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Abstract. In this paper, we find matrix representation of a class of
sixth order Sturm-Liouville problem (SLP) with separated, self-adjoint

boundary conditions and we show that such SLP have finite spectrum.
Also for a given matrix eigenvalue problem HX = λV X, where H is
a block tridiagonal matrix and V is a block diagonal matrix, we find a
sixth order boundary value problem of Atkinson type that is equivalent

to matrix eigenvalue problem.
Keywords: Matrix representation, Sixth order Sturm-Liouville, Finite
spectrum.
MSC(2010): Primary: 34B24; Secondary: 47A75.

1. Introduction

We consider a sixth-order Sturm-Liouville equation of the form

(1.1) (p(x)y′′′(x))′′′ + q(x)y(x) = λw(x)y(x), x ∈ (a, b).

General, separated, self adjoint boundary conditions for (1.1) are of the form:

(1.2) A1u(a) +A2v(a) = 0, B1u(b) +B2v(b) = 0,

where

u = [y, y′, y′′], v = [(py′′′)′′, (py′′′)′, py′′′],

and A1, A2, B1, B2 are real matrices of order 3, such that

A1A
T
2 = A2A

T
1 , B1B

T
2 = B2B

T
1 ,
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Matrix representation of a sixth order Sturm-Liouville 1032

and the matrices (A1 : A2) and (B1 : B2) have rank 3 see [4]. In this paper,
we consider separated, self-adjoint boundary conditions as follows

cosαy(a)− sinα(py′′′)′′(a) = 0, cosαy′(a)− sinα(py′′′)′(a) = 0
cosαy′′(a)− sinα(py′′′)(a) = 0, cosβy(b)− sinβ(py′′′)′′(b) = 0
cosβy′(b)− sinβ(py′′′)′(b) = 0, cosβy′′(b)− sinβ(py′′′)(b) = 0.

(1.3)

Equation (1.1) with boundary conditions (1.3) is called sixth-order Sturm-
Liouville problem (SLP). If λ is such that the SLP has a nontrivial solution,
then λ is called an eigenvalue and nontrivial solution for that λ is called an
eigenfunction. The set of all eigenvalues of SLP is called the spectrum. We
assume that the interval (a, b) is finite and the coefficient functions r = 1

p , w, q

are real and in L1(a, b). The classical results of self-adjoint Sturm-Liouville
problem states that under this assumptions the eigenvalues are bounded below
and can be ordered as

λ0 ≤ λ1 ≤ λ2 ≤ · · · ,

where limk→∞ λk = ∞ see [3, 4, 5]. Spectral problems for differential equa-
tions arise in many different physical applications. Sixth-order Sturm-Liouville
problems arise in astrophysics, i.e., the narrow convecting layers bounded by
stable layers which are believed to surround A-type stars may be modeled
by sixth-order boundary value problems, also this problem arise in hydrody-
namic and magnetohydrodynamic stability theory [4, 6, 9]. Recently [7] stud-
ied a typical Sturm-Liouville problems having finite spectrum. More recently
[8, 1, 2] studied typical Sturm-Liouville problems of second and fourth order
having matrix representation. In this paper, we introduce a class of sixth order
self-adjoint Sturm-Liouville problems with finite spectrum and we find matrix
representation of these problems. Also for a given matrix eigenvalue prob-
lem HX = λV X, we find a sixth order boundary value problem equivalent to
matrix eigenvalue problem.

2. Matrix representation of SLP

Since, q, w, r ∈ L1(a, b), they can be identically zero on subintervals of (a, b).
Using this fact and following quasi-derivatives we obtain the system formulation
of equation (1.1) and matrix representation of SLP.
Let

(2.1) u1 = y, u2 = y′, u3 = y′′, u4 = py′′′, u5 = (py′′′)′, u6 = (py′′′)′′.
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Then, we obtain the system formulation of equation (1.1) as follows

(2.2)

u′
1 = u2,

u′
2 = u3,

u′
3 = ru4,

u′
4 = u5,

u′
5 = u6,

u′
6 = (λw − q)u1

, x ∈ (a, b).

The functions u1, · · · , u6 are called quasi-derivatives.

Definition 2.1. A differential equation of the form (1.1) is of Atkinson type
if for some integer number n > 2, there exists a partition of the interval (a, b)

(2.3) a = a0 < b0 < a1 < b1 < · · · < an < bn = b,

such that

(2.4) r = 0, on [ak, bk],

∫ bk

ak

xjw(x)dx ̸= 0, j = 0, 1, 2, 3, 4, k = 0, 1, · · · , n.

(2.5)

q = w = 0, on [bk−1, ak],

∫ ak

bk−1

xjr(x)dx ̸= 0, j = 0, 1, 2, 3, 4, k = 1, . . . , n.

Definition 2.2. A SLP of Atkinson type and a matrix eigenvalue problem are
equivalent if they have the same spectrum. Such matrix eigenvalue problem is
called a matrix representation of SLP.

For matrix representation of SLP we need the following notations:

(2.6)
rjk =

∫ ak

bk−1
xjr(x)dx, wjk =

∫ bk
ak

xjw(x)dx,

qjk =
∫ bk
ak

xjq(x)dx, j = 0, 1, ..., 4

Ak =

 1
4r4k

1
2r3k

1
2r2k

−1
2r3k −r2k −r1k

1
2r2k r1k rk

 , Dk = det(Ak), rk = r0k,

and Ak
ij denote the (i, j)th minor of matrix Ak.

In the subintervals [ak, bk], r is zero, thus from the system formulation (2.2)
we find that u3 is constant, u2 and u1 are polynomials of order one and two,
respectively. In subintervals [bk−1, ak], w = q = 0, thus u6 is constant, u5 and
u6 are polynomials of order one and two, respectively. Thus we have

(2.7)
u3(x) = ck, u2(x)− xu3(x) = dk
u1(x) +

1
2x

2u3(x)− xu2(x) = ek, k = 0, 1, . . . , n, x ∈ [ak, bk].

(2.8)
u6(x) = fk, u5(x)− xu6(x) = gk
u4(x) +

1
2x

2u6(x)− xu5(x) = hk, k = 1, . . . , n, x ∈ [bk−1, ak].
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Also we assume that
(2.9)

u6(a) = f0, u5(a)− au6(a) = g0, u4(a) +
1
2a

2u6(a)− au5(a) = h0,
u6(b) = fn+1, u5(b)− bu6(b) = gn+1, u4(b) +

1
2b

2u6(b)− bu5(b) = hn+1.

Lemma 2.3. Suppose that the differential equation (1.1) is of Atkinson type,
then for any solution y of SLP and (u1, u2, u3, u4, u5, u6) of the system (2.2)
we have:

(2.10)
ek − ek−1 = 1

4r4kfk + 1
2r3kgk + 1

2r2khk

dk − dk−1 = −1
2r3kfk − r2kgk − r1khk

ck − ck−1 = 1
2r2kfk + r1kgk + rkhk

, k = 1, 2, . . . , n.

(2.11)
fk+1 − fk = ek(λwk − qk) + dk(λw1k − q1k) +

1
2ck(λw2k − q2k)

gk+1 − gk = −ek(λw1k − q1k)− dk(λw2k − q2k)− 1
2ck(λw3k − q3k)

hk+1 − hk = 1
2ek(λw2k − q2k) +

1
2dk(λw3k − q3k) +

1
4ck(λw4k − q4k)

,

for k = 0, 1, 2, . . . , n.

Proof.

ck − ck−1 = u3(ak)− u3(bk−1) =

∫ ak

bk−1

u′
3(x)dx =

∫ ak

bk−1

ru4(x)dx

=

∫ ak

bk−1

r(
1

2
x2fk + xgk + hk)dx = rkhk + r1kgk +

1

2
r2kfk,

dk − dk−1 = [u2(ak)− aku3(ak)]− [u2(bk−1)− bk−1u3(bk−1)]

= u2(ak)− u2(bk−1)− (akck − ck−1bk−1)

=

∫ ak

bk−1

u′
2(x)dx− (akck − ck−1bk−1)

=

∫ ak

bk−1

u3(x)dx− (akck − ck−1bk−1)

= xu3(x)|ak

bk−1
−
∫ ak

bk−1

xu′
3(x)dx− (akck − ck−1bk−1)

= −
∫ ak

bk−1

xu′
3(x)dx = −

∫ ak

bk−1

xru4(x)dx

= −r1khk − r2kgk − 1

2
r3kfk,
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ek − ek−1 = [u1(ak) +
1

2
a2ku3(ak)− aku2(ak)]

− [u1(bk−1) +
1

2
b2k−1u3(bk−1)− bk−1u2(bk−1)]

=

∫ ak

bk−1

u′
1(x)dx− 1

2
a2kck +

1

2
b2k−1ck−1 − akdk + bk−1dk−1

= xu2|ak

bk−1
−
∫ ak

bk−1

xu′
2(x)dx− 1

2
a2kck +

1

2
b2k−1ck−1 − akdk

+ bk−1dk−1 =

∫ ak

bk−1

1

2
x2ru4(x)dx

=

∫ ak

bk−1

1

2
rx2(hk + xgk +

1

2
x2fk)dx =

1

2
r2khk +

1

2
r3kgk +

1

4
r4kfk.

Relations (2.11) may be proved similarly. □

We assume that det(Ak) ̸= 0, k = 1, 2, . . . , n. Thus, we can find fk, gk and
hk from (2.10) uniquely as follows

(2.12)

hk = 1
Dk

[(ck − ck−1)A
k
11 + (dk − dk−1)A

k
21 + (ek − ek−1)A

k
31]

gk = 1
Dk

[(ck − ck−1)A
k
12 + (dk − dk−1)A

k
22 + (ek − ek−1)A

k
32]

fk = 1
Dk

[(ck − ck−1)A
k
13 + (dk − dk−1)A

k
23 + (ek − ek−1)A

k
33].

Let

(2.13) Sk =

 Ak
11 Ak

21 Ak
31

−Ak
12 −Ak

22 −Ak
32

Ak
13 Ak

23 Ak
33

 , k = 1, 2, . . . , n,

By substituting (2.12) in (2.11) and using the matrix form we obtain

(2.14) SkUk−1 + (−Sk − Sk+1 +Qk)Uk + Sk+1Uk+1 = λWkUk,

where k = 1, . . . , n− 1, Uk = [ek, ck, dk] and

(2.15) Wk =

 wk w1k
1
2w2k

w1k w2k
1
2w3k

1
2w2k

1
2w3k

1
4w4k

 , Qk =

 qk q1k
1
2q2k

q1k q2k
1
2q3k

1
2q2k

1
2q3k

1
4q4k

 .

Substituting k = 0 in (2.11) we obtain

(2.16)
f1 − f0 = e0(λw0 − q0) + dk(λw10 − q10) +

1
2ck(λw20 − q20)

g1 − g0 = −e0(λw10 − q10)− d0(λw20 − q20)− 1
2c0(λw30 − q30)

h1 − h0 = 1
2e0(λw20 − q20) +

1
2d0(λw30 − q30) +

1
4c0(λw40 − q40).

For α, β ∈ (0, π), applying boundary conditions in (2.16) we have

(−S1 − Cα +Q0)U0 + S1U1 = λW0U0,(2.17)
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where

(2.18) Cα = cotα

 1 a 1
2a

2

a a2 − 1 1
2a

3 − a
1
2a

2 1
2a

3 − a 1− a2 + 1
4a

4

 .

Substituting k = n in (2.11) and using boundary conditions we obtain

SnUn−1 + (−Sn + Cβ +Qn)Un = λWnUn,(2.19)

where

(2.20) Cβ = cotβ

 −1 b 1
2b

2

b b2 − 1 1
2b

3 − b
1
2b

2 1
2b

3 − b 1− b2 + 1
4b

4

 .

Equations (2.14),(2.17) and (2.19) may be combined to give matrix eigenvalue
problem

(2.21) (Pαβ +Qαβ)U = λWαβU, α, β ∈ (0, π),

where

U = [U0, U1, . . . , Un], Ui = [ei, di, ci], Qαβ = diag(Q0, Q1, . . . , Qn),
Wαβ = diag(W0,W1, . . . ,Wn),

Pαβ =


−S1 − Cα S1

S1 −S1 − S2 S2

. . .
. . .

. . .

Sn−1 −Sn−1 − Sn Sn

Sn −Sn + Cβ

 .

From matrix Ak we see that the matrices Sk and thus matrix Pαβ are sym-
metric. For any solution y(x) of SLP (1.1),(1.3) and (u1, . . . , u6) of the system
(2.2), if we define ek, dk and ck by (2.7) then

U = [e0, d0, c0, . . . , en, dn, cn],

is an eigenvector of (2.21). Conversely, if U = [e0, d0, c0, . . . , en, dn, cn] is
an eigenvector of (2.21) and we define hk, gk, fk by (2.12) and u1, . . . , u6 by
(2.7),(2.8) , then (u1, . . . , u6) is a solution of the system (2.7) and by inte-
gration of the equations (2.2) we can extend them continuously to the whole
interval J = (a, b). In subintervals [ak, bk], u1, u2, u3 are defined by (2.7), for
any x ∈ [bk−1, ak] we have

u3(x)− u3(bk−1) =

∫ x

bk−1

r(s)u4(s)ds =

∫ x

bk−1

(hk + sgk +
1

2
s2fk)r(s)ds,
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u2(x)− u2(bk−1) =

∫ x

bk−1

u3(s)ds

=

∫ x

bk−1

ck−1ds+

∫ x

bk−1

∫ s

bk−1

[hk + ugk +
1

2
u2fk]r(u)duds

= ck−1(x− bk−1) +

∫ x

bk−1

[hk + sgk +
1

2
s2fk](x− s)r(s)ds,

u1(x)− u1(bk−1) =

∫ x

bk−1

u2(s)ds =

∫ x

bk−1

[u2(bk−1) + ck−1(s− bk−1)]ds

+

∫ x

bk−1

∫ s

bk−1

(hk + ugk + u2fk)(s− u)r(u)duds

= u2(bk−1)(x− bk−1) +
1

2
ck−1(x− bk−1)

2

+
1

2

∫ x

bk−1

(hk + sgk + s2fk)(x− s)2r(s)ds.

In subintervals [bk−1, ak], u4, u5, u6 are defined by (2.8), for any x ∈ [ak, bk] we
have

u6(x)− u6(ak) =

∫ x

ak

(λw − q)u1(s)ds =

∫ x

ak

(λw − q)(ek + sdk +
1

2
s2ck)ds,

u5(x)− u5(ak) =

∫ x

ak

u6(s)ds

=

∫ x

ak

fkds+

∫ x

ak

∫ s

ak

(λw − q)(ek + udk +
1

2
u2ck)duds

= fk(x− ak) +

∫ x

ak

(x− s)(λw − q)(ek + sdk +
1

2
s2ck)ds,

u4(x)− u4(ak) =

∫ x

ak

(λw − q)u1(s)ds =

∫ x

ak

(u5(ak) + fk(s− ak))ds

+

∫ x

ak

∫ s

ak

(s− u)(λw − q)(ek + udk +
1

2
u2ck)dsdu

= u5(ak)(x− ak) +
1

2
fk(x− ak)

2

+
1

2

∫ x

ak

(ek + sdk +
1

2
s2ck)(x− s)2(λw − q)ds.

Summarizing the previous results, we come to the following Theorem:

Theorem 2.4. Let Pαβ , Qαβ ,Wαβ be defined as above and assume that for
k = 1, 2, . . . , n, Dk ̸= 0 and let differential equation (1.1) be of Atkinson type.
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Then the SLP (1.1),(1.3) is equivalent to matrix eigenvalue problem (2.21),
thus such SLP has finite spectrum. Indeed the problem has at most 3n + 3
eigenvalues.

Remark 2.5.

(1) If α = 0, β ∈ (0, π), then the boundary conditions imply that e0 =
d0 = c0 = 0. Thus we can eliminate the first row and column of the
block tridiagonal matrix Pαβ . In this case the SLP is equivalent to

(Pβ +Qβ)Uβ = λWβUβ ,

where

Uβ = [U1, . . . , Un], Qβ = diag(Q1, . . . , Qn),

Wβ = diag(W1, . . . ,Wn),

and Pβ obtained by knocking the first row and column of Pαβ . There-
fore in this case we have at most 3n eigenvalues.

(2) If β = 0, α ∈ (0, π), then the boundary conditions imply that en =
dn = cn = 0. Thus we can eliminate the last row and column of the
block tridiagonal matrix Pαβ . In this case the SLP is equivalent to

(Pα +Qα)Uα = λWαUα,

where

Uα = [U0, U1, . . . , Un−1], Qα = diag(Q0, Q1, . . . , Qn−1),

Wα = diag(W0,W1, . . . ,Wn−1),

and Pα obtained by knocking the last row and column of Pαβ . There-
fore the problem has at most 3n eigenvalues.

(3) If β = 0, α = 0, then the boundary conditions imply that en = dn =
cn = 0 and e0 = d0 = c0. Thus we can eliminate the first and last row
and column of the block tridiagonal matrix Pαβ . In this case the SLP
is equivalent to

(P +Q)U = λWU,

where

U = [U1, . . . , Un−1], Q = diag(Q1, . . . , Qn−1),

W = diag(W1, . . . ,Wn−1),

and P obtained by knocking the first and last row and column of Pαβ .
Therefore in this case the problem has at most 3n− 3 eigenvalues.
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3. SLP with piecewise polynomial coefficients

First, we show that every SLP of Atkinson type is equivalent to a SLP with
piecewise polynomial coefficients.

Lemma 3.1. Let t1, t2 ∈ R, t1 ̸= t2. Then for arbitrary real numbers {ηi}40,
there exists a unique polynomial function p(x) of order 4 such that

(3.1)

∫ t2

t1

xjp(x)dx = ηj , j = 0, 1, 2, 3, 4.

Proof. Let p(x) = c4x
4 + c3x

3 + c2x
2 + c1x+ c0, then conditions (3.1) leads to

t52−t51
5 c4 +

t42−t41
4 c3 +

t32−t31
3 c2 +

t22−t21
2 c1 + (t2 − t1)c0 = η0

t62−t61
6 c4 +

t52−t51
5 c3 +

t42−t41
4 c2 +

t32−t31
3 c1 +

t22−t21
2 c0 = η1

t72−t71
7 c4 +

t62−t61
6 c3 +

t52−t51
5 c2 +

t42−t41
4 c1 +

t32−t31
3 c0 = η2

t82−t81
8 c4 +

t72−t71
7 c3 +

t62−t61
6 c2 +

t52−t51
5 c1 +

t42−t41
4 c0 = η3

t92−t91
9 c4 +

t82−t81
8 c3 +

t72−t71
7 c2 +

t62−t61
6 c1 +

t52−t51
5 c0 = η4

.(3.2)

The determinant of the coefficients matrix of (3.2) is (t2−t1)
25

266716800000 . Thus the
system (3.2) has a unique solution and there exists a unique polynomial p(x)
which satisfies conditions (3.1). □

We denote the polynomial constructed in Lemma 3.1 by
p(t1, t2, η0, η1, ..., η4), and we define piecewise polynomials r(x), q(x) and w(x)
on J as follows
(3.3)

r(x) =

{
p(bk−1, ak, rk, r1k, r2k, r3k, r4k), x ∈ [bk−1, ak], k = 1, . . . , n
0, x ∈ [ak, bk], k = 0, . . . , n

q(x) =

{
p(ak, bk, qk, q1k, q2k, q3k, q4k), x ∈ [ak, bk], k = 0, . . . , n
0, x ∈ [bk, ak], k = 0, 1, . . . , n− 1

w(x) =

{
p(ak, bk, wk, w1k, w2k, w3k, w4k), x ∈ [ak, bk], k = 0, . . . , n
0, x ∈ [bk, ak], k = 0, 1, . . . , n− 1

Theorem 3.2. Let Eq. (1.1) of Atkinson type be given and rik, qik, wik are
defined by (2.6). Let r(x), q(x) and w(x) on J be defined by (3.3). Then the
SLP (1.1),(1.3) is equivalent to SLP

(3.4) (p(x)y′′′(x))′′′ + q(x)y(x) = λw(x)y(x), x ∈ (a, b),

with the same boundary conditions (1.3).

Proof. By Lemma 3.1 and relations (3.3) we find

rik =

∫ ak

bk−1

xir(x)dx = rik, wik =

∫ bk

ak

xiw(x)dx = wik,
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qik =

∫ bk

ak

xiq(x)dx = qik.

Thus, both SLPs (1.1) and (3.4) have the same rik, wik, qik. Hence by Theorem
2.4, they are equivalent to the same matrix eigenvalue problem of the form
(2.21) and they are equivalent. □

4. SLP representation for matrix eigenvalue problem

We consider matrix eigenvalue problem

(4.1) HX = λV X,

where H is a real symmetric block tridiagonal matrix of the form

(4.2) H =


H11 H12

H12 H22 H23

. . .
. . .

. . .

Hn−2,n−1 Hn−1,n−1 Hn−1,n

Hn−1,n Hnn

 ,

and V = diag(V1, V2, . . . , Vn). Here Hij and Vi are 3 × 3 symmetric matrices.
Also we assume that det(Vi) ̸= 0, Vi(2, 2) = 2Vi(1, 3), and

Hi,i+1 =

 hi
11 hi

12 hi
13

hi
12 hi

22 hi
23

hi
13 hi

23 hi
33

 ,

where all entries of this matrix except one are known. We suppose that hi
22 is

unknown. Suppose hi
22 = h, then determinant of Hi,i+1 is as follows

(4.3) det(Hi,i+1) = ch+ d,

where c and d are known real numbers. Comparing (4.1) and (2.21) we find

(4.4) Hi,i+1 = Si.

Hence, the determinants of matrices Hi,i+1 and Si are equal and we obtain

(4.5) −Di =
1

det(Hi,i+1)
=

1

ch+ d
.

If we consider 1
ch+d = q, by (4.4) and (2.13) we find

(r1i)
2 − rir2i + hi

11q = 0
−1

2rir3i +
1
2r1ir2i + hi

12q = 0
−1

2r1ir3i +
1
2 (r2i)

2 + hi
13q = 0

1
4rir4i −

1
4 (r2i)

2 − c1q + d1 = 0
1
4r1ir4i −

1
4r2ir3i + hi

23q = 0
−1

4r2ir4i +
1
4 (r3i)

2 + hi
33q = 0

.(4.6)
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We denote the nonlinear system (4.6) by F (x) = 0, and DF (x) denotes the
jacobian matrix of F (x). We define matrices {Ai}61 as follows

Ai = DF (ei),

where ei is the vector whose ith coordinate is one and the others are zero , and
γ =

∑6
1 ∥Ai∥.

Theorem 4.1. Let C = {x = (x1, . . . , x6)|xi ̸= 0} and C0 ⊆ C be the convex
set in C such that

(1) DF (x0)
−1 exist and ∥DF (x0)

−1∥ ≤ β,
(2) ∥DF (x0)

−1F (x0)∥ ≤ α,

for some x0 ∈ C0. Consider the quantities

h := αβγ, r1,2 =
1±

√
1− 2h

h
α.

If h ≤ 1
2 and Sr1(x0) ⊂ C0, then the sequence {xk} defined by

xk+1 := xk −DF (xk)
−1F (xk), k = 0, 1, . . . ,

remains in Sr1(x0) and converges to the unique zero of F (x) in C0 ∩ Sr2(x0).

Proof. Let x1 = [x1
1, x

1
2, . . . , x

1
6],x2 = [x2

1, x
2
2, . . . , x

2
6]. In this case for any

x1,x2 ∈ C0 we have

DF (x2)−DF (x1) =
6∑

i=1

Ai(x
2
i − x1

i ),

and

∥DF (x2)−DF (x1)∥ ≤
6∑

i=1

∥Ai∥∥x2 − x1∥.

Thus ∥DF (x2)−DF (x1)∥ ≤ γ∥x2−x1∥, and all conditions of Newton-Kantorovich
Theorem [5] are hold. Hence Newton’s method converges to the unique solution
of system (4.6) in C0 ∩ Sr2(x0). □

Indeed in Theorem 4.1 we compute {rki}4k=0 and hi
22 of matrices Hi,i+1. By

comparing (4.1) and (2.21) we find

Hii = −Si−1 − Si, i = 1, 2, . . . , n.

Thus by definition of Si (2.13) we obtain

(4.7)

qi−1 = Hii(1, 1) +
Ai−1

11

Di−1
+

Ai
11

Di
,

q1,i−1 = Hii(1, 2) +
Ai−1

21

Di−1
+

Ai
21

Di
,

q2,i−1 = 2(Hii(1, 3) +
Ai−1

31

Di−1
+

Ai
31

Di
),

q3,i−1 = 2(Hii(2, 3) +
Ai−1

32

Di−1
+

Ai
32

Di
),

q4,i−1 = 4(Hii(3, 3) +
Ai−1

33

Di−1
+

Ai
33

Di
), i = 2, 3, . . . , n.
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By setting H11 = −S1 − Cα we find

(4.8)

q0 = H11(1, 1) +
A1

11

D1
+ cotα,

q1,0 = H11(1, 2) +
A1

21

D1
+ a cotα,

q2,0 = 2(H11(1, 3) +
A1

31

D1
+ 1

2a
2 cotα),

q3,0 = 2(H11(2, 3)− A1
32

D1
− (a− 1

2a
3) cotα),

q4,0 = 4(H11(3, 3) +
A1

33

D1
+ (1− a2 + 1

4a
4) cotα).

By following Hnn = −Sn + Cβ we find

(4.9)

qn = Hnn(1, 1) +
An

11

Dn
+ cotβ,

q1,n = Hnn(1, 2) +
An

21

Dn
− b cotβ,

q2,n = 2(Hnn(1, 3) +
An

31

Dn
− 1

2b
2 cotβ),

q3,n = 2(Hnn(2, 3)− An
32

Dn
+ (b− 1

2b
3) cotβ),

q4,n = 4(Hnn(3, 3) +
An

33

Dn
− (1− b2 + 1

4b
4) cotβ).

Let

(4.10)
wi = Vi(1, 1), w1i = Vi(1, 2), w2i = 2Vi(1, 3),
w3i = 2Vi(2, 3), w4i = 4Vi(3, 3).

If we define a partition of (a, b) by (2.3) and construct piecewise polynomial
functions p, q, w by (3.3) then, p, q, w satisfy (2.4), (2.5) and equation (3.4) is of
Atkinson type. Therefore, by Theorem 3.2, BVP (3.4) and matrix eigenvalue
problem (3.1) are equivalent. Summarizing the previous results, we have the
following Theorem:

Theorem 4.2. Let n > 2, H be a real symmetric block tridiagonal matrix
of the form (4.2), V = diag(V1, . . . , Vn) be a real symmetric block diagonal
matrix, where det(V ) ̸= 0 and Vi(2, 2) = 2Vi(1, 3). Then for a given boundary
conditions (1.3), the matrix eigenvalue problem (4.1) is equivalent to SLP of
Atkinson type of the form (3.4).

5. Conclusion

In this paper we considered a typical class of sixth order Sturm-Liouville
problems. We proved that the SLP is equivalent to a symmetric matrix eigen-
value problem and thus the SLP has finite spectrum. Also for a given matrix
eigenvalue problem HX = λV X, where H is a block tridiagonal matrix and V
is a block diagonal matrix, we found a sixth order boundary value problem of
Atkinson type that is equivalent to matrix eigenvalue problem.
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