)−1(KT
m ⋄(A,B) D0)

=
([

DT
0 ⋄(A,B) D0 DT

0 ⋄(A,B) Km

KT
m ⋄(A,B) D0 KT

m ⋄(A,B) Km

]/
KT

m ⋄(A,B) Km

)
,

where M/F is the Schur complement of F in M .
As Km+1 = [AD0B,AKm(Im ⊗ B)] and A−1Km+1(Im+1 ⊗ B−1) = [D0,Km],
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we get(
A−1Km+1(Im+1 ⊗B−1)

)T ⋄Km+1 =

[
DT

0 ⋄(A,B) D0 DT
0 ⋄(A,B) Km

KT
m ⋄(A,B) D0 KT

m ⋄(A,B) Km

]
.

On the other hand(
A−1Km+1(Im+1 ⊗B−1)

)T ⋄Km+1 = KT
m+1 ⋄(A−1,B−1) Km+1,

so we obtain

∥X∗ −Xor
m ∥2(A,B) =

(
KT

m+1 ⋄(A−1,B−1) Km+1

/
KT

m ⋄(A,B) Km

)
=

det(KT
m+1 ⋄(A−1,B−1) Km+1)

det(KT
m ⋄(A,B) Km)

=
1

eT1 (K
T
m+1 ⋄(A−1,B−1) Km+1)−1e1

. □

Remark 3.4.
(1) Proposition 3.1 together with the relation (16-i) follows that hm+1,m = 0 if
and only if ∥X∗ −Xor

m ∥(A,B) = 0.

(2) From [12, Theorem 7.2.10], the matrix KT
m+1 ⋄(A−1,B−1) Km+1 is SPD, so

eT1 (K
T
m+1 ⋄(A−1,B−1) Km+1)

−1e1 > 0.

Now, we introduce some upper bounds for ∥X∗ −Xor
m ∥(A,B). First, we state

the following relations:

∥(B ⊗A)−1∥2 =
1

λmin(B ⊗A)
=

1

λmin(A)λmin(B)
= ∥A−1∥2∥B−1∥2,

∥B ⊗A∥2 = λmax(B ⊗A) = λmax(A)λmax(B) = ∥A∥2∥B∥2.

Therefore, κ(B⊗A) = κ(A)κ(B), where κ(Z) = ∥Z∥2∥Z−1∥2. In the following,
the expression “UB” is used to denote “Upper Bound”.

Theorem 3.5. The error X∗ −Xor
m associated with Xor

m satisfies the relations

(UB.1) ∥X∗ −Xor
m ∥(A,B) ≤ ∥Ror

m∥F

√
κ(A)κ(B)

∥A∥2∥B∥2
.

(UB.2) ∥X∗ −Xor
m ∥(A,B) ≤

∥Ror
m∥F

2
√
V T
m+1 ⋄(A,B) Vm+1

κ(A)κ(B) + 1√
κ(A)κ(B)

.

(UB.3) ∥X∗ −Xor
m ∥(A,B) ≤

∥Ror
m∥F
2

(κ(A)κ(B) + 1√
∥A∥2∥B∥2

)
.

(UB.4) ∥X∗ −Xor
m ∥(A,B) ≤ γ

√
∥Ror

m∥F ,

where γ =
√

∥R0∥F κ(A)κ(B)
∥A∥2∥B∥2

+ ∥αor
m∥2.
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Proof. (1): Let G = B⊗A and v = vec(Vm+1). If we apply the Courant-Fisher
theorem [12, Theorem 4.2.11], then

vTG−1v ≤ 1

λmin(A)λmin(B)
=

κ(A)κ(B)

∥A∥2∥B∥2
.

The relation (16-i) together with the above relation follows the inequality
(UB.1).
(2): Since vTG−1v = V T

m+1 ⋄(A−1,B−1) Vm+1 and vTGv = V T
m+1 ⋄(A,B) Vm+1,

the Kantorovich inequality [12, Theorem 7.4.41] implies that

(3.5) V T
m+1 ⋄(A−1,B−1) Vm+1 ≤ 1

4(V T
m+1 ⋄(A,B) Vm+1)

(κ(A)κ(B) + 1)2

κ(A)κ(B)
.

Multiplying both sides of the relation (3.5) by ∥Ror
m∥2F follows the inequality

(UB.2). On the other hand, using the Courant-Fisher theorem, we obtain

1

vTGv
≤ 1

λmin(G)
=

κ(A)κ(B)

∥A∥2∥B∥2
,

which follows the inequality (UB.3).
(3): We have

∥X∗ −Xor
m ∥2(A,B) = ⟨Gvec(X∗ −Xor

m ), vec(X∗ −Xor
m )⟩,(3.6)

and

∥C −AXor
mB∥2F = ∥A(X∗ −Xor

m )B∥2F
= ∥vec(A(X∗ −Xor

m )B)∥22
= ⟨G2vec(X∗ −Xor

m ), vec(X∗ −Xor
m )⟩.(3.7)

Let y = vec(X∗ − Xor
m ) and z = y/∥y∥2. Using a result given in [15], we get

⟨Gz, z⟩2 ≤ ⟨G2z, z⟩, or equivalently, ⟨Gy, y⟩2 ≤ ∥y∥22⟨G2y, y⟩.
Since ∥vec(X∗ −Xor

m )∥2 = ∥X∗ −Xor
m ∥F , it follows from (3.6) and (3.7) that

∥X∗ −Xor
m ∥(A,B) ≤

√
∥X∗ −Xor

m ∥F
√

∥C −AXor
mB∥F .

From the relation X∗ −Xor
m = D0 − Vm(αor

m ⊗ Is), we have

∥X∗ −Xor
m ∥F ≤ ∥D0∥F + ∥Vm(αor

m ⊗ Is)∥F .

Therefore, as ∥Vm(αor
m ⊗ Is)∥F = ∥αor

m∥2 and

∥D0∥F = ∥vec(D0)∥2 = ∥(B ⊗A)−1vec(R0)∥2 ≤ ∥A−1∥2∥B−1∥2∥vec(R0)∥2,

the proof completes. □

It can be shown that the (A,B)−norm of the error at each step of the G-OR-
L method satisfies ∥X∗−Xor

m ∥(A,B) ≤ ∥X∗−X0∥(A,B). However, the Frobenius
norm of the residual at each step of the G-OR-L method may oscillate. In the
next result, we show an upper bound for ∥Ror

m∥F .
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Theorem 3.6. Assume that Ror
m is the G-OR-L residual obtained at step m.

Then

∥Ror
m∥F ≤ min{α1∥R0∥F , α2∥R0∥F },(3.8)

where α1 =
√

κ(A)κ(B) and α2 =
√

∥A∥2∥B∥2

(V T
1 ⋄(A,B)V1)κ(A)κ(B)

(
κ(A)κ(B)+1

2

)
.

Proof. The Courant-Fisher theorem together with the relation (16-i) implies
that

∥Ror
m∥2F

∥A∥2∥B∥2
≤ ∥X∗ −Xor

m ∥2(A,B).

On the other hand, similar to Theorem 3.5, we obtain

∥X∗ −X0∥(A,B) ≤ ∥R0∥F

√
κ(A)κ(B)

∥A∥2∥B∥2
,

∥X∗ −X0∥(A,B) ≤
∥R0∥F

2
√
V T
1 ⋄(A,B) V1

κ(A)κ(B) + 1√
κ(A)κ(B)

.

Therefore, using the above relations, we have

∥X∗ −X0∥2(A,B) − ∥X∗ −Xor
m ∥2(A,B) ≤

κ(A)κ(B)

∥A∥2∥B∥2
∥R0∥2F − 1

∥A∥2∥B∥2
∥Ror

m∥2F ,

and,

∥X∗ −X0∥2(A,B) −∥X∗ −Xor
m ∥2(A,B) ≤

(κ(A)κ(B) + 1)2∥R0∥2F
4(V T

1 ⋄(A,B) V1)κ(A)κ(B)
− ∥Ror

m∥2F
∥A∥2∥B∥2

.

Now, since ∥X∗ −X0∥2(A,B) − ∥X∗ −Xor
m ∥2(A,B) ≥ 0, the results follow. □

Remark 3.7. Since ∥Ror
m∥F ≤ min{α1∥R0∥F , α2∥R0∥F }, we expect that the

Frobenius norm of the residuals will not oscillate too much when α1 and α2 are
small. On the other hand, it is easy to see that α2 ≤ (κ(A)κ(B) + 1)/2, so we
have

∥Ror
m∥F ≤ min{

√
κ(A)κ(B)∥R0∥F ,

(
κ(A)κ(B) + 1

2

)
∥R0∥F }.

Hence, we conclude that when κ(A) = 1 and κ(B) = 1, then ∥Ror
m∥F ≤ ∥R0∥F .

We also consider the especial case where κ(A) and κ(B) are close to 1. We
will come back to these points in the numerical illustrations section.

3.2. The G-MR-L method. Let X0 ∈ Rn×s be an initial guess and R0 =
C − AX0B be its corresponding residual. The G-MR-L method consists in
generating approximate solutions of the form Xmr

m = X0 + Zm with Zm ∈
GKm(A,R0, B) such that

(3.9) Rmr
m := C −AXmr

m B ⊥F AGKm(A,R0, B)B,
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where m = 1, 2, . . . . The matrix Rmr
m is called the mth residual associated with

Xmr
m .

Proposition 3.8. Assume that {V1, . . . , Vm} is the basis of GKm(A,R0, B)
constructed by the GGL algorithm. The approximation Xmr

m can be written as

(3.10) Xmr
m = X0 + Vm(αmr

m ⊗ Is),

where αmr
m is the unique solution of the linear system

(3.11) (H2
m + h2

m+1,memeTm)αmr
m = ∥R0∥FHme1.

Proof. We have Xmr
m = X0 + Vm(αmr

m ⊗ Is) such that Rmr
m = R0 −AVm(Im ⊗

B)(αmr
m ⊗ Is) where αmr

m ∈ Rm. Let Wm = AVm(Im ⊗ B). The orthogonality
relation (3.9) yields (WT

m ⋄ Wm)αmr
m = WT

m ⋄ R0. Since R0 = ∥R0∥FV1, using
(2.2) and Proposition 2.2, we obtain

WT
m ⋄Wm = H2

m + h2
m+1,memeTm, and WT

m ⋄R0 = ∥R0∥FHme1.

As H2
m + h2

m+1,memeTm is SPD, the solution of (3.11) exists and is unique. □

Proposition 3.9. The residual matrix Rmr
m satisfies the following relation

(3.12) Rmr
m = hm+1,mαmr(m)

m

(
hm+1,mVm(H−1

m em ⊗ Is)− Vm+1

)
,

where α
mr(m)
m is the last component of αmr

m . In addition, we get

(3.13) ∥Rmr
m ∥F = hm+1,m|αmr(m)

m |
√

h2
m+1,m∥H−1

m em∥22 + 1.

So, ∥Rmr
m ∥F = 0 if and only if hm+1,m = 0.

Proof. We have Rmr
m = R0−AVm(Im⊗B)(αmr

m ⊗Is). Using the relations (2.2)
and (3.11), it follows that

Rmr
m = R0 − Vm(Hmαmr

m ⊗ Is)− hm+1,m(eTmαmr
m )Vm+1

= R0 − ∥R0∥FVm(e1 ⊗ Is) + h2
m+1,m(eTmαmr

m )Vm(H−1
m em ⊗ Is)−

hm+1,m(eTmαmr
m )Vm+1

= hm+1,m(eTmαmr
m )

(
hm+1,mVm(H−1

m em ⊗ Is)− Vm+1

)
.

Therefore, ∥Rmr
m ∥F =

√
(Rmr

m )T ⋄Rmr
m = hm+1,m|αmr(m)

m |
√
h2
m+1,m∥H−1

m em∥22 + 1.

From (3.11) and the Cramer rule, we obtain

αmr(m)
m = (−1)m+1∥R0∥F

∏m−1
i=1 hi+1,i

det(Hm + h2
m+1,mH−1

m emeTm)
.

Using Proposition 2.5, we have hi+1,i > 0, i = 1, . . . ,m−1. Hence ∥Rmr
m ∥F = 0

if and only if hm+1,m = 0. □
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The next result shows that the Frobenius norm of the residual has the min-
imization property.

Theorem 3.10. Let X0 ∈ Rn×s be an initial guess and R0 = C−AX0B be its
corresponding residual. Then Xmr

m is the mth approximation of the G-MR-L
method if and only if

∥C −AXmr
m B∥F = min

X∈X0+GKm(A,R0,B)
∥C −AXB∥F .

Proof. The proof is similar to that of Theorem 3.2 and is omitted. □

4. The worst-case behavior of the G-OR-L and G-MR-L methods

The worst-case convergence behavior of many well known Krylov subspace
methods for normal matrices is described by the min-max approximation prob-
lem on the discrete set of the matrix eigenvalues [17],

min
pm∈Pm

max
λ∈σ(A)

|pm(λ)|.

We investigate the worst-case convergence behavior of the G-OR-L and G-
MR-L methods.

4.1. The worst-case behavior of the G-OR-L method. First, we prove
the following lemma.

Lemma 4.1. Let X ∈ X0 + GKm(A,R0, B) where X0 ∈ Rn×s. If X∗ is the
solution of (1.1), then vec(X∗ − X) = pm(B : A)vec(D0) where pm(x, y) =∑m

i=0 cix
iyi with pm(0, 0) = 1.

Proof. We have X = X0+
∑m−1

i=1 diA
i−1R0B

i−1 where di ∈ R, i = 1, . . . ,m−1.
As R0 = AD0B, we get vec(X∗ − X) =

∑m
i=0 ci(B ⊗ A)ivec(D0) such that

c0 = 1 and ci = −di, i = 1, . . . ,m. Now, if pm(x, y) =
∑m

i=0 cix
iyi, then the

result follows. □

Let A = V TDV and B = UTΛU with V TV = In and UTU = Is, where D
and Λ are the diagonal matrices whose elements are the eigenvalues µ1, . . . , µn

of A and the eigenvalues λ1, . . . , λs of B, respectively. If V = [v1, . . . , vn] and
U = [u1, . . . , us], then vec(D0) can be written as vec(D0) =

∑s
i=1

∑n
j=1 aij(ui⊗

vj) where aij ∈ R. From [16, Theorem 1, p. 411], we obtain

(4.1) pm(B : A)vec(D0) =
s∑

i=1

n∑
j=1

aijpm(λi, µj)(ui ⊗ vj).
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Theorem 4.2. Let X∗ be the solution of the matrix equation (1.1). If Xor
m is

the mth approximation of the G-OR-L method, then

(4.2)
∥X∗ −Xor

m ∥(A,B)

∥X∗ −X0∥(A,B)
≤ min

pm∈Pm

pm(0,0)=1

max
λ∈σ(B)
µ∈σ(A)

|pm(λ, µ)|,

where Pm denotes the set of polynomials in two variables x, y of the form
pm(x, y) =

∑m
i=0 cix

iyi with value one at the origin.

Proof. Using Theorem 3.2 and Lemma 4.1, we obtain

∥X∗ −Xor
m ∥(A,B) = min

pm∈Pm

pm(0,0)=1

∥pm(B : A)vec(D0)∥B⊗A.

Let ⟨·, ·⟩ be the standard inner product in Rns. From (4.1), it is straightforward
to verify that

∥pm(B : A)vec(D0)∥2B⊗A = ⟨pm(B : A)vec(D0), (B ⊗A)pm(B : A)vec(D0)⟩
= ⟨pm(B : A)vec(D0), pm(B : A)(B ⊗A)vec(D0)⟩

=

s∑
i=1

n∑
j=1

a2ijp
2
m(λi, µj)λiµj .

As ∥vec(D0)∥2(B⊗A) =
∑s

i=1

∑n
j=1 a

2
ijλiµj , we get

∥pm(B : A)vec(D0)∥B⊗A ≤ max
i,j

|pm(λi, µj)|∥vec(D0)∥B⊗A

= max
λ∈σ(B)
µ∈σ(A)

|pm(λ, µ)|∥vec(D0)∥B⊗A.

Finally, since ∥vec(D0)∥B⊗A = ∥X∗ −X0∥(A,B), the proof completes. □

4.2. The worst-case behavior of the G-MR-L method. In this section,
we study the worst-case behavior of the G-MR-L method. The main result of
this section is derived with the assumptions that the matrices A and B are
SPD.

Theorem 4.3. If Xmr
m is the mth approximation of the G-MR-L method, then

(4.3)
∥C −AXmr

m B∥F
∥C −AX0B∥F

≤ min
pm∈Pm

pm(0,0)=1

max
λ∈σ(B)
µ∈σ(A)

|pm(λ, µ)|,

where Pm denotes the set of polynomials in two variables x, y of the form
pm(x, y) =

∑m
i=0 cix

iyi with value one at the origin.
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Proof. Let X ∈ X0 + GKm(A,R0, B) and R = C −AXB. Then

vec(R) = vec(R0)−
m∑
i=1

ci(B ⊗A)ivec(R0)

= (U ⊗ V )T
(
I −

m∑
i=1

ci(Λ⊗D)i
)
(U ⊗ V )vec(R0)

= (U ⊗ V )T pm(Λ : D)(U ⊗ V )vec(R0),

which pm(x, y) = 1 +
∑m

i=1 cix
iyi where ci ∈ R, i = 1, . . . ,m. Hence, we have

∥C −AXB∥F = ∥vec(R)∥2
≤ ∥(U ⊗ V )T ∥2∥pm(Λ : D)∥2∥(U ⊗ V )∥2∥vec(R0)∥2.

Now, using [16, Theorem 1, p. 411], it follows that

∥C −AXB∥F ≤ max
λ∈σ(B)
µ∈σ(A)

|pm(λ, µ)|∥R0∥F .

Together with Theorem 3.10, we conclude

∥C −AXmr
m B∥F = min

X∈X0+GKm(A,R0,B)
∥C −AXB∥F

≤ min
pm∈Pm

pm(0,0)=1

max
λ∈σ(B)
µ∈σ(A)

|pm(λ, µ)|∥R0∥F . □

Remark 4.4. In the process of proving Theorem 4.3, we also consider the
following cases:

(1): A and B are diagonalizable.

When A and B are diagonalizable, i.e., A = V −1DV and B = U−1ΛU with
D = diag(µ1, . . . , µn) and Λ = diag(λ1, . . . , λs), then we obtain the following
convergence bound

(4.4)
∥C −AXmr

m B∥F
∥C −AX0B∥F

≤ κ(V )κ(U) min
pm∈Pm

pm(0,0)=1

max
λ∈σ(B)
µ∈σ(A)

|pm(λ, µ)|.

Moreover, if we assume that B = Is, then we have σ(B) = {1} and κ(U) = 1.
In this case, we deduce that Theorem 4.3 coincides with the result of the Gl-
GMRES given in [3, Theorem 5].

(2): A and B are normal matrices.

If A and B are normal matrices, then Theorem 4.3 holds. In addition, if
B = Is, then Theorem 4.3 reduces to Theorem 7 in [3].

Remark 4.5. Interesting related work was recently done by Bellalij et al. [3] for
solving a matrix equation AX = C. They presented the worst-case convergence
behavior of the Gl-GMRES method for diagonalizable matrices. Although all
presented results in [3] are correct, as it was discussed in Remark 4.4, when B =
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Is, Theorem 4.3 leads to Theorems 5 and 7 in [3]. Furthermore, a comparison
between our proof process with that of [3] shows that Theorem 4.3 presents an
easier proof for the worst-case convergence behavior of the Gl-GMRES method.

5. Numerical illustrations

The G-OR-L and G-MR-L methods are summarized in the following algo-
rithm. It is important to notice that when the iterate m becomes large, the
computational requirements increase. To remedy this problem, we use the al-
gorithm in a restarted mode, i.e., X0 = Xor

m (X0 = Xmr
m ) where Xor

m (Xmr
m ) is

the last computed approximate solution obtained with the G-OR-L (G-MR-L)
method.

Algorithm 2 (The G-OR-L(m) and G-MR-L(m) methods)

1: Choose X0.

2: Compute R0 = C −AX0B and set V1 = R0/∥R0∥F . Use the generalized global Lanczos
algorithm to compute the basis {V1, V2, . . . , Vm} of GKm(A,R0, B) and the matrix Hm.

3: G-OR-L: compute the approximate solution Xor
m = X0 +Vm(αor

m ⊗ Is) where αor
m solves

the equation (3.3).
4: If the approximation Xor

m is suitable then stop, else set X0 = Xor
m and goto 2.

5: G-MR-L: compute the approximate solution Xmr
m = X0 + Vm(αmr

m ⊗ Is) where αmr
m

solves the equation (3.11).

6: If the approximation Xmr
m is suitable then stop, else set X0 = Xmr

m and goto 2.

In this section, we present some numerical examples to illustrate the quality
of the presented theoretical results. To do so, we use the matrices

• A1(n) = tridiag(−1, 10,−1) and B1(s) = tridiag(−1, 10,−1),

• A2(n) =


4 −1 −1

−1 4
. . .

. . .
. . . −1

−1 −1 4

 and B2(s) =


8 −2 −2

−2 8
. . .

. . .
. . . −2

−2 −2 8

 ,

where n and s are the order of matrices A and B, respectively. Also, we
use some matrices from the Matrix-Market website at http://math.nist.gov/
MatrixMarket.

The entries of the matrix C in all the examples are random values uniformly
distributed on [0, 1] and X0 = 0. All numerical tests run in Matlab.

Example 5.1. In this example, we seek two goals. First, we examine the
influence of the condition numbers of the matrices A and B on the speed of
convergence of the G-OR-L(m) and G-MR-L(m) methods. Then, we study
the behavior of the Frobenius norm of the residual of the G-OR-L(m) and G-
MR-L(m) methods. Also, as stopping criteria, we use ∥C −AXor

mB∥F ≤ 10−6

and ∥C − AXmr
m B∥F ≤ 10−6 for the G-OR-L(m) and G-MR-L(m) methods,

respectively.
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Tables 1 and 2 report the final Frobenius norm of the residuals, the number
of iterations and the CPU time required to convergence for each method. We
note that the number of iterations refers to the number of restarts. As shown
in Tables 1 and 2, we see that the number of iterations increases when A or
B have very large condition numbers. However, if the condition numbers of A
and B are small, then the number of iterations decreases.

Table 1. Effectiveness of the G-OR-L and G-MR-L methods: m = 3.

(A,B) G-OR-L(3) G-MR-L(3)

n = 2000, s = 100 Residuals 5.1214e-008 5.1342e-008

(A1, B1) κ(A) = 1.5 Number of iterations 6 6

κ(B) = 1.4997 CPU time (sec) 2.75 2.17

n = 1000, s = 500 Residuals 9.5702e-007 5.9173e-007

(A2, B2) κ(A) = 3 Number of iterations 14 14

κ(B) = 3 CPU time (sec) 15.84 14.34

Table 2. Effectiveness of the G-OR-L and G-MR-L methods: m = 20.

(A,B) G-OR-L(20) G-MR-L(20)

n = 900, s = 10 Residuals 4.4148e-007 2.3661e-007

(GR3030, B1) κ(A) = 3.8e+ 02 Number of iterations 11 11

κ(B) = 1.4749 CPU time (sec) 1.12 0.93

n = 100, s = 10 Residuals 8.1349e-007 9.1156e-007

(NOS4, B1) κ(A) = 2.7e+ 03 Number of iterations 53 39

κ(B) = 1.4749 CPU time (sec) 0.25 0.18

n = 10, s = 468 Residuals 9.5765e-007 9.6650e-007

(A1, NOS5) κ(A) = 1.4749 Number of iterations 331 303

κ(B) = 2.9e+ 04 CPU time (sec) 20.40 19.37

According to the aforementioned stopping criteria, we investigate further
this example by considering the convergence behavior of the Frobenius norm
of the residual at each iteration of the G-OR-L(m) and G-MR-L(m) methods,
respectively.

• The G-OR-L method. In Figures 1–5, the left plots show the Frobenius
norm of the G-OR-L residuals and the right plots show the values of α1 and α2.
As shown in Figures 1–3, we see that α1 and α2 are small. Moreover, as it is
expected from Remark 3.7, we observe that the Frobenius norm of the residu-
als associated with the matrices (A1(2000), B1(100)), (A2(1000), B2(500)) and
(GR3030, B1(10)) decreases.

Figures associated with the matrices (NOS4, B1(10)) and (B1(10), NOS5),
especially (B1(10), NOS5), illustrate that α1 and α2 are large. Therefore,
we expect that the rate of changes of the Frobenius norm of the residuals
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associated with these matrices increases. As we see in Figures 4 and 5, the
Frobenius norm of the residuals associated with the matrices (NOS4, B1(10))
and (B1(10), NOS5), especially (B1(10), NOS5), oscillates too much.

Figure 1. Illustration of ∥Ror
m ∥F associated with (A1(2000), B1(100)).

Figure 2. Illustration of ∥Ror
m ∥F associated with (A2(1000), B2(500)).

Figure 3. Illustration of ∥Ror
m ∥F associated with (GR3030, B1(10)).

Figure 4. Illustration of ∥Ror
m ∥F associated with (NOS4, B1(10)).

• The G-MR-L method. It can be shown that the Frobenius norm of
the residual at each step of the G-MR-L method satisfies ∥Rmr

m ∥F ≤ ∥R0∥F .
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Figure 5. Illustration of ∥Ror
m ∥F associated with (B1(10), NOS5).

Therefore, since we use the G-MR-L method in a restarted mode, we expect
a ”monotonically decreasing” behavior of the Frobenius norm of the residual.
The plots of Figure 6 show that the Frobenius norm of the residual is mono-
tonically decreasing.

Figure 6. Illustration of ∥Rmr
m ∥F associated with the matrices

(A1(2000), B1(100)), (A2(1000), B2(500)), (GR3030, B1(10)), (NOS4,

B1(10)) and (B1(10), NOS5).

We summarize what we have stated so far. As we have seen, the Frobe-
nius norm of the residual of the G-OR-L(m) may oscillate. In contrast, the
Frobenius norm of the residual of the G-MR-L(m) shows a monotonically de-
creasing behavior. Therefore, this contrast can be used as one of the reasons
for the observed difference in the speed of convergence of the G-OR-L(m) and
G-MR-L(m) methods.

Example 5.2. In this example, we study the behavior of the (A,B)−norm of
the error of the G-OR-L(m) method. The test matrices are the same as the
previous example. Also, the iterations are stopped when ∥X∗ − Xor

m ∥(A,B) ≤
10−6.

In Table 3, we report the final values of the (A,B)−norm of the errors and
the final upper bounds derived in Theorem 3.5. The obtained results indicate
that these upper bounds are noticeable. However, the upper bound (UB.2) is
better than other upper bounds.

Finally, Figure 7 shows the values of the (A,B)−norm of the errors and the
upper bound (UB.2) together with the number of iterations.
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Table 3. The final values of ∥X∗ −Xor
m ∥(A,B) and the quality of

the upper bounds (UB.1)–(UB.4).

(A,B) ∥X∗ −Xor
m ∥(A,B) (UB.1) (UB.2) (UB.3) (UB.4)

(A1(2000), B1(100)) 5.0908e-009 6.4129e-009 5.3203e-009 6.9471e-009 2.1651e-007

(A2(1000), B2(500)) 1.8199e-007 3.3881e-007 2.4011e-007 5.6468e-007 1.9907e-006

(GR3030, B1(10)) 1.4725e-007 9.1979e-007 6.6144e-007 1.0907e-005 7.0461e-006

(NOS4, B1(10)) 2.9270e-006 1.9506e-005 1.4956e-005 6.1563e-004 5.1433e-005

(B1(10), NOS5) 9.2659e-009 7.3097e-008 5.1659e-008 7.5589e-006 4.9907e-006

Figure 7. Illustration of ∥X∗ −Xor
m ∥(A,B) and the values of the

upper bound (UB.2).

6. Conclusion and further works

We have considered the convergence behavior of the Gl-FOM and Gl-GMRES
methods for solving the matrix equation AXB = C where A and B are SPD.
More precisely, some new theoretical results of these methods, such as com-
putable exact expressions, upper bounds for the norm of the error and residual
and the worst-case convergence behavior of these methods, have been estab-
lished. In particular, our upper bounds for the norm of the Gl-FOM error
depend on the condition numbers of the matrices A and B and the information
generated by the Gl-FOM method. In the numerical test section, we have ex-
plored the convergence behavior of these methods. The numerical results show
the efficiency of the theoretical results.

The relationship between the norm of the Gl-GMRES residual and the spec-
tral information of A and B and the information generated by the Gl-GMRES
method can be the subject of further investigations. Furthermore, the the-
oretical results, presented in this paper, can be used for the Gl-FOM and
Gl-GMRES methods in order to solve the generalized Sylvester equations with
SPD coefficients.
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