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Abstract. The aim of this paper is to study the convergence of solutions

of the following second order difference inclusionexp−1
ui

ui+1 + θi exp
−1
ui

ui−1 ∈ ciA(ui), i ⩾ 1

u0 = x ∈ M, sup
i⩾0

d(ui, x) < +∞,

to a singularity of a multi-valued maximal monotone vector field A on
a Hadamard manifold M , where {ci} and {θi} are sequences of positive
real numbers and x is an arbitrary fixed point in M . The results of this

paper extend previous results in the literature from Hilbert spaces to
Hadamard manifolds for general maximal monotone, strongly monotone
multi-valued vector fields and subdifferentials of proper, lower semicon-

tinuous and geodesically convex functions f : M →] − ∞,+∞]. In the
recent case, when A = ∂f , we show that the sequence {ui}, given by
the equation, converges to a point of the solution set of the following
constraint minimization problem

Min
x∈M

f(x).

Keywords: Maximal monotone operator, multivalued vector field, con-
vergence, subdifferential, minimization problem, Hadamard manifold.
MSC(2010): Primary: 34C40, 37C10; Secondary: 47H05.

1. Introduction

Let H be a real Hilbert space equipped with the inner product ⟨., .⟩ and
norm ∥ · ∥. Let A be a nonempty subset of H × H, to which we refer as a
(nonlinear) possibly multivalued operator in H. A is called monotone if and
only if ⟨y2 − y1, x2 −x1⟩ ⩾ 0, for all [xi, yi] ∈ A, i = 1, 2. A monotone operator

Article electronically published on August 16, 2015.

Received: 26 June 2013, Accepted: 6 July 2014.
∗Corresponding author.

c⃝2015 Iranian Mathematical Society

1045



On the convergence of solutions to a difference 1046

A is said to be maximal monotone if A, regarded as a subset of H ×H, is not
properly included in any other monotone subset of H ×H.

Given any function f : H →]−∞,+∞] with domain D(f), its subdifferential
is defined as a multi-valued operator ∂f , where

∂f(x) = {w ∈ H | f(x)− f(y) ⩽ ⟨w, x− y⟩, ∀y ∈ H}.
The function f is called proper if and only if there exists x ∈ H such that
f(x) < +∞. It is a well-known result that if f is a proper, convex and lower
semicontinuous function, then ∂f is a maximal monotone operator. We refer
the reader to the book by Morosanu [12] in order to understand monotone
operators and subdifferentials of convex functions in Hilbert spaces.

Let A be a maximal monotone operator in H. The second order evolution
equation

(1.1)

p(t)u′′(t) + r(t)u′(t) ∈ Au(t),

u(0) = u0, sup
t⩾0

∥u(t)∥ < +∞,

has been studied by many mathematicians for existence, periodicity and asymp-
totic behavior of solutions (see for instance [5, 10–12] and references therein).
Equation (1.1) has applications not only in ordinary and partial differential
equations, but also in optimization. In fact, under suitable conditions, the tra-
jectory of the solution of (1.1) converges to a zero of the maximal monotone
operator A, which is a minimum point of f , when A = ∂f , where f is a convex,
proper and lower semicontinuous function (see [5,10,11]). The second author of
this paper has showed in [10,11] that equation (1.1), in the special case p(t) = 0
and r(t) = c ⩾ 0, gives a better rate of convergence to a minimum value of
f than the first order evolution equation of monotone type (steepest descent
method). In order to extract an algorithm to approximate a singularity of a
monotone vector field or to solve unconstraint minimization problem

Min
x∈H

f(x),

where A = ∂f , as well as for applying in partial differential equations (see [1])
and in discrete modelings (see [13–15]), we consider the discrete version of (1.1).
Discrete analogue of equation (1.1) may be written in the following form:

(1.2)

ui+1 − (1 + θi)ui + θiui−1 ∈ ciAui,

u0 = x, sup
i⩾0

∥ui∥ < +∞,

where A is maximal monotone operator and {ci} and {θi} are positive real
sequences. There are a lot of investigations for existence and asymptotic be-
havior of solutions to (1.2), which the reader can find them in [9, 12, 13] and
in their appeared references. In [9] the author has proved the weak and strong
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convergence of solutions to (1.2) with the best conditions on parameters {ci}
and {θi} and he also has given some results for the rate of convergence.

In this paper, we consider an analogue equation of the equation (1.2) on
Hadamard manifolds. Then we get convergence results for solutions to this
equation, which are similar to the obtained results for solutions to the equation
(1.2) in [9].

2. Some tools of Riemannian geometry

Here we remind some indispensable backgrounds about Riemannian mani-
folds from [8,16].

Let M be a connected m-dimensional Riemannian manifold, with a Rie-
mannian metric ⟨., .⟩ and the corresponding norm denoted by ∥ . ∥. For p ∈ M
the tangent space at p is denoted by TpM and the tangent bundle of M by
TM =

∪
p∈M TpM . A vector filed A is a mapping from M to TM which maps

each point p ∈ M to a vector A(p) ∈ TpM . Let p and q be two points in M ,
and γ : [a, b] → M be a piecewise smooth curve joining p to q. The length of γ
is defined as

L(γ) =

∫ b

a

∥ γ̇(t) ∥ dt,

and the Riemannian distance d(p, q) is defined by

d(p, q) = inf{L(γ)|γ : [a, b] → M is a piecewise smooth curve with γ(a) = p, γ(b) = q},

which induces the original topology on M .
Let ∇ be the Levi-Civita connection on M associated with the Riemannian

metric ⟨., .⟩, and γ be a smooth curve in M . A vector filed A is said to be
parallel along γ if ∇γ̇A = 0. A smooth curve γ is a geodesic, if γ̇ itself is
parallel along γ. If γ is a geodesic, then ∥γ̇∥ is constant. When ∥γ̇∥ = 1, γ is
said to be normalized. A geodesic joining p to q in M is called minimal if its
length is equal to d(p, q).

A Riemannian manifold M is complete if for each p ∈ M all geodesics
emanating from p are defined on whole of R. If M is complete, then by the
Hopf-Rinow theorem, any pair of points in M can be joined by a minimal
geodesic.

Let M be a connected and complete Riemannian manifold. The exponential
map expp : TpM → M at p is defined by expp(v) = γv(1) for each v ∈ TpM ,
where γv(.) is the geodesic with γv(0) = p and γ̇v(1) = v. Then expp(tv) = γv(t)
for each real number t.

Throughout the paper we assume that M is a complete, simply connected
Riemannian manifold of non-positive sectional curvature of dimensionm, which
is called a Hadamard manifold of dimension m.
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Proposition 2.1. ( [16, p. 221]) Let p ∈ M . Then expp : TpM → M is a dif-
feomorphism, and for any two points p, q ∈ M there exists a unique normalized
geodesic joining p to q, which is, in fact, a minimal geodesic.

An immediate consequence of Proposition 2.1 is that d(p, q) =∥ exp−1
p q ∥,

for any two points p, q ∈ M . Proposition 2.1 shows that any m-dimensional
Hadamard manifold has the same topology and differential structure as the
Euclidean space Rm. In fact, Hadamard manifolds and Euclidean spaces have
some similar geometrical properties. One of them is described in the following
proposition.

By definition, a geodesic triangle ∆(p1p2p3) of a Riemannian manifold is a
set consisting of three points p1, p2 and p3, and three minimal geodesics joining
these points.

Proposition 2.2. ( [16, p. 223])(Comparison theorem for triangles) Let ∆(p1p2p3)

be a geodesic triangle. Denote by γi : [0, li] → M the geodesic joining pi to pi+1,
and set li := L(γi), αi := ∠(γ̇i(0),−γ̇i−1(li−1)), where i = 1, 2, 3 (mod 3).
Then

α1 + α2 + α3 ⩽ π,

(2.1) l2i + l2i+1 − 2lili+1 cosαi+1 ⩽ l2i−1.

Since

⟨exp−1
pi+1

pi, exp
−1
pi+1

pi+2⟩ = d(pi, pi+1)d(pi+1, pi+2) cosαi+1,

the inequality (2.1) may be rewritten as follows

(2.2) d2(pi, pi+1) + d2(pi+1, pi+2)− 2⟨exp−1
pi+1

pi, exp
−1
pi+1

pi+2⟩ ⩽ d2(pi+2, pi).

Now we are going to remind some definitions which extends some notions of
the monotonicity, from the corresponding notions in Hilbert spaces (see [3,4]),
to multi-valued vector fields on Hadamard manifolds. Let X (M) denote the
set of all multi-valued vector fields A : M −→ 2TM such that A(x) ⊆ TxM for
each x ∈ M and the domain D(A) of A is closed and convex, where D(A) is
defined by

D(A) = {x ∈ M : A(x) ̸= ∅}.

Definition 2.3. ( [3]) Let A ∈ X (M). Then A is said to be
(i) monotone if the following condition holds for any x, y ∈ D(A),

(2.3) ⟨u, exp−1
x y⟩ ⩽ ⟨v,− exp−1

y x⟩ , ∀u ∈ A(x), v ∈ A(y) :

(ii) strongly monotone if there exists ρ > 0 such that, for any x, y ∈ D(A),
we have

(2.4) ⟨u, exp−1
x y⟩ − ⟨v,− exp−1

y x⟩ ⩽ −ρd2(x, y) , ∀u ∈ A(x), v ∈ A(y) :



1049 Ahmadi and Khatibzadeh

(iii) maximal monotone if it is monotone and the following implication holds
for any x ∈ D(A) and u ∈ TxM ,
(2.5)
(⟨u, exp−1

x y⟩ ⩽ ⟨v,− exp−1
y x⟩ , ∀y ∈ D(A) and ∀v ∈ A(y)) =⇒ u ∈ A(x).

Definition 2.4. ([3]) Let A ∈ X (M) and x0 ∈ D(A). Then A is said to be
upper Kuratowski semicontinuous at x0 if, for any sequences {xk} ⊆ D(A) and
{uk} ⊂ TM with each uk ∈ A(xk), the relations lim

k→∞
xk = x0 and lim

k→∞
uk = u0

imply that u0 ∈ A(x0). A is said to be upper Kuratowski semicontinuous on M
if it is upper Kuratowski semicontinuous at each point x0 ∈ D(A).

In [3, Proposition 3.5] it is shown that each maximal monotone vector field
is upper Kuratowski semicontinuous.

Now we present the equation (1.2) in a Hadamard manifold M as follows.

(2.6)

exp−1
ui

ui+1 + θi exp
−1
ui

ui−1 ∈ ciA(ui), i ⩾ 1

u0 = x, sup
i⩾0

d(ui, x) < +∞,

where {ci} and {θi} are positive real sequences and x is an arbitrary point
in M .

Throughout the paper, A(ui) denotes the element
exp−1

ui
ui+1+θi exp

−1
ui

ui−1

ci
and

ai = (θ1 · · · θi)−1.

3. General monotone case

In this section we establish some results on the convergence of solutions to
(2.6). We first recall the notion of Fejér convergence and the following related
result from [6].

Definition 3.1. Let X be a complete metric space and K ⊆ X be a nonempty
set. A sequence {xn} ⊂ X is called Fejér convergent to K if

d(xn+1, y) ⩽ d(xn, y), ∀y ∈ K and n = 0, 1, 2, ... .

Lemma 3.2. Let X be a complete metric space and K ⊆ X be a nonempty
set. Let {xn} ⊂ X be Fejér convergent to K and suppose that any cluster point
of {xn} belongs to K. If the set of cluster points of {xn} is nonempty, then
{xn} converges to a point of K.

The following two lemmas, which are from [9], will be used in the sequel.

Lemma 3.3. ( [9]) Let {an} and {bn} be two sequences of positive real numbers.

If {an} is nonincreasing and convergent to zero and
∑+∞

n=1 anbn < +∞, then
(
∑n

k=1 bk)an → 0 as n → +∞.
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Lemma 3.4. ( [9]) Let {an} be a sequence of positive real numbers with∑+∞
n=1 a

−1
n = +∞. If {bn} is a bounded sequence, then liminf

n→+∞
an(bn+1− bn) ⩽

0.

Lemma 3.5. Let {ui} be a solution to (2.6). Then ai−1d(ui, ui−1) is either
nonincreasing or eventually increasing.

Proof. From the monotonicity of A and (2.6), we have

1

ci+1
⟨exp−1

ui+1
ui+2 + θi+1 exp

−1
ui+1

ui, exp
−1
ui+1

ui⟩

⩽ 1

ci
⟨exp−1

ui
ui+1 + θi exp

−1
ui

ui−1,− exp−1
ui

ui+1⟩.

Since ∥ exp−1
x y∥ = ∥ exp−1

y x∥ = d(x, y), for all x, y ∈ M , it follows that

(3.1)
1

ci
d(ui+1, ui)−

θi
ci
d(ui, ui−1) ⩽

1

ci+1
d(ui+2, ui+1)−

θi+1

ci+1
d(ui+1, ui),

for all i ⩾ 1. If {ai−1d(ui, ui−1)} is not nonincreasing, then there exists
j ⩾ 1 such that ajd(uj+1, uj) > aj−1d(uj , uj−1) and by (3.1) the sequence
{ai−1d(ui, ui−1)}i⩾j is increasing. □
Lemma 3.6. Suppose that ui is a solution to (2.6) and p ∈ A−1(0). Then

d(ui, p) is nonincreasing or eventually increasing. Moreover, if
∑+∞

i=1 θ1 · · · θi =
+∞, then d(ui, p) and ai−1d(ui, ui−1) are nonincreasing and ai−1d(ui, ui−1)
converges to zero as i → +∞.

Proof. From the monotonicity of A and (2.6), we get

(3.2) ⟨exp−1
ui

ui+1 + θi exp
−1
ui

ui−1, exp
−1
ui

p⟩ ⩽ 0.

Consider the geodesic triangles ∆(ui+1uip) and ∆(uiui−1p). By inequality
(2.2) of the comparison theorem for triangles and inequality (3.2), one obtains
that
(3.3)

d2(ui+1, p)− d2(ui, p) + θi(d
2(ui−1, p)− d2(ui, p)) ⩾ d2(ui+1, ui) + θid

2(ui, ui−1) ⩾ 0.

If d(ui, p) is not nonincreasing, there is j > 0 such that d(uj , p) < d(uj+1, p).
By (3.3) the sequence {d(ui, p)}i⩾j is increasing.
For the second part of the lemma, multiplying (3.3) by ai, we get

ai−1d
2(ui, ui−1) ⩽ ai(d

2(ui+1, p)− d2(ui, p))− ai−1(d
2(ui, p)− d2(ui−1, p)).

Summing from i = k to m, we get
m∑
i=k

ai−1d
2(ui, ui−1) ⩽ am(d2(um+1, p)− d2(um, p))− ak−1(d

2(uk, p)− d2(uk−1, p)).

Taking liminf when m → +∞, by our assumption and Lemma 3.4,

liminf
m→+∞

am(d2(um+1, p)− d2(um, p)) ⩽ 0,
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then we get

(3.4)

+∞∑
i=k

ai−1d
2(ui, ui−1) ⩽ ak−1(d

2(uk−1, p)− d2(uk, p)).

Inequality (3.4) implies that {d2(uk, p)} is nonincreasing and
∑+∞

i=1 a−1
i−1a

2
i−1d

2(ui,
ui−1) < +∞. The assumption on {θi} implies, liminf

i→+∞
ai−1d(ui, ui−1) = 0. By

Lemma 3.5 ai−1d(ui, ui−1) is nonincreasing and therefore lim
i→+∞

ai−1d(ui, ui−1) =

0. □

Theorem 3.7. Suppose that ui is a solution to (2.6) and A−1(0) ̸= ∅. If
θi ⩾ 1 and liminf

i→+∞
iciai > 0, then {ui} converges to a singularity of A.

Proof. We show that the sequence {ui} is Fejér convergent to A−1(0) and
any cluster point of {ui} belongs to A−1(0), then one gets the result by
Lemma 3.2. Suppose that p ∈ A−1(0). The assumption on {θi} implies that∑∞

i=1 θ1 · · · θi = +∞. Then by Lemma 3.6, d2(ui, p) is nonincreasing, i.e. {ui}
is Fejér convergent to A−1(0).
To complete the proof, we only need to prove that any cluster point of {ui}
belongs to A−1(0). Let q be a cluster point of {ui}. Then there exists a sub-
sequence {ik} of {i} such that uik → q. Since ai ⩽ 1, inequality (3.4) implies
that

∞∑
i=k

ai−1d
2(ui, ui−1) ⩽ d2(uk−1, p)− d2(uk, p).

Summing from k = 1 to m and letting m → +∞, we get
∞∑
k=1

∞∑
i=k

ai−1d
2(ui, ui−1) ⩽ d2(u0, p)− l(p)2 < +∞,

where l(p) = lim
m→+∞

d(um, p). Then

∞∑
k=1

ka−1
k a2kd

2(uk+1, uk) < +∞.

By Lemma 3.6, akd(uk+1, uk) is nonincreasing and convergent to zero. Then
by Lemma 3.3, we get(

n∑
k=1

ka−1
k

)
a2nd

2(un+1, un) → 0 ⇒

(
n∑

k=1

k

)
a2nd

2(un+1, un) → 0.

Therefore nand(un+1, un) → 0. By (2.6), ncnan∥A(un)∥ → 0 as n → +∞. The
assumption implies that A(un) → 0 as n → +∞. Thus A(uik) → 0 as k → +∞.
This shows that 0 ∈ A(q) because A is upper Kuratowski semicontinuous at q,
that is, q ∈ A−1(0). □
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Theorem 3.8. Suppose that ui is a solution to (2.6) and A−1(0) ̸= ∅. If
0 < θi < 1,

∑∞
i=1 θ1 · · · θi = +∞ and liminf

i→+∞
ici > 0, then {ui} converges to a

singularity of A.

Proof. The process of the proof is similar to that of Theorem 3.7. Just, to get
A(un) → 0 as n → +∞, we need to show that nd(un, un−1) → 0 as n → +∞.
Inequality (3.4) implies that

∞∑
i=k

d2(ui, ui−1) ⩽ d2(uk−1, p)− d2(uk, p),

because ai is increasing. Summing from k = 1 to +∞, we get

∞∑
k=1

kd2(uk, uk−1) ⩽ d2(u0, p)− l(p)2 ⩽ d2(u0, p) < +∞,

where l(p) = lim
k→+∞

d(uk, p). Therefore lim
k→+∞

d2(uk, uk−1) = 0. By Lemma 3.6

ak−1d(uk, uk−1) is nonincreasing and ak is increasing, so d(uk, uk−1) is nonin-
creasing. Now, by Lemma 3.3, (

∑n
k=1 k) d

2(un, un−1) → 0, then nd(un, un−1) →
0 as n → +∞. The rest of the proof is similar to that of Theorem 3.7. □

Theorem 3.9. Let A ∈ X (M) be a maximal monotone operator and A−1(0) ̸=
∅. Assume that ui is a solution to (2.6) and

∑∞
i=1 θ1 · · · θi < ∞. If ci satisfies

one of the following assumptions
(1) liminf

i→+∞

√
ici > 0,

(2) limsup
i→+∞

ci > 0,

then ui → p as i → +∞, where p ∈ A−1(0); moreover, d(ui, p) = O(
∑∞

k=i θ1 · · · θk).

Proof. If d(ui, p) is nonincrasing, from (3.3), we get

(3.5) d2(ui, ui−1) ⩽ d2(ui−1, p)− d2(ui, p).

Otherwise, by Lemma 3.6, d(ui, p) is eventually increasing and by (3.3), we
obtain

(3.6) d2(ui+1, ui) ⩽ d2(ui+1, p)− d2(ui, p)

for large i. Summing (3.5) and (3.6) from i = 1 to +∞, we get

(3.7)
∞∑
i=1

d2(ui+1, ui) < +∞.

On the other hand, multiplying inequalities (3.5) and (3.6) by i and taking
liminf, by Lemma 3.4, we get

(3.8) liminf
i→+∞

id2(ui+1, ui) = 0.
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Summing (3.1) from n = k to n = m− 1, we obtain

(3.9)
1

ck
d(uk+1, uk)−

1

cm
d(um+1, um) ⩽ θk

ck
d(uk, uk−1)−

θm
cm

d(um, um−1).

Taking liminf as m → +∞, if liminf
m→+∞

√
mcm > 0, then by (3.8), we get

(3.10) d(uk+1, uk) ⩽ θkd(uk, uk−1).

If limsup cm > 0, then there exists a subsequence cmj > c0 > 0. Substituting
m by mj and letting j → +∞, by (3.7), we get again (3.10). For each n > m,
(3.10) implies

(3.11) d(un, um) ⩽
n−1∑
k=m

d(uk+1, uk) ⩽ d(u1, u0)
n−1∑
k=m

θ1 · · · θk.

It follows that un is Cauchy, and therefore un → p ∈ M . Now we prove that
p ∈ A−1(0). Suppose that y ∈ D(A) and v ∈ A(y). By the monotonicity of A,
(2.6) and the inequality (2.2) of the comparison theorem for geodesic triangles
∆(un+1uny) and ∆(unun−1y), we have

⟨v,− exp−1
y un⟩ ⩾ ⟨A(un), exp

−1
un

y⟩

=
1

cn
⟨cnA(un), exp

−1
un

y⟩

=
1

cn
⟨exp−1

un
un+1 + θn exp

−1
un

un−1, exp
−1
un

y⟩

⩾ 1

2cn
[d2(un, y)− d2(un+1, y)− θn(d

2(un−1, y)− d2(un, y))]

⩾ (
−
√
n√

ncn
d(un+1, un)− θn

√
n√
ncn

d(un, un−1))N,

where N = sup
i⩾0

d(ui, y). If liminf
n→+∞

√
ncn > 0, from the above inequality and

by (3.8), we get ⟨v,− exp−1
y p⟩ ⩾ 0. If limsup

n→+∞
cn > 0, there is a subsequence

cnj ⩾ c0 > 0; substituting nj for n in the above inequality, letting j → +∞,

then using (3.7), we get ⟨v,− exp−1
y p⟩ ⩾ 0. Since A is maximal monotone,

then p ∈ A−1(0). Now by letting n → +∞ in (3.11), we get

d(un, p) ⩽ d(u0, u1)
+∞∑
n=k

θ1 · · · θk.

It implies d(um, p) = O(
∑∞

k=m θ1 · · · θk). □
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4. Strongly monotone case

In this section we study the convergence of solutions to (2.6), when A is
strongly monotone. We study the convergence of ui with the same assumptions
of Theorem 3.7 and 3.8 on {θi} and {ci}, and the rate of convergence of ui to
the unique element of A−1(0).

Theorem 4.1. Let A ∈ X (M) such that A−1(0) ̸= ∅. Suppose that A is
strongly monotone and ui is a solution to (2.6). If θi ⩾ 1 and

∑∞
i=1 iciai =

+∞, then un → p ∈ A−1(0) as n → +∞; moreover d2(un, p) = o((
∑n

i=1 iciai)
−1).

Proof. Since strong monotonicity implies strict monotonicity, and A−1(0) ̸= ∅,
there exists a unique element p in A−1(0) by [3, Proposition 4.1]. By (2.6) and
strong monotonicity of A, we have

1

ci
⟨exp−1

ui
ui+1 + θi exp

−1
ui

ui−1, exp
−1
ui

p⟩ ⩽ −ρd2(ui, p), ∀i ⩾ 1.

Consider the geodesic triangles ∆(ui+1uip) and ∆(uiui−1p). By inequality
(2.2) of the comparison theorem for triangles and inequality (3.2), we have

1

2
(d2(ui+1, p)− d2(ui, p) + θi(d

2(ui−1, p)− d2(ui, p))) ⩾ ρcid
2(ui, p).

Multiplying by ai, and summing from i = k to m, we get

ρ

m∑
i=k

ciaid
2(ui, p) ⩽

1

2
(am(d2(um+1, p)− d2(um, p))− ak−1(d

2(uk, p)− d2(uk−1, p))).

Taking liminf when m → +∞, by our assumption and Lemma 3.4,

liminf
m→+∞

am(d2(um+1, p)− d2(um, p)) ⩽ 0,

then we get

(4.1) ρ
+∞∑
i=k

ciaid
2(ui, ui−1) ⩽

1

2
ak−1(d

2(uk−1, p)− d2(uk, p)).

Summing from k = 1 to +∞, since ak ⩽ 1 and d(uk, p) is nonincreasing, we
obtain

(4.2)

∞∑
i=1

iciaid
2(ui, p) < +∞.

By the hypothesis, we have liminf
i→+∞

d2(ui, p) = 0. Since by Lemma 3.6, d(ui, p)

is nonincreasing, then ui → p as i → +∞. The rate of convergence is a
consequence of (4.2) and Lemma 3.3. □

Theorem 4.2. Let A ∈ X (M) such that A−1(0) ̸= ∅. Suppose that A is
strongly monotone and ui is a solution to (2.6). If 0 < θi < 1,

∑∞
i=1 θ1 · · · θi =
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+∞ and
∑∞

i=1 ici = +∞, then un → p ∈ A−1(0) as n → +∞; moreover
d2(un, p) = o((

∑n
i=1 ici)

−1).

Proof. Let p be the unique element of A−1(0). By the strong monotonicity of
A and our assumption on θi, from (4.1), we get

ρ
+∞∑
i=k

cid
2(ui, ui−1) ⩽

1

2
(d2(uk−1, p)− d2(uk, p)).

Summing from k = 1 to +∞, we get

(4.3)
∞∑
i=1

icid
2(ui, p) < +∞.

The rest of the proof is similar to that of Theorem 4.1. □

5. Subdifferential case

Recall that M is a Hadamard manifold. We remind some definitions and
facts about functions of M to ]−∞,+∞] from [17]. A map f : M →]−∞,+∞]
is said to be proper if its domain, defined by D(f) = {x ∈ M | f(x) < ∞}, is
nonempty. A subset C ⊆ M is said to be convex if for any two points x and
y in C, the geodesic joining x to y is contained in C. The domain of f , is a
closed convex subset of M . A proper map f is said to be geodesically convex
if for any geodesic γ of M , the composition function f ◦ γ : R →]−∞,+∞] is
convex; that is,

(f ◦ γ)(ta+ (1− t)b) ⩽ tf ◦ γ(a) + (1− t)f ◦ γ(b),
for any a, b ∈ R and 0 ⩽ t ⩽ 1. The domain of a lower semicontinuous and
geodesically convex function f is a closed convex subset of M .

The subdifferential of a map f : M →]−∞,+∞] is the set-valued mapping
∂f : M → 2TM defined by

∂f(x) = {u ∈ TxM : ⟨u, exp−1
x y⟩ ⩽ f(y)− f(x) , ∀y ∈ M}, ∀x ∈ M.

The subdifferential ∂f(x) at a point x ∈ M is a closed convex (possibly empty)
set. Let D(∂f) denote the domain of ∂f defined by

D(∂f) = {x ∈ M : ∂f(x) ̸= ∅}.
If D(∂f) ̸= ∅, the subdifferential ∂f(·) is a monotone and upper Kuratowski
semicontinuous multi-valued vector field, and if D(f) = M , then ∂f is a max-
imal monotone vector field (see [3, Theorem 5.1]). Consider the following con-
straint minimization problem

(5.1) Min
x∈M

f(x),

which M is the constraint set. Let Sf denote the solution set of (5.1), that is

Sf = {x ∈ M : f(x) ⩽ f(y) , ∀y ∈ M}.
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It is easy to check that

x ∈ Sf ⇔ 0 ∈ ∂f(x).

Let M be an embedded submanifold in the Euclidean space Rn, for some
positive integer n. Suppose that f : Rn → R is a smooth map. Considering the
minimization problem (5.1) on the constraint set M , the function f may be
geodesically convex on M , but not on Rn, as one can see in Example 5.3. Then
the following Theorems 5.1 and 5.2 give an iterative method for approximation
of a minimum point of f on M .

Theorem 5.1. Suppose that ui is a solution to (2.6) with A = ∂f , where
f : M →]−∞,+∞] is a proper, geodesically convex and lower semicontinuous

function with the solution set Sf ̸= ∅. If θi ⩾ 1 and
∑+∞

i=1 iciai = +∞, then
{ui} converges to a point p ∈ Sf . Moreover, f(un)−f(p) = o((

∑n
i=1 iciai)

−1).

Proof. We first verify that {ui} is Fejér convergent to Sf . Let p ∈ Sf . The
assumption on {θi} implies that

∑∞
i=1 θ1 · · · θi = +∞. Then by Lemma 3.6,

d2(ui, p) is nonincreasing, i.e. {ui} is Fejér convergent to A−1(0). Thus by
Lemma 3.2, to complete the proof, we only need to prove that any cluster
point of {ui} belongs to Sf . For this purpose, we first show that {f(ui)} is a
nonincreasing sequence, and f(ui) → f(p), as i → +∞.

By the subdifferential inequality, Lemma 3.6 and (2.6), we have

f(ui)− f(ui−1) ⩽ ⟨∂f(ui),− exp−1
ui

ui−1⟩

=
1

ci
⟨exp−1

ui
ui+1 + θi exp

−1
ui

ui−1,− exp−1
ui

ui−1⟩(5.2)

⩽ 1

ciai
(aid(ui+1, ui)− ai−1d(ui, ui−1))d(ui, ui−1) ⩽ 0.

Let p ∈ Sf . Making use again of the subdifferential inequality and (2.6), we
get

aici(f(ui)− f(p)) ⩽ ai⟨exp−1
ui

ui+1 + θi exp
−1
ui

ui−1,− exp−1
ui

p⟩

⩽ 1

2
(ai(d

2(ui+1, p)− d2(ui, p))− ai−1(d
2(ui, p)− d2(ui−1, p))).

Summing from i = k to m, taking liminf when m → +∞ and then again
summing from k = 1 to +∞, by Lemmas 3.4 and 3.6, since ai ⩽ 1, we obtain

(5.3)
+∞∑
i=1

iciai(f(ui)− f(p)) ⩽ 1

2
d2(u0, p) < +∞.

By the hypothesis, liminf
i→+∞

(f(ui) − f(p)) = 0. Since by (5.2) {f(ui)} is non-

increasing, lim
i→+∞

f(ui) = f(p). Let q be a cluster point of {ui}, then there is

a subsequence {ij} of {i} such that uij → q as j → +∞. Hence by the lower
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semicontinuity of f , we have

f(q) ⩽ liminf
j→+∞

f(uij ) = f(p).

Since p ∈ Sf , we have f(q) ⩽ f(x), for all x ∈ M , that is, q ∈ Sf . The rate of
convergence of f(ui) to f(p) is a consequence of (5.3) and Lemma 3.3. □

Theorem 5.2. Suppose that ui is a solution to (2.6) with A = ∂f , where
f : M →]−∞,+∞] is a proper, geodesically convex and lower semicontinuous

function with the solution set Sf ̸= ∅. If 0 < θi < 1,
∑+∞

i=1 θ1 · · · θi = +∞
and

∑+∞
i=1 ici = +∞, then {ui} converges to a point p ∈ Sf . Furthermore

f(un)− f(p) = o((
∑n

i=1 ici)
−1).

Proof. By (5.2) and Lemma 3.6, {f(ui)} is nonincreasing. Let p ∈ Sf . Making
use again of the subdifferential inequality and (2.6), we get

aici(f(ui)− f(p)) ⩽ ai⟨exp−1
ui

ui+1 + θi exp
−1
ui

ui−1,− exp−1
ui

p⟩

⩽ 1

2
(ai(d

2(ui+1, p)− d2(ui, p))− ai−1(d
2(ui, p)− d2(ui−1, p))).

Summing from i = k to m, and taking liminf when m → +∞, by Lemma
3.4, we get

ak−1

+∞∑
i=k

ci(f(ui)− f(p)) ⩽
+∞∑
i=k

aici(f(ui)− f(p)) ⩽ 1

2
ak−1(d

2(uk−1, p)− d2(uk, p)),

(where in the first inequality we used the assumption 0 < θi < 1 which implies
that ai is increasing). Summing again from k = 1 to +∞, we obtain

(5.4)
+∞∑
i=1

ici(f(ui)− f(p)) < +∞.

The assumption implies that liminf
i→+∞

(f(ui)−f(p)) = 0. Since by (5.2) {f(ui)}

is nonincreasing, so lim
i→+∞

f(ui) = f(p). If uij → q as j → +∞, then

liminf
j→+∞

f(uij ) ⩾ f(q).

Hence f(p) = lim
i→+∞

f(ui) ⩾ f(q). This implies that q ∈ Sf . The rest of the

proof is similar to that of Theorem 5.1. □

Here we present an example of a second order difference inclusion on the
Minkowski model of the two dimensional hyperbolic space, which is a Hadamard
manifold with nonzero sectional curvature.

Example 5.3. Let E2,1 denote the vector space R3 endowed with the sym-
metric bilinear form (which is called the Lorentz metric) defined by ⟨x, y⟩ =
x1y1 + x2y2 − x3y3, where x = (x1, x2, x3) and y = (y1, y2, y3). Let H2 =
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{x ∈ E2,1 : ⟨x, x⟩ = −1, x3 > 0}, which is the upper sheet of the hy-
perboloid {x ∈ E2,1 : ⟨x, x⟩ = −1}. Then H2, with the induced metric,
is a two dimensional Hadamard manifold with sectional curvature K = −1
(cf. [2] and [7]). Furthermore, the normalized geodesic γv of H2 starting
from x (γv(0) = x) have the equation γv(t) = (cosh t)x + (sinh t)v, where
v = γ̇v(0) ∈ TxH2 is the tangent unit vector of γv in the starting point. Hence
exp(tv) = (cosh t)x+ (sinh t)v, for each unit vector v ∈ TxHn, and

(5.5) exp−1
x y = arccosh(−⟨x, y⟩) y + ⟨x, y⟩x√

⟨x, y⟩2 − 1
,

for all x, y ∈ Hn.
Assume that the map f : E2,1 → R is given by the equation

(x1, x2, x3) 7→
1

2
(x2

1 + x2
2 +

x2
3

3
− 1)x3.

Then f is geodesically convex on H2 (its Hessian is positive definite on H2).
Now, fix an arbitrary point u0 = x in H2 and suppose that {ui} is a sequence
in H2 satisfying in the second order difference inclusion (2.6), for θi ≡ 1, ci ≡ 1
and A ≡ gradf . By using (5.5), the equation becomes
arccosh(−⟨ui, ui+1⟩)ui+1+⟨ui,ui+1⟩ui√

⟨ui,ui+1⟩2−1
+ arccosh(−⟨ui, ui−1⟩)ui−1+⟨ui,ui−1⟩ui√

⟨ui,ui−1⟩2−1

= gradf(ui), i ⩾ 1

sup{d(ui, u0)|i ⩾ 0} < +∞,

where gradf(ui) = (ui1ui3, ui2ui3, ui3
2 − 1), for each ui = (ui1, ui2, ui3) ∈ H2.

This is a system of nonlinear equations which its solution set may be estimated
by numerical methods. It is easily seen that Sf = {(0, 0, 1)}. Hence, by
Theorem 5.1, ui → (0, 0, 1) and f(ui)− (− 1

3 ) = o( 1
i(i+1) ).
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[17] C. Udrişte, Convex functions and optimization methods on Riemannian manifolds,

Mathematics and its Applications, 297, Kluwer Academic Publishers Group, Dordrecht,
1994.

(P. Ahmadi) Department of Mathematics, University of Zanjan, 45371-38791, Zan-

jan, Iran
E-mail address: p.ahmadi@znu.ac.ir

(H. Khatibzadeh) Department of Mathematics, University of Zanjan, 45371-38791,
Zanjan, Iran

E-mail address: hkhatibzadeh@znu.ac.ir


	1. Introduction
	2. Some tools of Riemannian geometry
	3. General monotone case
	4. Strongly monotone case
	5. Subdifferential case
	References

