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Abstract. In this paper a particular case of z-ideals, called strongly z-
ideal, is defined by introducing zero sets in pointfree topology. We study
strongly z-ideals, their relation with z-ideals and the role of spatiality

in this relation. For strongly z-ideals, we analyze prime ideals using
the concept of zero sets. Moreover, it is proven that the intersection
of all zero sets of a prime ideal of C(L), which is ring of real-valued
continuous functions for frame L, does not have more than one element.

Also, z-filters are introduced in terms of pointfree topology. Then the
relationship between z-filters and ideals, particularly maximal ideals, is
examined. Finally, it is shown that the family of all zero sets is a base

for the collection of closed sets.
Keywords: Frame, ring of real-valued continuous functions, zero set,
z-ideal, strongly z-ideal.
MSC(2010): Primary: 06D22; Secondary: 13A15, 13C99.

1. Introduction

To study the ring C(X), X is a topological space, zero sets and z-ideals
play important role (for more details see [1–3,12]). Banaschewski and Gilmour
study the ring C(L) as the pointfree version of C(X) and took cozero elements
as pointfree version of cozero sets (1996, [6]). T. Dube [8–10] applied cozero
elements to introduce z-ideals in C(L).

In this paper, by considering prime elements of a given frame L as pointfree
points of L, we define the trace of an element α of C(L) on any point p of L
that is a real number denoted by α[p], and also, zero set of α by Z(α) = {p ∈
ΣL : α[p] = 0} is defined. The real number α[p] is defined by Dedekind cut
(L(p, α), U(p, α)), where L(p, α) = {r ∈ Q : α(−, r) ≤ p} and U(p, α) = {s ∈
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Q : α(s,−) ≤ p} (Proposition 2.2). Also, the map p̃ : C(L) → R given by
p̃(α) = α[p] is an f -ring homomorphism (Proposition 2.4).

The necessary background on frames (pointfree topology) is given in Section
2.

In Section 3, a relation between zero sets and cozero elements is given in
Lemma 3.2, that is: p ∈ Z(α) if and only if coz(α) ≤ p. The basic relations
that we expect from zero sets are shown in Proposition 3.3. The property of the
family of zero sets which is a base for the closed sets is proved in Proposition 3.8
for completely regular frames. Moreover, if L is a spatial frame and the family
Z[L] of all zero sets is a base for the closed sets of ΣL, then L is completely
regular.

Some natural relations between ideals of C(L) and z-filters that are filters
of the lattice of Z(L) are explained in Section 4. Also, we seek some rela-
tions among z-ultrafilters, maximal ideals and families with finite intersection
property.

Finally, in the last section, strongly z-ideals of C(L) are introduced by using
the concept of zero sets. It is proved that for a spatial frame L, every z-ideal
is a strongly z-ideal (Proposition 5.7). Prime strongly z-ideals are analyzed in
Theorem 5.11. Proposition 5.10 was proved by T. Dube in [8], but we prove it
directly by our method. In Proposition 5.14, it is proven that the intersection
of all zero sets of a prime ideal in C(L) does not have more than one element
for a completely regular frame L.

2. Preliminaries

Here, we recall some definitions and results from the literature on frames
and the pointfree version of the ring of continuous real valued functions. For
further information see [15] on frame-theoretic conceppts and [5] on pointfree
function rings.

A frame is a complete lattice L in which the distributive law

x ∧
∨

S =
∨

{x ∧ s : s ∈ S}

holds for all x ∈ L and S ⊆ L. We denote the top element and the bottom ele-
ment of L by ⊤ and ⊥, respectively. The frame of open subsets of a topological
spase X is denoted by OX.

A frame homomorphism (frame map) is a map between frames which pre-
serves finite meets, including the top element, and arbitrary joins, including
the bottom element.

An element a of frame L is said to be rather below an element b, written
a ≺ b, in the case when there is an element s, called a separating element, such
that a ∧ s = ⊥ and s ∨ b = ⊤. On the other hand, a is completely below b,
written a ≺≺ b, if there are elements (cq) indexed by the rational numbers
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Q ∩ [0, 1] such that c0 = a, c1 = b, and cp ≺ cq for p < q. A frame L is said
to be regular if a =

∨
{x ∈ L | x ≺ a} for each a ∈ L, and completely regular if

a =
∨
{x ∈ L | x ≺≺ a} for each a ∈ L.

An element p ∈ M is called prime if p < ⊤ and a ∧ b ≤ p implies a ≤ p or
b ≤ p. An element m ∈ M is called maximal if m < ⊤ and m ≤ x ≤ ⊤ implies
m = x or x = ⊤. Note that every maximal element is prime.

Recall the contravariant functor Σ from Frm to the category Top of topo-
logical spaces which assigns to each frame L its spectrum ΣL of prime elements
with Σa = {p ∈ ΣL|a ̸≤ p} (a ∈ L) as its open sets. Also, for a frame map
h : L → M , Σh : ΣM → ΣL takes p ∈ ΣM to h∗(p) ∈ ΣL, where h∗ : M → L
is the right adjoint of h characterized by the condition h(a) ≤ b if and only if
a ≤ h∗(b) for all a ∈ L and b ∈ M . Note that h∗ preserves primes and arbitrary
meets.

Recall [5,6] that the frame ℜ of reals is obtained by taking the ordered pairs
(p, q) of rational numbers as generators and imposing the following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s)
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s
(R3) (p, q) =

∨
{(r, s)|p < r < s < q}

(R4) ⊤ =
∨
{(p, q)| all p, q}.

The set C(L) of all frame homomorphisms from ℜ to L has been studied as
an f -ring in [4, 6].

Corresponding to every continuous operation ⋄ : Q2 → Q (in particular,
+, .,∧,∨) we have an operation on C(L), denoted by the same symbol ⋄, defined
by:

α ⋄ β(p, q) =
∨

{α(r, s) ∧ β(u,w) : (r, s) ⋄ (u,w) ≤ (p, q)},
where (r, s) ⋄ (u,w) ≤ (p, q) means that if r < x < s and u < y < w then
p < x ⋄ y < q. For every r ∈ R, we define the constant frame map r ∈ C(L) by
r(p, q) = ⊤, whenever p < r < q, and otherwise r(p, q) = ⊥.

The cozero map is the map coz : C(L) → L, defined by

coz(α) = α(−, 0) ∨ α(0,−).

For A ⊆ C(L), let Coz(A) = {coz(α) : α ∈ A} with the cozero part of a
frame L, Coz(C(L)), called CozL by previous authors. It is known that L
is completely regular if and only if Coz(C(L)) generates L. For more details
about cozero map and its properties which are used in this paper see [5].

For A ⊆ Coz(L), we write Coz←(A) to designate the family of frame maps
{α ∈ C(L) : coz(α) ∈ A}.

In [9], Dube showed the following proposition. It should be noticed that
in [9] he considered the frame as completely regular, but he did not depoly this
condition in the proof of the aforementioned proposition.

Proposition 2.1. The following statements hold:

(1) If I is a proper ideal of C(L), then Coz(I) is a proper ideal of Coz(L).
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(2) If A is a proper ideal of L or Coz(L), then Coz←(A) is a proper ideal
of C(L).

(3) If M is a maximal ideal of C(L), then coz(M) is a maximal ideal of
Coz(L) and Coz←(Coz(M)) = M .

(4) If A is a maximal ideal of L or Coz(L), then Coz←(A) is a maximal
ideal of C(L).

In this paper, we use the pointfree version of the map x̂ : C(X) → R
given by x̂(f) = f(x). In poinfree version, we have prime elements p ∈ L
to replace points x ∈ X. Here we recall necessary notations, definitions and
results form [11]. Let a ∈ L and α ∈ C(L). The sets {r ∈ Q : α(−, r) ≤ a} and
{s ∈ Q : α(s,−) ≤ a}, are denoted by L(a, α) and U(a, α), respectively.

For a ̸= ⊤ it is obvious that for each r ∈ L(a, α) and s ∈ U(a, α), r ≤ s. In
fact, we have:

Proposition 2.2. [11] Let L be a frame. If p ∈ ΣL and α ∈ C(L), then
(L(p, α), U(p, α)) is a Dedekind cut for a real number which is denoted by
p̃(α).

To learn more about Dedekind cut see [13].

Proposition 2.3. [11] If p is a prime element of a frame L, then there exists
a unique map p̃ : C(L) −→ R such that r ≤ p̃(α) ≤ s for all α ∈ C(L),
r ∈ L(p, α), and s ∈ U(p, α).

If L = OX for a topological space X, then for every x ∈ X, x̂ : C(X) −→ R,

given by x̂(α) = α(x), factors through {̃x}
′
; note that in OX, for every x ∈ X,

{x}
′
is a prime element. In fact, x̂ = {̃x}

′
◦ ϕ, where ϕ : C(X) −→ C(OX) is

the isomorphism given by ϕ(α)(p, q) = α−1(p, q). Hence {̃x}
′
is equal to x̂ up

to isomorphism. By the following proposition, p̃ is an f -ring homomorphism.

Proposition 2.4. [11] If p is a prime element of a frame L, then p̃ : C(L) −→ R
is an onto f -ring homomorphism. Also, p̃ is a linear map with p̃(1) = 1.

Let p be a prime element of L. Throughout this paper for every α ∈ C(L)
we define α[p] = p̃(α).

Definition 2.5. A frame L is called weakly spatial, if a < ⊤, then Σa ̸= Σ⊤.

Remark 2.6. A weakly spatial frame need not be spatial, but a weakly spatial
regular frame is spatial.

3. Zero set

We define the pointfree version of the zero set of f ∈ C(X) given by Z(f) =
{x ∈ X : f(x) = 0}. In poinfree version, we replace a prime element p ∈ L
with the point x ∈ X.
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Definition 3.1. Let α ∈ C(L). We define

Z(α) = {p ∈ ΣL : α[p] = 0}.

Such a set is called a zero-set in L. For A ⊆ C(L), we write Z[A] to designate
the family of zero-sets {Z(α) : α ∈ A}. The family Z[C(L)] of all zero-sets in
L will be denoted, for simplicity, by Z[L].

Lemma 3.2. Let p be a prime element of a frame L. For α ∈ C(L), α[p] = 0
if and only if coz(α) ≤ p. Hence Z(α) = ΣL− Σcoz(α).

Proof. Suppose that α[p] ̸= 0, assume that α[p] > 0. Hence, there is a rational
number r such that α[p] ≥ r > 0, thus, by [11, Lemma 3.1], r ∈ L(p, α),
so by definition of L(p, α), α(−, r) ≤ p. Now, if coz(α) ≤ p, we have ⊤ =
α(0,−) ∨ α(−, r) ≤ coz(α) ∨ p ≤ p ∨ p = p it contradicts p is a prime element.
Therefore, coz(α) ̸≤ p. Similarly to prove in the case α[p] < 0.

Conversely, suppose that α[p] = 0. So, by [11, Lemma 3.1], for every two
rationals r < 0 < s, we have r ∈ L(α, p) and s ∈ U(α, p), hence, α(−, r) ∨
α(s,−) ≤ p by definition of L and U . Thus, coz(α) =

∨
{α(−, r) ∨ α(s,−) :

r < 0 < s} ≤ p, it contradicts the assumption and the proof is complete. □

The above lemma plays an important role in describing the zero sets. The
basic properties of zero sets are gathered in the next proposition..

Proposition 3.3. For every α, β ∈ C(L), we have

(1) For every n ∈ N, Z(α) = Z(|α|) = Z(αn).
(2) Z(α) ∩ Z(β) = Z(|α|+ |β|) = Z(α2 + β2).
(3) Z(α) ∪ Z(β) = Z(αβ).
(4) If α is a unit of C(L), then Z(α) = ∅.
(5) Z[L] is closed under countable intersection.

Proof. By using the properties of the cozero map and the fact that Z(α) =
ΣL− Σcoz(α), it is obvious. □

Corollary 3.4. Let L be a weakly spatial frame and α ∈ C(L). If Z(α) = ∅,
then α is a unit of C(L).

Proof. Since by Lemma 3.2, ΣL = ΣL − Z(α) = Σcoz(α) and L is a weakly
spatial frame, we conclude that coz(α) = ⊤. that is, α is a unit of C(L). □

Remark 3.5. Lemma 3.2 yields zero sets are closed. Let X be a topological
space and f ∈ C(X). We consider the frame map Of : ℜ → O(X) given by
Of(p, q) = {x ∈ X : p < f(x) < q}. Note that Of is the element of C(L)
corresponding to f , and

coz(Of) = Of((−, 0) ∨ (0,−)) = {x ∈ X : f(x) ̸= 0} = X − Z(f).
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Let X is a sober space. We know that prime elements of O(X) are the form

X − {x} for x ∈ X. So we have

X − {x} ∈ Z(Of) ⇔ coz(Of) ≤ X − {x}
⇔ (X − Z(f)) ∩ {x} = ∅
⇔ x ∈ Z(f).

Hence, Z(Of) = {X − {x} : x ∈ Z(f)} is the relation of Z(f) and Z(Of).

In Proposition 3.7, we shall show that every pointfree zero set Z(α), α ∈
C(L) is equal to a topological zero set Z(f) for some f : ΣL → R. Before
proceedings, we need some necessary tools.

There is a homeomorphism τ : Σℜ → R such that r < τ(p) < s if and only
if (r, s) ̸≤ p for all prime elements p of ℜ and all r, s ∈ Q (see of [6, Proposition
1]).

Lemma 3.6. Every prime (maximal) element of ℜ is of the form px =
∨
{(−, r)∨

(s,−) : r, s ∈ Q, r ≤ x ≤ s} for some x ∈ R, and τ(px) = x. In particular, for
every r ∈ Q, pr = (−, r) ∨ (r,−) and τ((−, r) ∨ (r,−)) = r.

Proof. Since ℜ is a completely regular frame, the prime elements are precisely
the maximal elements, and maximal elements are of the form px for some
x ∈ R. □
Proposition 3.7. Let L be a frame and α ∈ C(L). Then Z(α) = Z(τ ◦ Σα).
Proof. Let p ∈ ΣL. We have τ ◦ Σα(p) = 0 if and only if τ ◦ α∗(p) = 0, where
α∗ is a right adjoint of α. But by Lemma 3.6, τ ◦ α∗(p) = 0 if and only if
α∗(p) = (−, 0) ∨ (0,−) if and only if α((−, 0) ∨ (0,−)) ≤ p, because αα∗ ≤ id.
So, p ∈ Z(τ ◦Σα) if and only if coz(α) ≤ p and hence by Lemma 3.2 the proof
is complete. □

Now, we determine when the family Z[L] is a base for the closed sets of ΣL.

Proposition 3.8. For each frame L, the following statements hold:

(1) If L is completely regular, then the family Z[L] of all zero sets is a base
for the closed sets of ΣL.

(2) If L is a spatial frame and the family Z[L] of all zero sets is a base for
the closed sets of ΣL, then L is completely regular.

Proof. (1) Let F be a closed set of ΣL. Then there is a a ∈ L such that
ΣL \ F = Σa. Since L is completely regular frame, we conclude that there
exists {αi}i∈I ⊆ C(L) such that a =

∨
i∈I coz(αi). So that by Lemma 3.2,

we have F = ΣL \ Σa =
∩

i∈I(ΣL \ Σcoz(αi)) =
∩

i∈I Z(αi) and the proof is
complete.

(2) Let a ∈ L and suppose that {αi}i∈I ⊆ C(L) such that ΣL \ Σa =∩
i∈I Z(αi). By Lemma 3.2, we have Σa = Σ∨

i∈I coz(αi). Since L is spatial

frame, we conclude that a =
∨

i∈I coz(αi). □
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Question 3.9. Is there a frame L which is neither sapatial nor completely
regular such that Z[L] is a basis for the closed sets of ΣL?

4. Ideals and z-filters

Continuing our study of the relations between algebraic properties of C(L)
and lattice properties of L, we now examine the special features of the family
of zero-sets of an ideal of functions. Such a family becomes to possess prop-
erties analogous to those of a filter; this fact will play a central role in the
development.

Definition 4.1. A nonempty subfamily F of Z[L] is called a z-filter on L
provided that

(1) ∅ ̸∈ F ,
(2) if Z1, Z2 ∈ F , then Z1 ∩ Z2 ∈ F , and
(3) if Z ∈ F , Z ′ ∈ Z[L], and Z ⊆ Z ′, then Z ′ ∈ F .

By (3), ΣL belongs to every z-filter.
Let A be a nonempty family of sets. A is said to have the finite intersection

property provided that the intersection of any finite number of members of A
is nonempty.

Every family B of zero-sets of a frame L that has the finite intersection
property is contained in a z-filter. Also,

F = {Z ∈ Z[L] : there exists a finite subset A of B such that
∩
A ⊆ Z}

is the smallest z-filter containing B.

Proposition 4.2. For every frame L, the following statements hold:

(1) If L is a weakly spatial frame and I is a proper ideal in C(L), then the
family Z[I] = {Z(α) : α ∈ I} is a z-filter on L.

(2) If F is a z-filter on L, then the family Z←[F ] = {α : Z(α) ∈ F} is a
proper ideal in C(L).

Proof. (1) Since I is a proper ideal in C(L), we conclude that I contains no
unit, and by Proposition 3.4, ∅ ̸∈ Z[I]. If α, β ∈ I, then α2 + β2 ∈ I and by
Proposition 3.3(2), Z(α) ∩ Z(β) = Z(α2 + β2) ∈ Z[I]. If Z ∈ Z[I], Z ′ ∈ Z(L)
and Z ⊆ Z ′, then there exists α ∈ I and β ∈ C(L) such that Z = Z(α)
and Z ′ = Z(β). Since αβ ∈ I, we can conclude from Proposition 3.3(3) that
Z ′ = Z(αβ) ∈ Z[I].

(2) Let J = Z←[F ]. By Proposition 3.3(4), J contains no unit. Let α, β ∈ J
and γ ∈ C(L). Since Z(α − β) ⊇ Z(α) ∩ Z(β) ∈ F , and Z(γα) ⊇ Z(α) ∈ F ,
we conclude that γα, α− β ∈ J . □
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Remark 4.3. By a z-ultrafilter on L is meant a maximal z-filter, i.e., one
not contained in any other z-filter. Thus, for every L, the following statements
hold:

(1) A z-ultrafilter is a maximal subfamily of Z[L] with the finite intersec-
tion property.

(2) Every subfamily of Z[L] with the finite intersection property is con-
tained in some z-ultrafilter.

Proposition 4.4. Let L be a weakly spatial frame.

(1) If M is a maximal ideal in C(L), then Z[M ] is a z-ultrafilter on L.
(2) If F is a z-ultrafilter on L, then Z←[F ] is a maximal ideal in C(L).

Proof. (1) By Proposition 4.2, Z[M ] is a z-filter on L. Let F be a z-filter on
L and Z[M ] ⊆ F . By Proposition 4.2, Z←[F ] is a proper ideal in C(L) and
M ⊆ Z←[F ], it follows that M = Z←[F ]. Hence Z[M ] = F , that is Z[M ] is a
z-ultrafilter on L.

(2) By Proposition 4.2, Z←[F ] is a proper ideal in C(L). Let I be a proper
ideal of C(L) such that Z←[F ] ⊆ I, it follows that F ⊆ Z[I]. Since F is a
z-ultrafilter on L, we can conclude from Proposition 4.2 that F = Z[I]. Hence
Z←[F ] = I, that is Z←[F ] is a maximal ideal in C(L). □

Corollary 4.5. Let L be a weakly spatial frame.

(1) Let M be a maximal ideal in C(L). If Z(α) meets every member of
Z[M ], then α ∈ M .

(2) Let F be a z-ultrafilter on L. If a zero-set Z meets every member of
F , then Z ∈ F .

Proof. It follows from Remark 4.3 and Proposition 4.4. □

5. Strongly z-ideals and prime ideals

Let A be a ring and a ∈ A. we define M(a) by {M : a ∈ M and M is
a maximal ideal of A}. It is known that an ideal I in C(X) is a z-ideal if
Z(f) ∈ Z[I] implies that f ∈ I; equivalently, if a ∈ I and M(a) ⊆ M(b)
implies that b ∈ I (see [12]). But this does not hold for C(L) (see Remark 5.4).
Therefore, we define strongly z-ideal in C(L), as follows:

Definition 5.1. An ideal I in C(L) is called a strongly z-ideal if Z(α) ∈ Z[I]
implies that α ∈ I, that is I = Z←[Z[I]].

Remark 5.2. The definition of strongly z-ideal implies that the mapping Z,
from the set of all strongly z-ideals onto the set of all z-filters, is one-to-one.

Example 5.3. If ∅ ̸= S ⊆ ΣL, then MS = {α ∈ C(L) : S ⊆ Z(α)} is a
strongly z-ideal of C(L).
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Remark 5.4. Let L be a frame such that ΣL = ∅. Then, for every proper ideal
I in C(L), Z←[Z[I]] = C(L), i.e., I is not a strongly z-ideal.

Proposition 5.5. Let L be a weakly spatial frame. Every maximal ideal in
C(L) is a strongly z-ideal.

Proof. Suppose that M is a maximal ideal in C(L) and Z(α) ∈ Z[M ]. If
α ̸∈ M , then there exists β ∈ M and γ ∈ C(L) such that 1 = β + γα. So that
∅ = Z(1) = Z(β + γα) ⊇ Z(β) ∩ Z(αγ) = (Z(β) ∩ Z(α)) ∪ (Z(β) ∩ Z(γ)) ̸= ∅,
which is a contradiction. □

Note that the intersection of an arbitrary family of strongly z-ideals is a
strongly z-ideal.

An ideal I of C(L) is a z-ideal if, for any α ∈ C(L) and β ∈ I, coz(α) =
coz(β) implies α ∈ I( for more details, see [8–10]). The following proposition
shows strongly z-ideals are z-ideals.

Proposition 5.6. In the ring C(L), every strongly z-ideal is a z-ideal.

Proof. Let I be a strongly z-ideal. Let α ∈ C(L) and coz(α) ∈ coz(I). Suppose
that there exists a β ∈ I such that coz(α) = coz(β). It follows that

Z(α) = {p ∈ ΣL : coz(α) ≤ p} = {p ∈ ΣL : coz(β) ≤ p} = Z(β) ∈ Z[I].

Hence, α ∈ I, by hypothesis. Therefore, I is a z-ideal. □
By Remark 5.4, the converse of the above proposition is not true. For spatial

frames, it is true and we shall prove it in the next proposition. But, it seems
that the condition of spatiality is very strong for this, because spatial frames
are open sets of some topological spaces. Here, we have a question whether the
condition that every z-ideal is a strongly z-ideal implies that L is spatial. In
spite of a great deal of effort expended, we have not been able to answer this
question.

Proposition 5.7. Let L be a spatial frame. If I is a z-ideal in C(L), then I
is a strongly z-ideal in C(L).

Proof. Let α ∈ C(L) and Z(α) ∈ Z[I]. Then there exists a β ∈ I such that
Z(α) = Z(β). Then we have

Z(α) = Z(β) ⇒ ΣL− Σcoz(α) = ΣL− Σcoz(β)

⇒ Σcoz(α) = Σcoz(β)

⇒ coz(α) = coz(β), by spatiality.

Hence α ∈ I and the proof is complete. □
Remark 5.8. Note that if F is a z-filter on L, then ZZ←[F ] = F and if I is
an ideal in C(L), then Z←Z[I] ⊇ I. Let L be a spatial frame. I is a strongly
z-ideal in C(L) if and only if Z←Z[I] = I.
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Now, we seek the relation between prime ideal and strongly z-ideal.

Lemma 5.9. For every α, β ≥ 0 in C(L), we have

coz(α) ≤ coz((β − α)−) ∨ coz(β).

Proof. Since α ≥ 0, coz(α) = α(0,−). We have

coz(α) = α(0,−)
= (α− β + β)(0,−)
≤ (α− β)(0,−) ∨ β(0,−)
≤ (α− β)+(0,−) ∨ β(0,−) (see [5, pae 42])
= (β − α)−(0,−) ∨ β(0,−)
= coz(β − α)− ∨ coz(β).

□

In the following we give a direct proof for a result of T. Dube [8, Lemma
4.3] which has already proved by using of [10, Lemma 3.8].

Proposition 5.10. Let I be a proper z-ideal in C(L). The following assertions
are equivalent:

(1) I is a prime ideal.
(2) I contains a prime ideal.
(3) For every α, β ∈ C(L), if αβ = 0, then either α ∈ I or β ∈ I.

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3) If I contains a prime ideal P , and βγ = 0, then βγ ∈ P , whence

either β or γ is in P and hence in I.
(3) ⇒ (1): Suppose that αβ ∈ I. Since I is a z-ideal we can assume that

α, β ≥ 0. Since (β − α)−(β − α)+ = 0, we conclude that (β − α)− ∈ I
or (β − α)+ ∈ I. Assume that (β − α)− ∈ I. By Lemma 5.9, coz(α) ≤
(coz(β − α)−) ∨ coz(β). So

coz(α) ≤ (coz(β − α)− ∨ coz(α)) ∧ (coz(β − α)− ∨ coz(β))
= coz(β − α)− ∨ (coz(α) ∧ coz(β))
= coz((β − α)− + αβ).

Since (β − α)− + αβ ∈ I and I is a z-ideal, α ∈ I.
If (β − α)+ ∈ I, consider (α − β)− = (β − α)+ ∈ I, and similar relation by

Lemma 5.9, coz(β) ≤ (coz(α − β)−) ∨ coz(α), and similarly prove that β ∈ I.
Therefore, I is prime. □

In the next theorem, we analyze prime ideals by zero sets in the case of
strongly z-ideals.

Theorem 5.11. Let I be a proper strongly z-ideal in C(L). The following
assertions are equivalent:

(1) I is a prime ideal.
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(2) I contains a prime ideal.
(3) For every α, β ∈ C(L), if αβ = 0, then either α ∈ I or β ∈ I.
(4) For every α ∈ C(L), there is a zero set Z ∈ Z[I] such that for every

p ∈ Z, α[p] ≥ 0 or for every p ∈ Z, α[p] ≤ 0.

Proof. By Proposition 5.10, it suffices to show that (3) implies (4) and (4)
implies (1).

(3) ⇒ (4) Let α ∈ C(L). Since α+α− = 0, we conclude that α+ ∈ I or
α− ∈ I. Suppose that α+ ∈ I. Let Z = Z(α+). Let p ∈ Z, so, α+[p] = 0
hence, p̃(α+) = 0. Since p̃ is a f -ring homomorphism, (p̃(α))+ = 0, thus,
p̃(α) ≤ 0, and hence, α[p] ≤ 0. Similarly α[p] ≥ 0 for all p ∈ Z = Z(α−) in the
case α− ∈ I.

(4) ⇒ (1) Suppose that αβ ∈ I. Let γ = |α| − |β|. By hypothesis, there
is a zero-set Z ∈ Z[I] such that for every p ∈ Z, γ[p] ≥ 0 or for every p ∈ Z,
γ[p] ≤ 0. Suppose that for every p ∈ Z, γ[p] ≥ 0. Now, we show that
Z ∩ Z(α) ⊆ Z(β). For this let p ∈ Z ∩ Z(α). So, p ∈ Z and α[p] = 0. Hence,
γ[p] ≥ 0. Since p̃ is a f -ring homorphism, we have

p̃(|α|)− p̃(|β|) = p̃(|α| − |β|) = γ[p] ≥ 0.

So,

|β[p]| = |p̃(β)| = p̃(|β|) ≤ p̃(|α|) = |p̃(α)| = |α[p]| = 0.

Thus, β[p] = 0, p ∈ Z(β), therefore Z ∩ Z(α) ⊆ Z(β). Hence,

Z(β) ⊇ Z ∩ Z(β) = Z ∩ (Z(α) ∪ Z(β)) = Z ∩ Z(αβ) ∈ Z[I].

So that Z(β) ∈ Z[I]. Since I is a strongly z-ideal, β ∈ I. Similarly if for every
p ∈ Z, γ[p] ≤ 0, we conclude that α ∈ I. Therefore, I is a prime ideal. □

As a consequence of Proposition 5.10 we have the next corollary. [10, Lemma
3.8.]).

Corollary 5.12. Let I be a proper ideal in Coz(L) such that for every α, β ∈
C(L), coz(α) ∧ coz(β) = ⊥ implies that coz(α) ∈ I or coz(β) ∈ I. Then the
following statements hold:

(1) Coz←(I) is a prime z-ideal of C(L).
(2) I is a prime ideal of Coz(L).

Proof. (1) Let α, β ∈ C(L) and αβ = 0. Then coz(α) ∧ coz(β) = ⊥ and by
hypothesis, coz(α) ∈ I or coz(β) ∈ I, i.e., α ∈ Coz←(I) or β ∈ Coz←(I).
Since Coz←(I) is a z-ideal of C(L), we can conclude from Proposition 5.10
that Coz←(I) is a prime z-ideal of C(L).

(2) Let α, β ∈ C(L) and coz(αβ) = coz(α)∧coz(β) ∈ I. Then αβ ∈ Coz←(I)
and by statement (1), α ∈ Coz←(I) or β ∈ Coz←(I). Hence, coz(α) ∈ I or
coz(β) ∈ I, i.e., I is a prime ideal of Coz(L). □
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In proof of Proposition 5.13, we use this fact: Let J, J ′ be two ideals. If
J ∩ J ′ is prime then either J ⊆ J ′ or J ′ ⊆ J .

About the following proposition we must say that it was established by Dube
in [9], and we prove it by another way.

Proposition 5.13. Every prime ideal in C(L) is contained in a unique maxi-
mal ideal.

Proof. We know that every ideal is contained in at least one maximal ideal.
Let P be a prime ideal. If M and M ′ are distinct maximal ideals such that P ⊆
M ∩M ′. Since their intersection is a z-ideal, we can conclude from Proposition
5.10 that M ∩M ′ is a prime ideal of C(L), which is a contradiction. □

We regard the Stone-Čech compactification βL of L, as the frame of com-
pletely regular ideals of L. We denote the right adjoint of the join map
jL : βL → L by rL and recall that rL(a) = {x ∈ L|x ≺≺ a}. We define
M I = {α ∈ C(L)|rL(coz(α)) ⊆ I}, for all 1βL ̸= I ∈ βL. If M I = MJ , then
I = J (see [9]). Besides, M I is a maximal ideal of C(L) iff I is a prime element
in βL ( see in [9, Lemma 4.15]).

For each a ∈ L with a ≤ ⊤, we define the subset Ma of C(L) by

Ma = {α ∈ C(L)|coz(α) ≤ a}.
By Lemma 3.2, if p is a prime element of L, then

Mp = {α ∈ C(L)|p ∈ Z(α)}.

(for more details, see [7])

Proposition 5.14. Let L be a completely regular frame. If P is a prime ideal
of C(L), then |

∩
Z[P ]| ≤ 1.

Proof. If p, q ∈
∩
Z[P ], then P ⊆ Mp and P ⊆ Mq. Since by Proposition 5.13,

MrL(p) = Mp = Mq = MrL(q), i.e., rL(p) = rL(q), we conclude that p = q. □

Lemma 5.15. If I is an ideal of C(L), then Iz := Z←Z[I] is a strongly z-ideal
of C(L) and it is the smallest strongly z-ideal containing I.

Proof. It is clear. □

By a prime z-filter of L, we shall mean a z-filter F with the following prop-
erty: whenever the union of two zero-sets belongs to F , then at least one of
them belongs to F .

Proposition 5.16. Let L be a weakly spatial frame.

(1) If P is a prime ideal in C(L), then Pz is a prime strongly z-ideal
containing the prime ideal P .

(2) If P is a prime ideal in C(L), then Z[P ] is a prime z-filter of L.
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(3) If F is a prime z-filter of L, then Z←[F ] is a prime strongly z-ideal in
C(L).

Proof. (1) By Propositions 5.11, 4.2 and Lemma 5.15, Pz is prime strongly
z-ideal containing the prime ideal P .

(2) Suppose that α, β ∈ C(L) and Z(α) ∪ Z(β) ∈ Z[P ]. This implies that
Z(αβ) ∈ Z[Pz], therefore αβ belongs to the z-ideal Pz. Since Pz is prime, we
conclude that Z(α) ∈ Z[Pz] = Z[P ] or Z(β) ∈ Z[Pz] = Z[P ].

(3) By Proposition 5.2, P = Z←[F ] is a strongly z-ideal. Suppose that
α, β ∈ C(L) and αβ ∈ P . Hence by Proposition 3.3(3), Z(αβ) = Z(α)∪Z(β) ∈
Z[P ] = F . By hypothesis, Z(α) ∈ Z[P ] or Z(β) ∈ Z[P ]. Then α ∈ P or
β ∈ P . □
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