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ABSTRACT. In this paper, we find matrix representation of a class of
sixth order Sturm-Liouville problem (SLP) with separated, self-adjoint
boundary conditions and we show that such SLP have finite spectrum.
Also for a given matrix eigenvalue problem HX = AV X, where H is
a block tridiagonal matrix and V' is a block diagonal matrix, we find a
sixth order boundary value problem of Atkinson type that is equivalent
to matrix eigenvalue problem.
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1. Introduction
We consider a sixth-order Sturm-Liouville equation of the form
(1.1) (p(z)y" (2))" + q(@)y(x) = Mw(z)y(x), = € (a,b).
General, separated, self adjoint boundary conditions for (1.1) are of the form:
(1.2) Aju(a) + Agv(a) = 0, Byu(b) + Bav(b) =0,

where
/I/]

u=[y,y,y"], v=1[py")", (0y") , py

and Aj, Ay, B, By are real matrices of order 3, such that

)

A AT = A,AT B\BT = B,BT,
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Matrix representation of a sixth order Sturm-Liouville 1032

and the matrices (41 : As) and (Bj : Bs) have rank 3 see [4]. In this paper,
we consider separated, self-adjoint boundary conditions as follows

cosay(a) —sina(py”)”’(a) = 0, cosay’(a) — sina(py”) (a) =0
(1.3) cosay”(a) —sina(py”)(a) =0, cos By(b) —sin B(py"")"(b) =0
cos By’ (b) — sin B(py™)'(b) = 0, cos By” (b) — sin B(py"")(b) = 0.

Equation (1.1) with boundary conditions (1.3) is called sixth-order Sturm-
Liouville problem (SLP). If A is such that the SLP has a nontrivial solution,
then A is called an eigenvalue and nontrivial solution for that A is called an
eigenfunction. The set of all eigenvalues of SLP is called the spectrum. We
assume that the interval (a, b) is finite and the coefficient functions r = %, w, q

are real and in L'(a,b). The classical results of self-adjoint Sturm-Liouville
problem states that under this assumptions the eigenvalues are bounded below
and can be ordered as

A< AL,

where limy_,o Ay = 00 see [3, 4, 5]. Spectral problems for differential equa-
tions arise in many different physical applications. Sixth-order Sturm-Liouville
problems arise in astrophysics, i.e., the narrow convecting layers bounded by
stable layers which are believed to surround A-type stars may be modeled
by sixth-order boundary value problems, also this problem arise in hydrody-
namic and magnetohydrodynamic stability theory [4, 6, 9]. Recently [7] stud-
ied a typical Sturm-Liouville problems having finite spectrum. More recently
[8, 1, 2] studied typical Sturm-Liouville problems of second and fourth order
having matrix representation. In this paper, we introduce a class of sixth order
self-adjoint Sturm-Liouville problems with finite spectrum and we find matrix
representation of these problems. Also for a given matrix eigenvalue prob-
lem HX = AV X, we find a sixth order boundary value problem equivalent to
matrix eigenvalue problem.

2. Matrix representation of SLP

Since, q,w,r € L*(a,b), they can be identically zero on subintervals of (a, b).
Using this fact and following quasi-derivatives we obtain the system formulation
of equation (1.1) and matrix representation of SLP.

Let

(21)  wi=y, ua=v, us=9y", ua=py", us = (py"), us = (py")".
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Then, we obtain the system formulation of equation (1.1) as follows

uj = ug,
!
Uy = U3,
!
Ug = TU
(2.2) 3 b , x € (a,b).
Uy = Us,
uf = U,

ug = (Aw — q)uy
The functions uq, - - - ,ug are called quasi-derivatives.

Definition 2.1. A differential equation of the form (1.1) is of Atkinson type
if for some integer number n > 2, there exists a partition of the interval (a,b)
(2.3) a=ag<by<a <b < <ap,<b, =0,
such that

b )
(2.4) r=0, on [ak,bg], / w(x)dr #0,7=0,1,2,3,4, k=0,1,--- ,n.

ak

(2.5)
QA .
qg=w=0, on [by_1,ax], / r(x)dx #0,7=0,1,2,3,4, k=1,...,n.
br_1

Definition 2.2. A SLP of Atkinson type and a matrix eigenvalue problem are
equivalent if they have the same spectrum. Such matrix eigenvalue problem is
called a matrix representation of SLP.

For matrix representation of SLP we need the following notations:
Tik = f;:“_l 2r(x)dx, Wik = f:: 2w (z)dz,

e = [ dlq(x)de,  j=0,1,...4

1 1 1
274k 573k 372k
1
Ap=| —357r3k —rox —Tix |, Dyp=det(Ar), rr = rox,
1
572k T1k Tk

(2.6)

and AJ; denote the (i, j)th minor of matrix Ay.

In the subintervals [ag, bg], r is zero, thus from the system formulation (2.2)
we find that us is constant, us and w; are polynomials of order one and two,
respectively. In subintervals [by_1,ax], w = ¢ = 0, thus ug is constant, us and
ug are polynomials of order one and two, respectively. Thus we have

(2.7) uz(x) = ¢k,  uz(x) — auz(x) = di
' uy () + $2%us(z) — zus(z) = e, k=0,1,...,n, @ € [ag, b].

(2.8) ug(z) = f, us(z) — zug(z) = gr
’ ug(w) + 372ug(w) — zus(x) = hyp, k=1,...,n, x € [bp_1,ax).
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Also we assume that

(2.9)
ug(a) = fo, us(a) —aug(a) = go, us(a)+ 2a’ug(a) — aus(a) = ho,
ug(b) = fny1, us(b) —bug(b) = gni1, ua(b) + $b%ug(b) — bus(b) = hny1.

Lemma 2.3. Suppose that the differential equation (1.1) is of Atkinson type,
then for any solution y of SLP and (u1,us, us,us,us,ug) of the system (2.2)
we have:

er — en—1 = 3Tarfe + 27360k + ST2khk
(2.10) dk _dk—l = —%’r‘gkfk — T2kgk —lehk , k‘ = 1,2,...,7’1,.
Ck — Chm1 = 2Tokfr + rikgr + by

(2.11)
Srt1 = fr = en(Awr — @) + di(Awik — qur) + Ser(Awak — gar)
Get1 — gk = —ex(Awie — qui) — di(Awar — o) — Sex(Awse — qs)

hip1 — hi = Sex(Mwar, — qor) + 2di(Awsr, — gar) + e (Awag — qar)
fork=0,1,2,... n.

Proof.

ag ag
ek — cp—1 = ug(ag) —usz(br_1) = / ub(z)dr = / rug(x)de

br—1 br—1

ar 1 1
= / T(§$2fk +xgr + hi)dw = rihg + riegr + §T2kfka
br_1

di, — di—1 = [uz(ax) — arus(ar)] — [ug(br—1) — br—1u3(bk—1)]

= uz(ax) — u2(bp—1) — (arcr — cr—1bp—1)

ay
= / ub(z)dz — (agcr — ck_1bk_1)

br—1

ag
= / us(z)dx — (agcr — cr—1bk—1)

br—1
ak
= zuz(z)[pr | — /b aufy(z)dr — (akcr — ck—1bk—1)
k—1
ag ag
= —/ zuy(x)de = 7/ xrug(x)dx
br_1 br_1

1
= —Tikhk — roxgr — §T3kfka
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1,
er — ep—1 = [ui(ag) + §aku3(ak) — apuz(ay)]
1
— [u1 (br—1) + §bi_1u3(bk—1) — bp—1u2(br—1)]

ak 1 1
= /b u)(z)dz — iaick + ib%—lck—l —apdy + bp_1dp_1
k—1

e 1 1
= zuglyr  — / zub(z)dr — iaick + Qbi—ﬁk—l — agdy
k—1

ag 1
+bp_1dp_1 = / fx2ru4(x)dx
br—1 2

L | 1 1 1 1
= /bk1 57“332(7% + g, + ixsz)dl“ = §T2khk + 573Kk + 17"4kfk-

Relations (2.11) may be proved similarly. O

We assume that det(Ag) # 0, k= 1,2,...,n. Thus, we can find f, g and
hi from (2.10) uniquely as follows
hie = pl(en — cr1)AYy + (di — di—1) A5y + (e, — ex—1) A5
(2.12) gk = p-(ck — ck—1) ATy + (di, — di—1) A5y + (e — e—1) Afy]
fr = prl(er = cuo1) Ay + (di — di—1) A3 + (ex — e—1) Af3].
Let
Af A5 AL
(2.13) Sp=| —Ak, ALk, A% |, k=1,2,...,n,
Afy Ay Al

By substituting (2.12) in (2.11) and using the matrix form we obtain

(2.14) SUk—1+ (=Sk — Skt1 + Qi)Uk + Sk1Uig1 = AW U,
where k=1,...,n—1,Uy = [ex, ¢, di] and

Wi W1k %w2k dk qik lQQk

(2.15) Wi = wik  Wor  sw3k | ,Qr = Qi @2k 593k

%wzk %ws.k 2 W4k %q2k %(IBk 1494k

Substituting k¥ = 0 in (2.11) we obtain

f1 = fo = eo(Mwo — qo) + di(Awio — q10) + Fer(Awao — g20)
(2.16) g1 — go = —eo(Awio — q10) — do(Awag — g20) — Fco(Awso — g30)
hi — ho = Seo(AMwzo — g20) + 3do(Awzo — gs0) + +co(Awao — quo).

For «, 8 € (0,7), applying boundary conditions in (2.16) we have
(2.17) (=51 = Cq + Qo)Up + S1U1 = AWy,
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where
1 a %aQ
(2.18) C, = cota a a*-1 3a° —a
1.2 1.3 S 2,14
sa°  5a a l1—a*+za

Substituting k£ = n in (2.11) and using boundary conditions we obtain

(2.19) SpUn—1+ (=Sn + Cs + Qn)Up = AW, Uy,
where

-1 b 10?2
(2.20) Cg=cotB| b b2—1 1 —b

12 L3 —p 1024 Lt

Equations (2.14),(2.17) and (2.19) may be combined to give matrix eigenvalue
problem

(2.21) (Pap + Qaﬂ>U = AMWugU, a,p € (0,7),

where

U= [U07 Ula ceey Un]a U7 = [ei7di7ci]7 Q(Jtﬂ = diag(Q()v le RN} Q'n,)7
Waﬁ = diag(Wo, Wl, ceey Wn),
=51 —C, S1
S1 —51— 5 So
Pa[j = : ..
Snfl _Sn71 - Sn Sn
s, 5,4+ Cs

From matrix Aj we see that the matrices S;, and thus matrix P,g are sym-
metric. For any solution y(x) of SLP (1.1),(1.3) and (uq,...,ug) of the system
(2.2), if we define e, d;, and ¢ by (2.7) then

U= [607 d07CO7 <.y En, dn,Cn],

is an eigenvector of (2.21). Conversely, if U = [eg,do,Co,- .., €n,dn,cn] 18
an eigenvector of (2.21) and we define hy, gk, fr by (2.12) and uq,...,ug by
(2.7),(2.8) , then (uq,...,ug) is a solution of the system (2.7) and by inte-
gration of the equations (2.2) we can extend them continuously to the whole
interval J = (a,b). In subintervals [ay, bg], u1,us, us are defined by (2.7), for
any x € [by—_1, ar] we have

uz(x) —ug(bg—1) = /76 r(s)ug(s)ds = /ﬂf (hie + sgr + %Ska)T‘(S)d&

bk,1 bk—l
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ug(x) — ug(bg—1) = / usz(s)ds
br—1
xT xT S 1
/ Cr_1ds + / / [hi + ugr + §u2fk]r(u)duds
br—1 br—1 Jbr—1

=cp_1(z —bp_1) + /x [hi + sgr + %Ska](x — s)r(s)ds,

br_1

up () — ug(bg—1) = /I us(s)ds = /I [ug(bg—1) + ck—1(s — bx—1)]ds

br—1 br_1

+ / / (hx + ugr, + usz)(s — u)r(u)duds
br—1 Jbr—1
1
= ug(bg_1)(z — br—1) + 5%-1(33 —b—1)?

+ % /I (hi + sgi + ssz)(x — 5)%r(s)ds.

br—1

In subintervals [bg_1, ag], u4, us, ug are defined by (2.8), for any x € [ay, br] we

have

us(2) ~ u(on) = [

ay

¥ 1
(Aw — q)ui(s)ds = / (Aw — q)(ex + sdi, + §s2ck)ds,

ag

x

x

us(z) — us(ag) = / ug(s)ds

a

,
x x S 1

= / frds + / / (Aw — q)(ex + udy + ~u?cy,)duds
ag ak v ak 2

= fr(z —ar) + / (x — s)(A\w — q) (e + sdi, + %szck)ds,

Qg

x

ug(x) —ug(ag) = /i(/\w —q)ui(s)ds = / (us(ak) + fr(s — ag))ds

ag ag

x S 1
+ / / (s —u)(Aw — q)(ex + udy + iu%k)dsdu
ar Jag

= ug(ag)(z — ag) + %fk(ﬂ? — ay)?

1 [ 1
+ 5/ (e + sdi + 5520k)(a: —5)2(\w — q)ds.
ak

Summarizing the previous results, we come to the following Theorem:

Theorem 2.4. Let Pog , Qup ;Wap be defined as above and assume that for
k=1,2,...,n, Dy # 0 and let differential equation (1.1) be of Atkinson type.
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Then the SLP (1.1),(1.3) is equivalent to matrix eigenvalue problem (2.21),
thus such SLP has finite spectrum. Indeed the problem has at most 3n + 3
etgenvalues.

Remark 2.5.

(1)

If « =0, 8 € (0,7), then the boundary conditions imply that eg =
do = ¢g = 0. Thus we can eliminate the first row and column of the
block tridiagonal matrix P,g. In this case the SLP is equivalent to

(Ps+Qp)Us = AWsUp,
where
UB = [Ulv R U'ft]v QB = diag(Qla sy Qn)7

Wp = diag(Wh, ..., W,),

and Pg obtained by knocking the first row and column of P,g. There-
fore in this case we have at most 3n eigenvalues.

If 8 =0, a € (0,7), then the boundary conditions imply that e, =
dp, = ¢, = 0. Thus we can eliminate the last row and column of the
block tridiagonal matrix P,g. In this case the SLP is equivalent to

(Poz + Qa)Ua = /\Wanm
where
Ua = [U()a Ula ceey Un—l]’ Qa == diag(QOa Qla ey Qn—l)a

Wa = diag(WO7 Wla RN Wn71)>

and P, obtained by knocking the last row and column of F,g. There-
fore the problem has at most 3n eigenvalues.

If 8 =0,a =0, then the boundary conditions imply that e, = d,, =
¢, = 0 and eg = dy = ¢g. Thus we can eliminate the first and last row
and column of the block tridiagonal matrix P,g. In this case the SLP
is equivalent to

(P+Q)U = AWU,

where
U= [U17 sy Un,]_], Q = diag(Qla ey Qn71)7

W = diag(Wl, ey Wn—l)y

and P obtained by knocking the first and last row and column of P,g.
Therefore in this case the problem has at most 3n — 3 eigenvalues.
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3. SLP with piecewise polynomial coefficients

First, we show that every SLP of Atkinson type is equivalent to a SLP with
piecewise polynomial coefficients.

Lemma 3.1. Let t;,ty € R, t; # ta. Then for arbitrary real numbers {n;}¢,
there exists a unique polynomial function p(x) of order 4 such that

to )
(3.1) [ wivtards =, j=0.1.2:3.4

t1

Proof. Let p(x) = cyz* + 323 + caw? + c12 + ¢, then conditions (3.1) leads to

t25tlc +t2 tlc —|—t2 tlc + 1 1cl+(t2—t1)co—no

t2 tlc _|’_t2 tlc +t4 t;lc +t2 tlc + 100:/]71
(3.2) t2_tlc +t2 tlc _|_t2 th +t2 t1c + §CO—772
t"'gtlc _'_t; Zc +t6 t?c +t2 tlc +t tlcozng
t5— t‘l’c +t8 t?c +t7 t{c +t6 t?c +t5 §CO—774

25
The determinant of the coefficients matrix of (3.2) is 2(3%721_6715810)0000' Thus the
system (3.2) has a unique solution and there exists a unique polynomial p(z)

which satisfies conditions (3.1). O

We denote the polynomial constructed in Lemma 3.1 by
p(t1,t2, M0, M1, -, Ma), and we define piecewise polynomials 7(x),G(z) and w(x)
on J as follows
(3.3)
D(bk—1, Qs Ty T1ks T2k, T3k, Tak)s X € [br—1,0k], k=1,...,n
0,z € [ak,bk], k=0,...,n
plak, bk, Gk, qik, 42k, 3k, ak), T € [ak,bi], k=0,...,n

q(w) = 0,z € [bg,ax], k=0,1,...,n—1
w(x) — p(ak‘)bkawk7wlk7w?kaw?)k:awllk); X e [akabkL k = 07- . -;n
0,z € [bg,ax), k=0,1,...,n—1

Theorem 3.2. Let Eq. (1.1) of Atkinson type be given and vk, gik, wix are
defined by (2.6). Let 7(x),q(z) and wW(x) on J be defined by (3.3). Then the
SLP (1.1),(1.3) is equivalent to SLP

(3-4) (P(x)y"™ ()" +q@)y(z) = Mo(2)y(z), = € (a,b),
with the same boundary conditions (1.3).

Proof. By Lemma 3.1 and relations (3.3) we find

ak b
ik = / T (x)dr = ri, Wi = / 2'w(x)dr = wi,

br—1 ak
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b )
G = / 2'q(x)dr = qix.

af

Thus, both SLPs (1.1) and (3.4) have the same 75, w;, ¢ix. Hence by Theorem
2.4, they are equivalent to the same matrix eigenvalue problem of the form
(2.21) and they are equivalent. O

4. SLP representation for matrix eigenvalue problem
We consider matrix eigenvalue problem
(4.1) HX =)\VX,
where H is a real symmetric block tridiagonal matrix of the form

Hy Hio
Hys Ha Hos

(4.2) H= ,
Hn72,n71 anl,nfl anl,n
anl,n Hnn

and V = diag(V1,Va,...,V,). Here H;; and V; are 3 X 3 symmetric matrices.
Also we assume that det(V;) # 0, V;(2,2) = 2V;(1, 3), and

My b b,

Hiiv1 = | hily hiy hys |,

hiz  haz  his
where all entries of this matrix except one are known. We suppose that hi, is
unknown. Suppose hb, = h, then determinant of H; ;11 is as follows

(4.3) det(H; i41) = ch +d,

where ¢ and d are known real numbers. Comparing (4.1) and (2.21) we find
(4.4) Hiip1 =5

Hence, the determinants of matrices H; ;41 and S; are equal and we obtain

1 1
- D; = = .
det(Hi7i+1) ch + d

If we consider T{Ld =q, by (4.4) and (2.13) we find

(4.5)

(r1i)* = rirai + hi1g =0
—37ir3i + 37172 + hipq =0
—571ir3i + 5(r2i)® + hizg =0
%Tﬂqi — i(T‘Qi)Q - Clq + d1 =0
171740 — {2730 + Mg =0
—372ir4i + 5 (3:)* + hi3q = 0

(4.6)
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We denote the nonlinear system (4.6) by F(x) = 0, and DF(x) denotes the
jacobian matrix of F(x). We define matrices {4;}¢ as follows

Ai = DF(ei),
where e; is the vector whose ith coordinate is one and the others are zero , and
6
v =221 1Al
Theorem 4.1. Let C = {x = (x1,...,26)|x; # 0} and Cy C C be the convex
set in C' such that
(1) DF(x0)~! exist and ||DF(xo)7 || < 8,
(2) |DF(x0)~'F(x0)|| < a,
for some x¢ € Cy. Consider the quantities
1+vI—2h
—_—a.
h
Ifh < % and Sy, (x0) C Cy, then the sequence {xi} defined by
Xg4+1 = Xf — DF(Xk)_lF(Xk), k=0,1,...,

remains in Sy, (Xo) and converges to the unique zero of F(x) in Co N Sy, (Xo).

h:=afy, ma2=

Proof. Let x1 = [z1,23,... 28], x2 = [2%,2%,...,22]. In this case for any
X1,Xg € Cy we have
6
DF(xp) — DF(x1) = Y Ai(a} — x}),
i=1
and
6
IDF(x2) = DF(x1)ll <D [|Aslllxz — xa .
i=1

Thus ||DF(x2)—DF(x1)]| < 7||x2—x1]|, and all conditions of Newton-Kantorovich
Theorem [5] are hold. Hence Newton’s method converges to the unique solution
of system (4.6) in Cyp NSy, (X0)- O

Indeed in Theorem 4.1 we compute {Tki}i:o and hb, of matrices H; ;1. By
comparing (4.1) and (2.21) we find

Hy=—=S;1-8;, 1=1,2,....n
Thus by definition of S; (2.13) we obtain

AR A
qi—1 = Hu(la 1) + ﬁ + Dilq‘,l’

qri—1 = Hii(1,2) + ggl + ?)%,
(4.7) a2,i-1 = 2(H;i(1,3) + 52— 5 + Aﬁ%):
a3,i—1 = 2(H;i(2,3) + 52 A + A]T%)y
Qi1 = A(Hii(3,3) + g +4m) i=23,...n
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By setting Hy; = —S51 — C, we find
qo = Hi1(1,1) + ’%1 + cot e,
1
q1,0 = Hi1(1,2) + %"’f + acota,
1
(4.8) G20 = 2(H11(1,3) + % + La%cota),
q3,0 = 2(H11(2,3) — %312 - (a— a®) cot ),
1
qa,0 = 4(H11(3,3) + %313 + (1 —a*+ 1a*) cot ).
By following H,,, = —5,, + C3 we find
qn = Hnn(17 1) + %;Ll + COtﬁ,
Qn = Hon(1,2) + 7 — beot 3,

n

(4.9) Gom = 2(Hnn(1,3) + ‘Z‘,—? — 1p2cot ),
G50 = 2(Hnn(2,3) — 22 + (b — 5b%) cot B),
Gan = A(Hpn (3,3) + 52 — (1 — b + 1b*) cot B).
Let
(4 10) wZ:‘/z(lal)7 wlz:VL(lvz)a w22:2‘/1(173)7

ws; = 2V;(2,3), wa; = 4V5(3,3).

If we define a partition of (a,b) by (2.3) and construct piecewise polynomial
functions p, g, w by (3.3) then, p, g, w satisfy (2.4), (2.5) and equation (3.4) is of
Atkinson type. Therefore, by Theorem 3.2, BVP (3.4) and matrix eigenvalue
problem (3.1) are equivalent. Summarizing the previous results, we have the
following Theorem:

Theorem 4.2. Let n > 2, H be a real symmetric block tridiagonal matrix
of the form (4.2), V = diag(Vi,...,V,) be a real symmetric block diagonal
matriz, where det(V) # 0 and V;(2,2) = 2V;(1,3). Then for a given boundary
conditions (1.3), the matriz eigenvalue problem (4.1) is equivalent to SLP of
Atkinson type of the form (3.4).

5. Conclusion

In this paper we considered a typical class of sixth order Sturm-Liouville
problems. We proved that the SLP is equivalent to a symmetric matrix eigen-
value problem and thus the SLP has finite spectrum. Also for a given matrix
eigenvalue problem HX = AV X, where H is a block tridiagonal matrix and V'
is a block diagonal matrix, we found a sixth order boundary value problem of
Atkinson type that is equivalent to matrix eigenvalue problem.
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