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Abstract. Some Lie algebra analogues of Schur’s theorem and its con-

verse are presented. As a result, it is shown that for a capable Lie algebra
L we always have dimL/Z(L) ≤ 2(dim(L2))2. ¡We also give¿ some ex-
amples supporting our results.
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1. Introduction

Relations between the center and derived subgroups of a group G back to
1904 when Schur proved that if G is a group such that the order of G/Z(G) is
finite, then the order of G′ is finite too. But the converse of Schur’s theorem is
not true in general. There are various papers concerning Schur’s theorem and
its converse¡; for example see [1, 3, 7] and references therein.¿

Let L be a Lie algebra over a fixed field Λ and ¡let¿ Z(L), Z2(L), L
2 and

Φ(L) be the center, the second center, the derivative algebra and the Frattini
subalgebra of L, respectively. Similar to Schur’s theorem, Maneyhun [2] in
1993 proved that if dimL/Z(L) = n, then dim(L2) ≤ 1

2n(n− 1). The natural

question that arises is whether the finiteness of dimension of L2 implies the
finiteness of dimension of L/Z(L)? As for groups, the infinite dimensional
Heisenberg algebra gives a counterexample to this question. ¡The aim of this
paper is to give some partial positive answer to the aforementioned question in
the realm of Lie algebras.¿

Definition 1.1. Let L be a Lie algebra. The linear map D : L→ L is said to
be a derivation if

D([x, y]) = [D(x), y] + [x,D(y)]

Article electronically published on October 15, 2015.

Received: 5 November 2013, Accepted: 8 July 2014.
∗Corresponding author.

c⃝2015 Iranian Mathematical Society

1093



Derived algebra and central factor of Lie algebras 1094

for all x, y ∈ L. The set of all derivations of L is denoted by Der(L).

It is well-known that Der(L) is a Lie algebra through the following bracket

[D1, D2] = D1 ◦D2 −D2 ◦D1,

for all D1, D2 ∈ Der(L).
The map adx : L→ L giving by y 7→ [x, y] is a derivation called adjoint map

for all x ∈ L. The set of all adjoint derivations of L is denoted by IDer(L)¡. It
is easy to verify that IDer(L) is an ideal of Der(L).¿

Definition 1.2. A derivation of a Lie algebra L is called an ID-derivation if
its image is contained in the derived algebra. The set of all ID-derivations is
denoted by ID(L). ¡T¿he set of all ID-derivations which map central elements
to 0 is denoted by ID∗(L). We always have

IDer(L) ≤ ID∗(L) ≤ ID(L) ≤ Der(L).

The aim of this paper is to prove the foll¡o¿iwng results.

Theorem A. Let L be a Lie algebra such that L2 is finite dimensional and
L/Z(L) is generated by d elements. Then

dim ID∗(L) ≤ d · dimL2.

Theorem B. Let L be a Lie algebra such that L2 is finite dimensional. Then
L/Z(L) is finite dimensional if and only if Z2(L)/Z(Z2(L)) is finite dimen-
sional, where Z2(L) is the second term in the upper central series of L.

Theorem C. Let L be a Lie algebra that dimL2/L2 ∩ Z(L) = n. Then
dimL/Z2(L) ≤ 2n2.

2. Proof of Theorem A

Proof of Theorem A. Let {x1 +Z(L), . . . , xd +Z(L)} be a minimal generating
set of L/Z(L). ¡It is easy to see that¿

ψ : ID∗(L) −→ L2 ⊕ · · · ⊕ L2

α 7−→ (α(x1), . . . , α(xd)).

ψ is an injective linear map. Hence the result follows. □

Example 2.1. Let L = Genx1, . . . , xm, yij : [xi, xj ] = yij , 1 ≤ i < j ≤ m be a
nilpotent Lie algebra of class 2 and dimension 1

2m(m + 1). Then Z(L) =

L2 = Genyij : 1 ≤ i < j ≤ m, dim(L2) = 1
2m(m − 1) and dim(L/Z(L)) =

d(L/Z(L)) = m. Since a typical element of ID∗(L) has the following matrix
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form 

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0

α1,m+1 · · · αm,m+1 0 · · · 0
...

. . .
...

...
. . .

...
α
1,

m(m+1)
2

· · · α
m,

m(m+1)
2

0 · · · 0


, αi,j ∈ Λ

it follows that dim ID∗(L) = 1
2m

2(m− 1).

Example 2.2. LetHn be a Lie algebra defined byHn = Genx1, . . . , xn : [x1, xi]
= xi+1, 2 ≤ i ≤ n− 1. Then L2 = Genx3, . . . , xn, dim(L2) = n−2,Hn/Z(Hn) ∼=
Hn−1 and d(Hn/Z(Hn)) = 2. A simple verification shows that a typical ele-
ment of ID∗(L) has the following matrix form

0 0 0 0 · · · 0
0 0 0 0 · · · 0
α1,3 α2,3 0 0 · · · 0
α1,4 α2,4 α2,3 0 · · · 0
...

... α2,4 0 · · · 0
...

...
...

...
. . .

...
α1,n α2,n α2,n−1 0 · · · 0


.

Hence, dim ID∗(L) = 2(n− 2).

The above examples indicate that the upper bound given in Theorem A is
sharp.

Example 2.3. Let L = H(k) = Gen x1, . . . , x2k+1 : [x2i−1, x2i] = x2k+1,
1 ≤ i ≤ k be Heisenberg Lie algebra of dimension 2k + 1. Then L2 = Z(L) =
Genx2k+1 and d(L/Z(L)) = dim(L/Z(L)) = 2k. An element of ID∗(L) in the
matrix ¡form¿ is represented by

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

α1,2k+1 · · · α2k,2k+1 0

 ,
which implies that dim ID∗(L) = 2k. Since H(k)⊕An−2k−1, where dimA = 1
satisfies the same property, all nilpotent Lie algebras L with dimL2 = 1 have
the mentioned properties.

Theorem A has the following interesting consequences.

Corollary 2.4. Let L be a Lie algebra. Then IDer(L) is finite dimensional if
and only if ID∗(L) is finite dimensional.
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Proof. Since L/Z(L) ∼= IDer(L), the finiteness of dimension of IDer(L) implies
the finiteness of dimension of L2 and hence, by Theorem A, the finiteness of
dimension of ID∗(L). On the other hand, IDer(L) ≤ ID∗(L), which implies the
converse is also true. □

Corollary 2.5. Invoking the hypothesis of Theorem A, we have

dim
L

Z(L)
≤ d · dim(L2).

Let A,B be two Lie algebra¡s¿ over a field Λ and T (A,B) be the set of all
linear transformations from A to B. Then T (A,B) equipped with ¡the¿ Lie
bracket [f, g](x) = [f(x), g(x)] for all x ∈ A and f, g ∈ T (A,B) is a Lie algebra.

Let L be a Lie algebra and

C∗ = {α ∈ Der(L) : α(x) ∈ Z(L) ∀x ∈ L and α(x) = 0 ∀x ∈ Z(L)}.

For any α ∈ C∗, the map ψα : L/(L2 +Z(L)) → Z(L) defined by ψα(x+L2 +
Z(L)) = α(x), for all x ∈ L is a linear transformation. It is easy to see that the
map ψ : C∗ → T ( L

L2+Z(L) , Z(L)) defined by ψ(α) = ψα is a Lie isomorphism.

Therefore C∗ ∼= T (L/(L2 + Z(L)), Z(L)).
The descending central series of a Lie algebra L is defined by {Li}, where

L1 = L and Li = [Li−1, L] for all i > 1. A Lie algebra L is nilpotent if there
exists a non-negative integer k such that Lk = 0. The smallest integer k for
which Lk+1 = 0 is called the nilindex of L. A Lie algebra L with dim(L) = n
is called filiform (or 1-filiform) if it satisfies dim(Li) = n− i for all 2 ≤ i ≤ n.
These algebras have the maximal nilindex n − 1. The Lie algebras with a
nilindex n− 2 are called quasifiliform (or 2-filiform) and those with nilindex 1
are called abelian.

Corollary 2.6. Let L be an n-dimensional Lie algebra which attain the upper
bound in the previous corollary. Then

(1) if L is filiform, then n = 3, and
(2) if L is quasifiliform, then n = 4 or 5.

Proof. (1) We have dimZ(L) = 1 and dim(L2) = n − 2. Therefore d(L) = 2
and by Corollary 2.5, n− 1 = 2(n− 2), which implies that n = 3.

(2) Clearly ID∗(L) = IDer(L). Also, since L is a quasifiliform, we have
1 ≤ dim(Z(L)) ≤ 2 and n − 3 ≤ dim(L2) ≤ n − 2. If Z(L) ≤ L2, then C∗ ≤
ID∗(L) = IDer(L), hence C∗ = Z(IDer(L)). On the other hand, d = d(L)Geq2.
Thus Z(IDer(L)) is not 1-dimensional. First suppose that dim(Z(L)) = 1.
Then dim(Z2(L)) = 3 and dim(C∗) = dim(Z(IDer(L))) = 2. So d(L) =
d(L/Z(L)) = 2. If dim(L2) = n − 2, then since dim(L/Z(L)) = d · dim(L2),
it follows that n = 3, which is a contradiction. If dim(L2) = n − 3, then by
Corollary 2.5, n−1 = 2(n−3), which implies that n = 5. Second suppose that
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dim(Z(L)) = 2. Then dim(Z2(L)) = 3 and hence Z(IDer(L)) is 1-dimensional,
which is a contradiction.

Now, assume that Z(L) ̸≤ L2. Then dim(Z(L)) = 2. If dim(L2) = n − 2,
then L2 = Φ(L) and hence d(L/Z(L)) = 1, which contradicts the assumption
that L is non-abelian. If dim(L2) = n − 3, then d(L/Z(L)) = d(L/(L2 +
Z(L))) = 2 and by Corollary 2.5, it follows that n = 4. □

3. Proof of Theorems B and C

In what follows we state some lemmas that will be used in the proof of
theorems.

Lemma 3.1. Let H be a subalgebra of a Lie algebra L generated by x1, x2, · · · , xd
and Z(L). If dim Imadxi = mi for 1 ≤ i ≤ d, then dimL/CL(H) ≤

∑d
i=1mi,

where CL(H) is the centralizer of H in L.

Proof. The same as in the proof of Theorem A, we just need to consider the
following mapping.

ψ : L
CL(H) −→ Imadx1 ⊕ · · · ⊕ Imadxd

x+ CL(H) 7−→ ([x1, x], . . . , [xd, x]).

Clearly ψ is an injective linear map, from which the result follows. □

Corollary 3.2. Let L be a Lie algebra such that L/Z(L) is generated by x1 +
Z(L), . . . , xd + Z(L). If dim Imadxi = mi for 1 ≤ i ≤ d, then dimL/Z(L) ≤∑d

i=1mi. Moreover, L2 is finite dimensional and dimL/Z(L) ≤ d · dimL2.

Proof. Put H = L in Lemma 3.1. □

The Heisenberg algebra H(k) of dimension 2k + 1 is an example in which
the equality holds in the above corollary. In the sequel, we state some lemma
which will be used in the proof of Theorem C.

Lemma 3.3. Let L be a Lie algebra and H < L be a proper subalgebra of L.
Then L2 = [L \H,L].

Proof. It is enough to show [H,L] ⊆ [L \ H,L]. Suppose y is an arbitrary
element of L \H. Then [x, t] = [x+ y, t]− [y, t] for all x ∈ H and t ∈ L, which
implies that [x, t] ∈ [L \H,L]. □

Lemma 3.4. Let Z = L∩Z(L) and U, V be subalgebras of L such that Z ≤ U
and V ≤ L2. Then there exist elements x, y of L satisfying the following
properties:

(1) if Z < U , then U ∩ CL(x) < U , and
(2) if V < L2, then V < GenV, [x, y].
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Proof. Let C = CL(U). If Z < U then C < L. Thus U ∩ CL(x) < U for all
x ∈ L \C. By Lemma 3.3, L2 = [L \C,L]. If V < L2 we can choose x ∈ L \C
and y ∈ L such that V < GenV, [x, y]. If Z = U and V < L2 we can find x, y
such that [x, y] /∈ V . Thus V < GenV, [x, y]. □

Lemma 3.5. Let Z = L2 ∩ Z(L) and suppose dimL2/Z = n. Let T be a
subalgebra of L with L2 ≤ T ≤ L having the following properties:

(1) L2 = T 2 + Z,
(2) L2 ∩ Z(T ) = Z, and
(3) T/Z can be generated by k elements.

Then there exists M ≤ L such that [M,L,L] = 0 and dimL/M ≤ nk.

Proof. LetM/Z = CL/Z(T/Z). By lemma 3.1, dimL/M ≤ nk. Now [T,M,L] =

0. In particular, [T,M, T ] = 0. However, according to the Jacobi iden-
tity we can see [T, T,M ] = 0 and using Jacobi identity once more we have
[M,L, T ] = 0. Thus [M,L] ≤ Z(T ) ∩ L2 = Z. Therefore [M,L,L] = 0. □

Lemma 3.6. Let L be a finite dimensional Lie algebra and dimL2/Z = n, in
which Z = L2 ∩ Z(L). Then there exists a subalgebra T of L satisfying the
conditions of Lemma 3.5 such that k ≤ 2n.

Proof. By lemma 3.5, we have elements xi+1, yi+1 (0 ≤ i ≤ l − 1) such that
Vi = GenZ, [x1, y1], . . . , [xi, yi] and Ui = CL2(Vi). Now, we have

Z = V0 ≤ V1 ≤ V2 ≤ · · · ≤ Vl = L2

and

L2 = U0GeqU1GeqU2Geq · · · GeqUl = Z

where l is the smallest integer such that Vl = L2 and Ul = Z.
Let T = GenZ, x1, y1, . . . , xl, yl. We can see that nGeql. Hence k ≤ 2n and
it can be easily verified that the subalgebra T of L satisfies the conditions of
Lemma 3.5. □

Now, we are in a position to prove Theorem C.

Proof of Theorem C. By Lemma 3.6, there exists a subalgebra T of L such
that k ≤ 2n and T satisfies the conditions of Lemma 3.5. Thus there exists a
subalgebraM of L such that [M,L,L] = 0 and dimL/M ≤ nk. Hence [M,L] ⊆
Z(L) andM/Z(L) ≤ Z2(L)/Z(L). Therefore dimL/Z2(L) ≤ dimL/M ≤ nk ≤
2n2. □

Example 3.7. Let L = Gen x1, . . . , x2n : [x1, x2] = x3, [x1, xi] = xi+n−1,
3 ≤ i ≤ n + 1. Clearly, L2 = Genx2, xn+2, . . . , x2n, Z(L) = Genxn+2, . . . , x2n
and Z2(L) = Genx3, x4, . . . , x2n. Hence dim(L/Z2(L)) = 2 and dim(L2/L2 ∩
Z(L)) = 1, which imply that the upper bound introduced in Theorem C is
sharp.
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The following corollaries are direct consequences of Theorem C.

Corollary 3.8. Let L be a Lie algebra such that L2 is finite dimensional. Then
L/Z2(L) is also finite dimensional.

A Lie algebra H is said to be capable if there exists a Lie algebra L such
that H ∼= L/Z(L).

Corollary 3.9. Let H be a capable Lie algebra such that dimH2 = n. Then
dimH/Z(H) ≤ 2n2.

A group theoretical analogue of the above corollary is prove by Podoski and
Szegedy in [5].

Another consequence of Corollaries 3.2 and 3.7 is

Corollary 3.10. Let L be a Lie algebra such that L2 is finite dimensional.
Then L/Z(L) is finite dimensional if and only if Z2(L)/Z(L) is finitely gener-
ated.

Theorem B gives a better result.

Lemma 3.11. Let L be a Lie algebra with an abelian ideal A such that L/CL(A)
is finite dimensional and L/A is generated by elements x1+A, . . . , xd+A, where
dim Imadxi <∞ for 1 ≤ i ≤ d. Then L/Z(L) is finite dimensional.

Proof. Let X = {x1, · · · , xd} and Y be a generating set for A. Then L =
GenX, Y and Z(L) = CL(X) ∩ CL(Y ). Since L/CL(A) is finite dimensional,
L/CL(Y ) is finite dimensional too. On the other hand, since Imadxi is finite
dimensional for 1 ≤ i ≤ d, by Corollary 3.2, L/CL(X) has finite dimension.
Therefore L/Z(L) is finite dimensional, as required. □

Proof of Theorem B. Suppose that Z2(L)/Z(Z2(L)) is finitely generated. If
L/Z(L) has infinite dimension, then by Corollary 3.7, Z2(L)/Z(L) has infinite
dimension. On the other hand, since L/Z2(L) is finite dimensional, L/Z(Z2(L))
is finitely generated. Now, since Z2(L) ≤ CL(Z(Z2(L))), by Lemma 3.10,
L/Z(L) is finite dimensional, which is a contradiction. Therefore L/Z(L) is
finite dimensional. The converse is obvious. □

Lemma 3.12. Let L be a Lie algebra and A be an abelian subalgebra of L such
that dimL/A = m and dimL2 = n. Then

dim
L

Z(L)
≤ m(n+ 1).

Proof. We can chose a subspace X of L such that L = GenA,X and dimX =
r ≤ m. Similarly, as in the proof of Lemma 3.1, we can show that dimL/CL(X)

≤ rn. Since A is abelian, we can see that A∩CL(X) ⊆ Z(L). Thus dimL/Z(L)
≤ m+mn = m(n+ 1). □
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By Theorem B and Lemma 3.12, we can prove a partial of converse Schur
theorem in Lie algebra.

Corollary 3.13. If L is a Lie algebra such that dimL2 = n and Z2(L) is
abelian, then

dim
L

Z(L)
≤ 2(n3 + n2).

4. Lie algebras with the property G

Let G be the family of all Lie algebras L whose derived subalgebras are finite
dimensional and 2(dimL2)2 is greater that or equal to the dimension of their
central factor. As it is illustrated in Corollary 3.8, capable Lie algebras belong
to this family. hence, a natural question to ask is whether there no-capable
Lie algebras belonging to this family? For example, An abelian Lie algebra of
dimension 1 and Heisenberg Lie algebras H(k) of dimension 2k + 1 for k > 1
are non-capable Lie algebras which belong to this family (see [4] for details ).

In this section we shall determine some families of non-capable Lie algebras
which belong to this family. The first example is given as in the following
theorem.

Theorem 4.1. Let L be a Lie algebra with trivial Frattini subalgebra. If L2 is
finite dimensional, then L belongs to G.

Proof. Since the Frattini subalgebras of L is trivial, L2 ∩ Z(L) = 0. Hence
Z2(L) = Z(L) and by Theorem C, the result follows. □

The above theorem gives us non-capable Lie algebras which belong to G.
Indeed, the abelian Lie algebra of dimension 1 is a non-capable Lie algebra
satisfying the conditions of the above theorem.

To introduce the other family, we need to give a definition. The following
important equivalence relation was defined by salemkar [6].

Definition 4.2. Let L and H be two Lie algebras. Then L and H are called
n-isoclinic and denoted by L ∼

n
H if there exists a pair of isomorphisms α :

L/Zn(L) → H/Zn(H) and β : Ln+1 → Hn+1 such that the following diagram
is commutative.

L
Zn(L) ⊕ · · · ⊕ L

Zn(L)
//

αn+1

��

Ln+1

β

��
H

Zn(H) ⊕ · · · ⊕ H
Zn(H)

// Hn+1.

in which the horizontal maps are defined by (x1, . . . , xn+1) 7→ [x1, . . . , xn+1].
If n = 1, then L and H are called isoclinic and denoted by L ∼ H.
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Clearly, if L and H are isoclinic Lie algebras and H ∈ G, then so is L.
Indeed, if L and H are Lie algebras whose central factors are isomorphic and
dimH2 ≤ dimL2, then the condition H ∈ G implies that L ∈ G too.

Now, we enjoy to know under which conditions two Lie algebras with iso-
morphic central factors one of them belonging to G implies that the other is
also belongs to G.

Proposition 4.3. Let L be a finite dimensional Lie algebra and S be a subal-
gebra of L such that the central factors of L and S are isomorphic. If L belongs
to the family G, then so is S.

Proof. It is not difficult to show that L = S + Z(L). Hence L2 = S2 and the
result follows. □

Definition 4.4. Let L be a Lie algebra. Then L is said to be an n-stem Lie
algebra if Z(L) ⊆ Ln+1.

Salemkar [6] showed that each n-isoclinism class of Lie algebras contains at
least a n-stem Lie algebra.

Theorem 4.5. [6] Let H be a Lie algebra with dimHn finite. Then Z(H)∩Hn

is a subalgebra of Hn+1 if and only if for each Lie algebra L n-isoclinic to H,
dimHn ≤ dimLn.

Utilizing the above theorem, we have

Theorem 4.6. Let L and H be Lie algebras such that L ∼
n
H and L/Z(L) ∼=

H/Z(H). If H is n-stem and H ∈ G, then L belongs to G too.

Proof. Since the central factors of L and H are isomorphic, we have Ln/Ln ∩
Z(L) ∼= Hn/Hn ∩Z(H). On the other hand, H is n-stem, and by the previous
theorem, dimHn ≤ dimLn. Hence dimHn ∩ Z(H) ≤ dimLn ∩ Z(L) so that
dimZ(H) ≤ dimL2∩Z(L). Therefore, dimH2 ≤ dimL2 and the result follows.

□

The following example illustrates how the above theorem can be used to find
non-capable Lie algebras belonging to G.

Example 4.7. Let Ln = Genx1, . . . , xn : [xi, xj ] = xi+j , 1 ≤ i < j ≤ n− i and
Hn = Genx1, . . . , xn : [x1, xi] = xi+1, 2 ≤ i ≤ n− 1. Then Ln and Hn are
capable nilpotent Lie algebras of dimension n for Ln/Z(Ln) ∼= Ln−1 and
Hn/Z(Hn) ∼= Hn−1. On the other hand, L5/Z(L5) ∼= H5/Z(H5), L5 is 3-
stem and L5 ∼

3
H5. Now, assume that L = L5 and H = H5 ⊕ A. Then L and

H satisfy the conditions of the previous theorem while H is not capable.
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