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1. Introduction

A common problem in functional analysis is whether a given linear func-
tional defined on a vector lattice of real-valued functions is representable as an
integral with respect to some suitable regular measure. It is known in literature
as Riesz-Radon problem on description of Radon integrals as linear function-
als. There is an extensive literature on this problem; see [5, 8, 17–20] and the
references therein. Let Cb(X) denote the space of all real-valued bounded con-
tinuous functions on a topological space X. A Hausdorff space X is said to be
C-distinguished when Cb(X) separates the points of X. In this paper, we first

introduce locally convex function spaces C̃b(X) and Ĉb(X) whose duals can be
identified with a topological vector space of (not necessarily bounded) Radon
measures. Then, we show that a Riesz type representation theorem holds for
these function spaces.

The paper is organized as follows. In Section 2, we give the definition of
the topological vector space M(X) and prove some of its basic properties. We

define locally convex space C̃b(X) in Section 3, and show that the dual space
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of C̃b(X) can be identified with M(X) in a natural way. Finally, in Section 4,

we consider the same study for the space Ĉb(X).

2. Topological vector space of unbounded Radon measures

In this section we fix some terminologies and notations. All terminologies
concerning the theory of measure and integration will be as in [2]. We also
introduce and study topological vector space M(X), where X is a Hausdorff
topological space.

The σ-algebra generated by the open subsets of X is called the σ-algebra of
Borel sets and is denoted by B = B(X). We denote by K = K(X) the family
of all compact subsets of X. A (positive) Radon measure is a Borel measure
µ : B(X) −→ [0,∞] such that µ(C) is finite for each C ∈ K(X), and µ is
inner-regular; that is,

µ(B) = sup{µ(C) : C ⊆ B, C ∈ K(X) }.

The set of all positive Radon measures on X is denoted by M+(X). We also
let

M+
b (X) = {µ ∈M+(X) : µ(X) <∞},
Mb(X) = {µ− ν : µ, ν ∈M+

b (X)}.

As usual we denote the total variation measure associated with µ by |µ|, and
we let ∥µ∥ = |µ|(X). Then Mb(X) with the norm ∥.∥ is a Banach space.

Let ∼ be the binary relation on M+(X)×M+(X) defined by

(µ, ν) ∼ (µ′, ν′) if and only if µ+ ν′ = ν + µ′

for each (µ, ν), (µ′, ν′) ∈ M+(X) × M+(X). The inner-regularity and the
finiteness on compacta of the elements in M+(X) show that ∼ is actually an
equivalence relation on M+(X)×M+(X). We denote by [µ, ν] the equivalence
class of (µ, ν) ∈ M+(X) ×M+(X). Then we define M(X) as the set of all
these equivalence classes. For each [µ, ν], [µ′, ν′] ∈ M(X) and λ ∈ R, let us
define

[µ, ν] + [µ′, ν′] = [µ+ µ′, ν + ν′]

and

λ[µ, ν] =

{
[λµ, λν] if λ ≥ 0,
[λν, λµ] otherwise.

It is clear that these operations are well-defined and turn M(X) into a vector
space over R, which containsMb(X) as a subspace. This vector space has been
introduced by the second named author in [13, 14]; see also [20] in which it is
called bimeasure.

Finally, let PK :M(X) −→Mb(X) be defined as

PK([µ, ν]) = ∥µχK − νχK∥
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for each [µ, ν] ∈ M(X) and each K ∈ K(X), where (µχK)(B) = µ(K ∩B) for
B ∈ B(X). We always equip M(X) with the weakest topology on M(X) for
which each PK is continuous.

The following lemma is an immediate consequence of our definitions.

Lemma 2.1. Let X be a Hausdorff space. Then the following hold.

(i) A net ([µα, να])α in M(X) converges to [µ, ν] if and only if for each
K ∈ K, the net (µαχK−ναχK)α converges to µχK−νχK in the Banach
space Mb(X).

(ii) M(X) is a real Hausdorff topological vector space.

Let us recall the definition of the projective limit of a family of locally convex
spaces. Let (Λ,≤) be a partially ordered set and {Xα : α ∈ Λ} be a family of
locally convex spaces, and for α ≤ β, denote by fα,β a continuous linear map
of Xβ into Xα. Further suppose that fαγ = fαβ ◦ fβγ for all α ≤ β ≤ γ and
fαα be the identity map on Xα for all α ∈ Λ. Then the projective limit of the
family (Xα, fα,β) is defined as

lim
α
(Xα, fα,β) = { (xα) ∈ Πα∈ΛXα : xα = fα,β(xβ), whenever α ≤ β };

for more details see for example [15].
We also need the definition of a content. A Radon content is a set function

λ : K(X) −→ [0,∞) for which, for all C1, C2 ∈ K(X) with C1 ⊆ C2, we have

λ(C2)− λ(C1) = sup{λ(C) : C ∈ K(X), C ⊆ C2 \ C1}.

Let λ be a Radon content. Then the set function λt : B(X) −→ [0,∞]
defined for each B ∈ B(X) by

λt(B) = sup{λ(C) : C ⊆ B, C ∈ K(X)}

is called the Radon part of λ. For more details see [2, 7].
In the sequel, whenever we need, we suppose that the family K has been

partially ordered by the inclusion.

Lemma 2.2. Let X be a Hausdorff space, and let ϕK,L : Mb(L) → Mb(K)
be the restriction map for compact subsets K and L with K ⊆ L. Then the
mapping Ω : µ 7→ (µχK) is a bijection from M+(X) onto limK(M+

b (K), ϕK,L).

Proof. The mapping Ω is injective because the elements of M+(X) are inner-
regular. Next we show that Ω is surjective. Let (µK) ∈ limK(M+

b (K), ϕK,L)
be arbitrary and define

λ(F ) = sup{µK(F ∩K) : K ∈ K}

for all F ∈ K. It is not so hard to verify that λ is a Radon content. Now
Theorem 2.1.4 in [2] or Theorem 2.1 in [7] shows that λ has a unique extension
to a Radon measure, say µ. It is clear that Ω(µ) = (µK). □
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For a subset K of X, we let

MK(X) = {µ ∈Mb(X) : supp(µ) ⊆ K}

and

CK(X) = {fχK : f ∈ Cb(X)},
where supp(µ) denotes the support of the measure µ. When X is a locally
compact space we also let

CcK(X) = {f ∈ Cc(X) : supp(f) ⊆ K},

where Cc(X) is the Banach space of all real-valued continuous functions on X
with compact support. We endowMK(X) and CK(X) with their usual norms.

Lemma 2.3. Let X be a C-distinguished space, and let K ∈ K. Then

(i) MK(X) = {µ ∈Mb(X) : ∀f ∈ Cb(X), supp(f) ⊆ X \K,
∫
X
f dµ = 0 }.

(ii) MK(X) = CK(X)∗ as Banach spaces.

Proof. To prove (i), let µ ∈Mb(X)\MK(X). Then supp(µ)∩(X \K) ̸= ∅. Put
ν := |µ|χX\K , since X \K is an open set, then ν ̸= 0 and supp(ν) ⊆ X \K.
Thus there exists a compact subset L ⊆ X \ K such that ν(L) > 0. But
K ∩ L = ∅, and since by our assumption X is C-distinguished, then there
exists a real-valued function f ∈ Cb(X) such that f(X) ⊆ [0, 1], f(K) = {0}
and f(L) = {1}; see Lemma 2.2.1 in [2]. Hence∫

X

f d|µ| ≥
∫
X\K

f d|µ|

≥
∫
L

f dν = ν(L) > 0.

Therefore (i) is immediate.
(ii) It is immediate from Theorem 16.10 in [7]. □

Proposition 2.4. Let X be a C-distinguished space. For compact subsets
K,L ⊆ X with K ⊆ L, let ϕK,L :ML(X) −→MK(X) and ψK,L : CL(X)∗ −→
CK(X)∗ be the restriction maps. Then

M(X) = lim
K

(MK(X), ϕK,L) = lim
K

(CK(X)∗, ψK,L),

as topological vector spaces. If, further, X is a locally compact space, then

M(X) = lim
K

(CcK(X)∗, ψK,L).

Proof. Let Φ : M(X) −→ limK(MK(X), ϕK,L) be defined as [µ, ν] 7→ (µχK −
νχK). A similar argument to the proof of Lemma 2.2 shows that Φ is bijective.
This together with Lemma 2.1 clearly shows that Φ is a linear topological
isomorphism.
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Define Ψ : limK(MK(X), ϕK,L) −→ limK(CK(X)∗, ψK,L) by (µK) 7→ (IµK ),

where IµK (f) =
∫
X
f dµK . Notice by Lemma 2.3, that Ψ is well-defined. Now

it is easy to see that Ψ is a linear topological isomorphism.
Finally, to prove M(X) = limK(CcK(X)∗, ψK,L) in the case where X is

locally compact, notice first that CcK(X)∗ = MK(X) as Banach spaces and
then apply the first part. □

3. Locally convex space C̃b(X)

In this section, we first introduce a locally convex space of functions closely
related to the space Cb(X), and then show that its dual can be identified with
the topological vector space M(X).

By C̃b(X) we shall denote the vector space generated by the set {fχK :

f ∈ Cb(X), K ∈ K(X)}. A subset F of linear functionals on C̃b(X) is called
uniformly τk-smooth, if for each K ∈ K(X), each ε > 0 and for any net (fα)α
in Cb(X), with fα ↘ f and f ∈ C̃b(X)+, there is α0 such that

|F (fαχK)− F (fχK)| < ε

for all F ∈ F and α ≥ α0. Here, fα ↘ f means (fα)α is a decreasing net and
fα(x) → f(x) for each x in X. A single linear functional F is τk-smooth if the
one point set {F} is uniformly τk-smooth.

The following lemma enables us to define a locally convex topology on C̃b(X).

Lemma 3.1. Let F be a uniformly τk-smooth set of linear functionals on

C̃b(X). Then the mapping PF : C̃b(X) −→ [0,∞) defined by

PF (g) = sup{|F (g)| : F ∈ F} (g ∈ C̃b(X))

is a seminorm on C̃b(X).

Proof. Let g = fχK ∈ C̃b(X) where f ∈ Cb(X)+ and K ∈ K(X). Since the
sequence (1/nf)n tends to zero, then the uniformly τk-smoothness of F implies
that there exists a n0 ∈ N such that

|F ( 1
n
fχK)| < 1

for each F ∈ F and all n ≥ n0. Hence

PF (fχK) = sup{|F (fχK)| : F ∈ F} ≤ n0,

so clearly PF is a seminorm on C̃b(X). □

We denote by γ the locally convex topology on C̃b(X) generated by the
family of all seminorms {PF}F where F is a uniformly τk-smooth set of linear

functionals on C̃b(X), i.e., the topology of uniform convergence on the uni-

formly τk-smooth sets of the linear functionals on C̃b(X). By C̃γ(X) we mean

the space C̃b(X) equipped with the γ topology.
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Proposition 3.2. Let F be a γ-equicontinuous set of linear functionals on

C̃b(X). Then F is uniformly τk-smooth.

Proof. Let F be a γ-equicontinuous set of linear functionals, then there is a
uniformly τk-smooth set F1 of linear functionals such that F ⫅ F◦◦

1 , where F◦
1

denotes the polar of the set F1. Let (fα)α be a net in Cb(X) with fα ↘ 0
and ε > 0, then 1

εfα ↘ 0. So, for each K ∈ K, there exists α0 such that

|H( 1εfαχK)| ≤ 1 for all α ≥ α0 and all H ∈ F1. But this means that 1
εfαχK ∈

F◦
1 and so |F ( 1εfαχK)| ≤ 1 for all α ≥ α0 and all F ∈ F . Hence |F (fαχK)| ≤ ε

for all α ≥ α0 and all F ∈ F , and so F is uniformly τk-smooth. □

By a linear functional on C̃b(X) is γ-continuous if and only if it is a τk-
smooth linear functional.

A subset A of a vector lattice is called solid if whenever x ∈ A and |y| ≤ |x|
then y ∈ A. The solid hull of A is the smallest solid set containing A. A
vector space topology on a vector lattice is locally solid if there is a base of
solid neighborhood of zero. For a convenient account of locally convex vector
lattices, see [1].

Proposition 3.3. The solid hull of a uniformly τk-smooth set of linear func-

tionals on C̃b(X) is also uniformly τk-smooth.

Proof. Suppose that F is a uniformly τk-smooth set of linear functionals on

C̃b(X). It is sufficient to show that {F+ : F ∈ F} is uniformly τk-smooth;
see [11]. On the contrary, suppose that there exist ε > 0, K ∈ K and a net
(fα)α in Cb(X) such that fα ↘ 0 and sup{F+(fαχK) : F ∈ F} > ε for all
α. Let α0 be fixed, then there exists F ∈ F such that F+(fα0

χK) > ε. Now

F+(fα0χK) = sup{F (g) : 0 ≤ g ≤ fα0χK}, and so there exists g ∈ C̃b(X) such
that 0 ≤ g ≤ fα0χK and F (g) > ε. By the τk-smoothness of F we can find
a g1 ∈ Cb(X) such that 0 ≤ g1χK ≤ fα0χK and F (g1χK) > F (g) − ε. Let
ε1 = F (g1χK)− F (g) + ε > 0. Now ((fα − g1)

+)α ↘ 0, where α ≥ α0. So, by
the τk-smoothness of F , there exists α1 ≥ α0 such that |F ((fα1 − g1)

+χK)| <
F (g1χK)− ε1. Let h = max(fα1 , g1). Then

F (hχK) = F (g1χK + (fα1 − g1)
+χK)

= F (g1χK) + F ((fα1 − g1)
+χK)

> ε1.

Thus, for each α0, there exist h ∈ Cb(X), F ∈ F and α1 ≥ α0 such that
fα1 ≤ h ≤ fα0 and F (hχK) > ε1. Let D be the set of all functions h such that
there exist α ≤ β and F ∈ F such that fβ ≤ h ≤ fα and F (hχK) > ε1. Then
the set D can be directed downward to zero. Since F is a τk-smooth set, there
exists h in D with |F (hχK)| < ε1 for all F ∈ F . This contradiction proves the
assertion. □
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From Proposition 3.3 it follows that the γ topology is locally solid.
Let us recall that the strict topology β on Cb(X) is defined as the locally

convex topology generated by the seminorms

Pφ(g) = sup{φ(x)|g(x)| : x ∈ X },

as φ varies through the set of all the positive bounded Borel measurable func-
tions on X vanishing at infinity. It is well-known that the dual space (Cb(X), β)
can be identified with Mb(X), the Banach space of all finite regular Borel mea-
sures on X. For more details see [4, 6].

Lemma 3.4. Let X be a C-distinguished space. Suppose that F is a positive

linear functional on C̃b(X). Then, for any K ∈ K(X), the functional FK
defined on Cb(X) as FK(f) = F (fχK) is β-continuous.

Proof. Assume that (fα)α is a uniformly bounded net in Cb(X) such that
converges to zero uniformly on compact subsets. Then, for each compact set
K and ε > 0, there exists α0 such that

||fαχK ||∞ < ε

for all α ≥ α0 . Hence −εχK ≤ fαχK ≤ εχK and by the positivity of F ,
we have F (fα) −→ F (χK). By Proposition 2.8 in [10], it follows that FK is
β-continuous. □

Lemma 3.4 enables us to define the map qK : C̃γ(X)∗ −→ Cβ(X)∗ by

qK(F ) = FK , for each K ∈ K(X). We endow C̃γ(X)∗ with the weakest topol-
ogy for which each qK is continuous.

We need the following easy lemma.

Lemma 3.5. Let X be a C-distinguished space. If f is a positive Borel mea-
surable function on X and µ ∈M+(X) then∫

X

f dµ = sup

{∫
X

φdµ : 0 ≤ φ ≤ f, φ ∈ C
}
,

where C = {φ : φ =
∑n
i=1 aiχKi ,Ki ∈ K, ai ∈ R, i = 1, . . . , n}.

The following result gives a representation for positive γ-continuous linear

functionals on C̃b(X).

Proposition 3.6. Let X be a C-distinguished space. Let F be a positive γ-

continuous linear functional on C̃b(X). Then there exists a unique measure
µ ∈M+(X) such that

F (g) =

∫
X

g dµ

for all g ∈ C̃b(X).
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Proof. For each K ∈ K, define FK(f) = F (fχK) for any f ∈ Cb(X). By
Lemma 3.4, FK is β-continuous on Cb(X). Hence there exists a unique measure
µK ∈M+

b (X) such that

FK(f) =

∫
X

fdµK

for each f ∈ Cb(X); see Theorem 6.3 in [4]. Moreover, by Lemma 2.5 of [3], we
have

µK(C) = inf{FK(f) : f ∈ Cb(X), f ≥ χK} (C ∈ K).

Now, let C be a compact subset of X with C ⊆ K. Then the set A = {f ∈
Cb(X) : f|C = 1} can be directed downward to χC . Indeed, A = {fα}Λ so
that α > β if and only if fα ≤ fβ pointwise, where Λ is a directed set. If
α, β ∈ Λ, min(fα, fβ) = fγ for some γ ∈ Λ and γ ≥ α, β. Thus A = {fα}Λ is
a net of continuous functions with fα ↘ χC . Now γ-continuity of F implies
that FK(fα) −→ FK(χC). We conclude that µK(C) = F (χC) for all compact
subsets C,K with C ⊆ K.

For K ∈ K, define λ(K) = F (χK). We will show that λ is a Radon content.
To show this, suppose that K1,K2 are in K with K1 ⊆ K2. Then

λ(K2)− λ(K1) = F (χK2
)− F (χK1

)

= µK1∪K2(K2)− µK1∪K2(K1)

= µK2∪K1(K2 \K1)

= sup{µK1∪K2(C) : C ⊆ K2 \K1 , C ∈ K}
= sup{F (χC) : C ⊆ K2 \K1, C ∈ K}
= sup{λ(C) : C ∈ K, C ⊆ K2 \K1},

as required.
Let µ be the Radon part of λ. Then µ ∈M+(X) is a unique Radon measure

on X such that µ(K) = λ(K) for all compact subsets K; see Theorem 2.1 in [7]
or Theorem 2.1.4 in [2].

Now we show that F (g) =
∫
X
g dµ for all g ∈ C̃b(X). On the one hand, by

applying Lemma 3.5, for each f ∈ C+
b (X) and K ∈ K, we obtain

∫
X

fχK dµ = sup

{∫
X

φdµ : φ ∈ C, φ ≤ fχK

}
= sup{F (φ) : φ ∈ C, φ ≤ fχK}
≤ F (fχK).
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On the other hand,

F (∥f∥χK)−
∫
X

fχK dµ = ∥f∥λ(K)−
∫
X

fχK dµ

=

∫
X

(∥f∥χK − fχK) dµ

≤ F (∥f∥χK − fχK)

= F (∥f∥χK)− F (fχK),

and hence

F (fχK) ≤
∫
X

fχK dµ.

From the above, we conclude that

F (fχK) =

∫
X

fχK dµ.

Hence F (g) =
∫
X
g dµ for all g ∈ C̃b(X). The uniqueness of µ easily follows

from the inner-regularity of µ as usual. □

Example 3.7. Let F be a nonprincipal ultrafilter on N. Then for any bounded
sequence (an)n of real numbers there is a unique a = limn∈F an which is defined
so that for any ε > 0 the set {n ∈ N : |an − a| < ε} is in F . Consider

X = [0,1]. Then F (g) = limn→F g(1/n) for g ∈ C̃b([0, 1]) defines a positive
linear functional. The functional F is not represented by any Radon measures,

in particular not by δ0 since h = χ{0} ∈ C̃b([0, 1]) and F (h) = 0, which is

impossible. Note that F is norm-continuous on C̃b([0, 1]) but not γ-continuous.
In fact, fn → χ[1/2,1] in the γ-topology, but (F (fn))n does not converge to
F (χ[1/2,1]) = 0, where fn is defined as

fn(x) =

{
1/n if 1/2 ≤ x ≤ 1;
2(1/n− 1)x+ 1 if 0 ≤ x < 1/2.

We now state the main theorem of this section.

Theorem 3.8. Let X be a C-distinguished space. Then the mapping Φ :

[µ, ν] 7→ Fµ−Fν is a topological linear isomorphism from M(X) onto C̃γ(X)∗,
where

Fµ(g) =

∫
X

g dµ (g ∈ C̃b(X)).

Proof. To show that Φ is well-defined let µ ∈ M+(X) and let (fα)α be a net
in Cb(X) such that fα ↘ 0. Fix α0 and put f ′α := fα0 − fα for α ≥ α0. Thus
f ′α ↗ fα0 in Cb(X). From Theorem 2.1.5 of [2], it follows that (µχK)(f ′α) ↗
(µχK)(fα0) for each K ∈ K. That is Fµ is τk-smooth. Hence, by Proposition

3.3, Fµ ∈ C̃γ(X)∗.
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It is easy to see that Φ is linear and injective. The mapping Φ is also

surjective. Indeed, let F ∈ C̃γ(X)∗ be arbitrary. In view of Lemma 4.3. in [9]
and Proposition 3.3, we can write F = F+−F−, where F+ and F− are positive

functionals in C̃γ(X)∗. From Proposition 3.6, it follows that there are unique
measures µ1, µ2 ∈M+(X) such that

F+(g) =

∫
X

g dµ1, F
−(g) =

∫
X

g dµ2 (g ∈ C̃b(X)).

Thus

Φ(µ) = F+ − F− = F,

where µ := [µ1, µ2] ∈ M(X). Finally, we show that Φ and its inverse are
continuous. Suppose that ([µα, να])α is a net in M(X), then, by Lemma 2.1,
([µα, να])α converges to [µ, ν] in M(X) if and only if

µαχK − ναχK → µχK − νχK

in Mb(X) for each compact subset K. This is also equivalent to that

FµαχK − FναχK → FµχK − FνχK

in C̃γ(X)∗. This happens if and only if

Fµα − Fνα → Fµ − Fν .

Whence Φ is homeomorphism. □

In the following, Ccγ(X) will denote the space Cc(X) be equipped with the
γ topology.

Corollary 3.9. Let X be a locally compact space. Then

M(X) = Ccγ(X)∗,

as topological vector spaces.

Proof. In view of Theorem 3.8, it is sufficient to show that the restriction map

Γ : C̃γ(X)∗ −→ Ccγ(X)∗

is a linear topological isomorphism. For this, the only thing remains to prove
is that Γ is injective, then the rest is straightforward. Let f ∈ Cc(X) and
K = Supp(f). Then, from the Urysohn Lemma it follows that

fχK = inf{g ∈ C+
c (X) : g ≥ fχK}.

Now, by Theorem 2.1.5 in [2] and Theorem 3.8, we infer that

F (fχK) = sup{F (g) : g ∈ C+
c (X), g ≥ fχK}.

From which we conclude that Γ is injective. □
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We conclude this section by an example which shows that there exists a

linear functional on C̃b(X) which is continuous if C̃b(X) has the supremum
norm, but not continuous for the γ topology.

Example 3.10. Let V = {g ∈ C̃b(R) : limx→0+ g(x) exists } and F : V −→ R
be defined by F (g) = limx→0+ g(x) for each g ∈ V . Let V and C̃b(R) equipped
with the supremum norm. Then V ⊂ C̃b(R) and F ∈ V ∗, so there is a positive

functional F̄ ∈ C̃b(R)∗ such that F̄ |V = F , ||F̄ || = 1 and F̄ /∈ C̃γ(R)∗, which
shows that C̃γ(R)∗ ⫋ C̃b(R)∗. In fact, let C be the Cantor set. Then χC ∈
C̃b(R)\V , which proves the first assertion. For the second assertion, suppose, on

the contrary, F̄ ∈ C̃γ(R)∗. Thus, by Proposition 3.8, there exist µ, ν ∈M+(R)
such that F̄ (g) =

∫
R gdµ−

∫
R gdν for g ∈ C̃b(R). Let K ⊆ (0,∞) be a compact

subset. Then

µ(K)− ν(K) = F̄ (χK) = F (χK) = 0.

Similarly, µ(K) = ν(K) for each compact set K ⊆ (−∞, 0). Also µ({0}) −
ν({0}) = F̄ (χ{0}) = 0. Therefore, µ = ν and F̄ = 0, which is a contradiction.

4. Locally convex space Ĉb(X)

We begin with some definitions. By a sood we mean a bounded Borel mea-
surable function ψ : X −→ [0,∞) with compact support. We denote by Sd(X)

the set of all soods on X. We also denote by Ĉb(X) the vector space generated
by the set {fψ : f ∈ Cb(X), ψ ∈ Sd(X)}. That space actually consists of all
bounded Borel measurable functions on X with compact support.

Let I be a subset of linear functionals on Ĉb(X). Then I is said to be
uniformly τs-smooth, if for any net (fα)α in Cb(X) such that fα ↘ f with

f ∈ Ĉb(X)+ and ψ ∈ Sd(X), then for each ε > 0 there is α0 such that

|I(fαψ)− I(fψ)| < ε

for all I ∈ I and α ≥ α0. A linear functional F on Ĉb(X) is called τs-smooth
whenever the set {F} is uniformly τs-smooth.

Let I be a uniformly τs-smooth set of linear functionals on Ĉb(X), and let

PI : Ĉb(X) −→ [0,∞) be defined by

PI(g) = sup{|I(g)| : I ∈ I}

for each g ∈ Ĉb(X). It is straightforward to see that PI is a seminorm on

Ĉb(X). Then by σ topology on Ĉb(X) we mean the locally convex topology

generated by the seminorms PI . We write Ĉσ(X) for the space Ĉb(X) equipped
with the σ topology.

We omit the proof of the following proposition because it is similar to the
proof of Proposition 3.2.
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Proposition 4.1. A linear functional on Ĉb(X) is σ-continuous if and only if
it is τs-smooth.

Thus the dual of Ĉσ(X) consists of τs-smooth linear functionals.

Lemma 4.2. Let X be a C-distinguished space, and let ψ ∈ Sd(X) and I be

a positive linear functional on Ĉb(X). Then Iψ(f) := I(fψ) is a β-continuous
functional on Cb(X).

Proof. Suppose that I is a positive linear functional on Ĉb(X), and (fα)α be a
net in Cb(X) such that fα → 0 in β-topology. Then, by definition, ∥fαψ∥ → 0
for each ψ ∈ Sd(X). Let K be a compact subset such that ψ = ψχK , then the
positivity of I gives

|Iψ(fα)| = |I(ψfα)| = |I(fαψχK)| ≤ ∥fαψ∥I(χK),

for all α. Hence Iψ is β-continuous on Cb(X). □

The Lemma 4.2 allows us to define a topology on Ĉσ(X)∗. In fact, we equip

Ĉσ(X)∗ with the weakest topology which makes qψ : Ĉσ(X)∗ −→ Cβ(X)∗

continuous for each ψ ∈ Sd(X), where qψ(I) = Iψ.
The next theorem is our main result in this section.

Theorem 4.3. Let X be a C-distinguished space. Then the mapping Ψ :

M(X) → Ĉσ(X)∗ defined by Ψ([µ, ν]) = Iµ − Iν , where

Iµ(g) =

∫
X

gdµ, (g ∈ Ĉb(X))

is a linear topological isomorphism.

Proof. Let us first prove that Ψ is well-defined. Given µ ∈M+(X), let Iµ(g) =∫
X
gdµ for each g ∈ Ĉb(X). Suppose that (fα)α be a net in Cb(X) with fα ↘ 0.

Set f ′α := fα0 − fα for α ≥ α0, where α0 is an arbitrary but fixed index. Thus
f ′α ↗ fα0 . Since µψ is a Radon measure for ψ ∈ Sd(X), by Theorem 2.1.5
of [2], we deduce that ∫

X

f ′α d(ψµ) →
∫
X

fα0 d(ψµ),

which means that Iµ(ψf
′
α) → 0. Consequently, Iµ(ψfα) → 0. That is I is

τs-smooth and, by Proposition 4.1, I ∈ Ĉσ(X)∗, as required.
It is easy to verify that Ψ is injective. Now, we are going to prove that Ψ is

surjective. Let I ∈ Ĉσ(X)∗ be an arbitrary element. A similar argument as in
Proposition 3.3 shows that the σ topology is locally solid. Now invoke Lemma

4.3. in [9] to decompose I as I = I+− I−, where I+, I− ∈ Ĉσ(X)∗ are positive

functionals. Since the restrictions of I+ and I− to C̃b(X) belong to C̃γ(X)∗,
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Proposition 3.6 implies that there exist unique measures µ1, µ2 ∈M+(X) such
that

I+(g) =

∫
X

g dµ1, I
−(g) =

∫
X

g dµ2 (g ∈ C̃b(X)).

In particular,

I+(χK) = µ1(K), I−(χK) = µ2(K) (K ∈ K).

We will show that I = Iµ1 − Iµ2 . To show this, we first assume that g ∈ Ĉb(X)
be a positive function. Then, by Lemma 3.5, we get∫

X

g dµ1 = sup

{
n∑
i=1

aiµ1(Ki) : 0 ≤ φ :=

n∑
i=1

aiχKi ≤ g, φ ∈ C

}
= sup

φ∈C
{I+(φ) : 0 ≤ φ ≤ g}

≤ I+(g).

Let g ∈ Ĉb(X) and K = supp(g). Then g′ = ∥g∥χK − g is a positive function

in Ĉb(X), and so ∫
X

g′ dµ1 ≤ I+(g′).

From the above, it follows that∫
X

g dµ1 ≥ I+(g) (g ∈ Ĉb(X)).

By replacing g with −g in the above inequality, we obtain

I+(g) =

∫
X

g dµ1.

Similarly,

I−(g) =

∫
X

g dµ1 (g ∈ Ĉb(X)).

Thus, we proved that I = Iµ1 − Iµ2 .
Finally, we are required to prove that Ψ is continuous. To prove this, suppose

([µα, να])α be a net in M(X) which converges to zero. Then the net (µαχK −
ναχK)α converges to zero in Mb(X) for each compact subset K in X. Given
ψ ∈ Sd(X) and f ∈ Cb(X) with ∥f∥ ≤ 1 and K = Supp(ψ), we have

|Iµα(fψ)− Iνα(fψ)| =

∣∣∣∣∫
X

ψf dµα −
∫
X

ψf dνα

∣∣∣∣
=

∣∣∣∣∫
X

ψf d(µαχK)−
∫
X

ψf d(ναχK)

∣∣∣∣
≤

∫
X

|ψf | d|µαχK − ναχK |

≤ ∥ψ∥ ∥µαχK − ναχK∥.
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From which, we conclude that the net Ψ([µα, να]) = Iµα − Iµα converges to

zero in Ĉσ(X)∗; i.e., Ψ is continuous.
Conversely, assume (Iα)α, where Iα = Iµα − Iνα , be a net converges to

I := Iµ − Iν in Ĉσ(X)∗. Then for each compact set K in X we have

∥(µαχK − ναχK)− (µχK − νχK)∥ = ∥(IµαχK
− IναχK

)− (IµχK
− IνχK

)∥,

so that [µα, να] → [µ, ν] in M(X). This completes the proof. □
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