ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 5, pp. 1093-1102

Title:

On dimensions of derived algebra and central factor of a Lie algebra

Author(s):

H. Arabyani and F. Saeedi

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 41 (2015), No. 5, pp. 1093–1102 Online ISSN: 1735-8515

ON DIMENSIONS OF DERIVED ALGEBRA AND CENTRAL FACTOR OF A LIE ALGEBRA

H. ARABYANI AND F. SAEEDI*

(Communicated by Saeid Azam)

ABSTRACT. Some Lie algebra analogues of Schur's theorem and its converse are presented. As a result, it is shown that for a capable Lie algebra L we always have dim $L/Z(L) \leq 2(\dim(L^2))^2$. ;We also give; some examples supporting our results.

 ${\bf Keywords:}\ {\bf Capable \ Lie \ algebra, \ minimal \ generator, \ derived \ algebra, \ central \ factor.$

MSC(2010): Primary: 17B99; Secondary: 16W25.

1. Introduction

Relations between the center and derived subgroups of a group G back to 1904 when Schur proved that if G is a group such that the order of G/Z(G) is finite, then the order of G' is finite too. But the converse of Schur's theorem is not true in general. There are various papers concerning Schur's theorem and its converse; for example see [1,3,7] and references therein.

Let L be a Lie algebra over a fixed field Λ and $|\text{let}_{\dot{L}} Z(L), Z_2(L), L^2$ and $\Phi(L)$ be the center, the second center, the derivative algebra and the Frattini subalgebra of L, respectively. Similar to Schur's theorem, Maneyhun [2] in 1993 proved that if $\dim L/Z(L) = n$, then $\dim(L^2) \leq \frac{1}{2}n(n-1)$. The natural question that arises is whether the finiteness of dimension of L^2 implies the finiteness of dimension of L/Z(L)? As for groups, the infinite dimensional Heisenberg algebra gives a counterexample to this question. The aim of this paper is to give some partial positive answer to the aforementioned question in the realm of Lie algebras.

Definition 1.1. Let *L* be a Lie algebra. The linear map $D: L \to L$ is said to be a *derivation* if

$$D([x, y]) = [D(x), y] + [x, D(y)]$$

©2015 Iranian Mathematical Society

Article electronically published on October 15, 2015.

Received: 5 November 2013, Accepted: 8 July 2014.

 $^{^{*} {\}rm Corresponding \ author}.$

¹⁰⁹³

for all $x, y \in L$. The set of all derivations of L is denoted by Der(L).

It is well-known that Der(L) is a Lie algebra through the following bracket

$$[D_1, D_2] = D_1 \circ D_2 - D_2 \circ D_1,$$

for all $D_1, D_2 \in \text{Der}(L)$.

The map $\operatorname{ad}_x : L \to L$ giving by $y \mapsto [x, y]$ is a derivation called *adjoint map* for all $x \in L$. The set of all adjoint derivations of L is denoted by $\operatorname{IDer}(L)_i$. It is easy to verify that $\operatorname{IDer}(L)$ is an ideal of $\operatorname{Der}(L)_i$.

Definition 1.2. A derivation of a Lie algebra L is called an *ID-derivation* if its image is contained in the derived algebra. The set of all ID-derivations is denoted by ID(L). $_{i}T_{i}$ he set of all ID-derivations which map central elements to 0 is denoted by $ID^{*}(L)$. We always have

$$\operatorname{IDer}(L) \leq \operatorname{ID}^*(L) \leq \operatorname{ID}(L) \leq \operatorname{Der}(L).$$

The aim of this paper is to prove the folljojiwng results.

Theorem A. Let L be a Lie algebra such that L^2 is finite dimensional and L/Z(L) is generated by d elements. Then

$$\dim \mathrm{ID}^*(L) \le d \cdot \dim L^2.$$

Theorem B. Let L be a Lie algebra such that L^2 is finite dimensional. Then L/Z(L) is finite dimensional if and only if $Z_2(L)/Z(Z_2(L))$ is finite dimensional, where $Z_2(L)$ is the second term in the upper central series of L.

Theorem C. Let L be a Lie algebra that $\dim L^2/L^2 \cap Z(L) = n$. Then $\dim L/Z_2(L) \leq 2n^2$.

2. Proof of Theorem A

Proof of Theorem A. Let $\{x_1 + Z(L), \ldots, x_d + Z(L)\}$ be a minimal generating set of L/Z(L). ¡It is easy to see that;

$$\psi: \mathrm{ID}^*(L) \longrightarrow L^2 \oplus \cdots \oplus L^2$$
$$\alpha \longmapsto (\alpha(x_1), \dots, \alpha(x_d)).$$

 ψ is an injective linear map. Hence the result follows.

Example 2.1. Let $L = \mathcal{G}enx_1, \ldots, x_m, y_{ij} : [x_i, x_j] = y_{ij}, 1 \le i < j \le m$ be a nilpotent Lie algebra of class 2 and dimension $\frac{1}{2}m(m+1)$. Then $Z(L) = L^2 = \mathcal{G}eny_{ij} : 1 \le i < j \le m$, $\dim(L^2) = \frac{1}{2}m(m-1)$ and $\dim(L/Z(L)) = d(L/Z(L)) = m$. Since a typical element of $\mathrm{ID}^*(L)$ has the following matrix

form

$$\begin{bmatrix} 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \alpha_{1,m+1} & \cdots & \alpha_{m,m+1} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{1,\frac{m(m+1)}{2}} & \cdots & \alpha_{m,\frac{m(m+1)}{2}} & 0 & \cdots & 0 \end{bmatrix}, \qquad \alpha_{i,j} \in \Lambda$$

it follows that dim $ID^*(L) = \frac{1}{2}m^2(m-1)$.

Example 2.2. Let H_n be a Lie algebra defined by $H_n = \mathcal{G}enx_1, \ldots, x_n : [x_1, x_i] = x_{i+1}, \ 2 \le i \le n-1$. Then $L^2 = \mathcal{G}enx_3, \ldots, x_n, \dim(L^2) = n-2, H_n/Z(H_n) \cong H_{n-1}$ and $d(H_n/Z(H_n)) = 2$. A simple verification shows that a typical element of $\mathrm{ID}^*(L)$ has the following matrix form

0	0	0	0	• • •	0
0	0	0	0	• • •	0
$\alpha_{1,3}$	$\alpha_{2,3}$	0	0	• • •	0
$\alpha_{1,4}$	$\alpha_{2,4}$	$\alpha_{2,3}$	0	• • •	0
÷	÷	$\alpha_{2,4}$	0		0
÷	:	:	÷	۰.	:
$\alpha_{1,n}$	$\alpha_{2,n}$	$\alpha_{2,n-1}$	0	• • •	0

Hence, $\dim ID^*(L) = 2(n-2)$.

The above examples indicate that the upper bound given in Theorem A is sharp.

Example 2.3. Let $L = H(k) = \mathcal{G}en \ x_1, \ldots, x_{2k+1} : [x_{2i-1}, x_{2i}] = x_{2k+1}$, $1 \leq i \leq k$ be Heisenberg Lie algebra of dimension 2k + 1. Then $L^2 = Z(L) = \mathcal{G}enx_{2k+1}$ and $d(L/Z(L)) = \dim(L/Z(L)) = 2k$. An element of $ID^*(L)$ in the matrix form; is represented by

$$\begin{bmatrix} 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 \\ \alpha_{1,2k+1} & \cdots & \alpha_{2k,2k+1} & 0 \end{bmatrix},$$

which implies that dim $ID^*(L) = 2k$. Since $H(k) \oplus A^{n-2k-1}$, where dim A = 1 satisfies the same property, all nilpotent Lie algebras L with dim $L^2 = 1$ have the mentioned properties.

Theorem A has the following interesting consequences.

Corollary 2.4. Let L be a Lie algebra. Then IDer(L) is finite dimensional if and only if $ID^*(L)$ is finite dimensional.

Proof. Since $L/Z(L) \cong \text{IDer}(L)$, the finiteness of dimension of IDer(L) implies the finiteness of dimension of L^2 and hence, by Theorem A, the finiteness of dimension of $\text{ID}^*(L)$. On the other hand, $\text{IDer}(L) \leq \text{ID}^*(L)$, which implies the converse is also true.

Corollary 2.5. Invoking the hypothesis of Theorem A, we have

$$\dim \frac{L}{Z(L)} \le d \cdot \dim(L^2).$$

Let A, B be two Lie algebra; jover a field A and T(A, B) be the set of all linear transformations from A to B. Then T(A, B) equipped with ithe Lie bracket [f,g](x) = [f(x),g(x)] for all $x \in A$ and $f,g \in T(A, B)$ is a Lie algebra. Let L be a Lie algebra and

$$C^* = \{ \alpha \in \operatorname{Der}(L) : \alpha(x) \in Z(L) \ \forall x \in L \text{ and } \alpha(x) = 0 \ \forall x \in Z(L) \}.$$

For any $\alpha \in C^*$, the map $\psi_{\alpha} : L/(L^2 + Z(L)) \to Z(L)$ defined by $\psi_{\alpha}(x + L^2 + Z(L)) = \alpha(x)$, for all $x \in L$ is a linear transformation. It is easy to see that the map $\psi : C^* \to T(\frac{L}{L^2 + Z(L)}, Z(L))$ defined by $\psi(\alpha) = \psi_{\alpha}$ is a Lie isomorphism. Therefore $C^* \cong T(L/(L^2 + Z(L)), Z(L))$.

The descending central series of a Lie algebra L is defined by $\{L^i\}$, where $L^1 = L$ and $L^i = [L^{i-1}, L]$ for all i > 1. A Lie algebra L is *nilpotent* if there exists a non-negative integer k such that $L^k = 0$. The smallest integer k for which $L^{k+1} = 0$ is called the *nilindex* of L. A Lie algebra L with dim(L) = n is called *filiform* (or 1-filiform) if it satisfies dim $(L^i) = n - i$ for all $2 \le i \le n$. These algebras have the maximal nilindex n - 1. The Lie algebras with a nilindex n - 2 are called *quasifiliform* (or 2-filiform) and those with nilindex 1 are called *abelian*.

Corollary 2.6. Let L be an n-dimensional Lie algebra which attain the upper bound in the previous corollary. Then

- (1) if L is filiform, then n = 3, and
- (2) if L is quasifiliform, then n = 4 or 5.

Proof. (1) We have dim Z(L) = 1 and dim $(L^2) = n - 2$. Therefore d(L) = 2 and by Corollary 2.5, n - 1 = 2(n - 2), which implies that n = 3.

(2) Clearly $ID^*(L) = IDer(L)$. Also, since L is a quasifiliform, we have $1 \leq \dim(Z(L)) \leq 2$ and $n-3 \leq \dim(L^2) \leq n-2$. If $Z(L) \leq L^2$, then $C^* \leq ID^*(L) = IDer(L)$, hence $C^* = Z(IDer(L))$. On the other hand, d = d(L)Geq2. Thus Z(IDer(L)) is not 1-dimensional. First suppose that $\dim(Z(L)) = 1$. Then $\dim(Z_2(L)) = 3$ and $\dim(C^*) = \dim(Z(IDer(L))) = 2$. So d(L) = d(L/Z(L)) = 2. If $\dim(L^2) = n-2$, then since $\dim(L/Z(L)) = d \cdot \dim(L^2)$, it follows that n = 3, which is a contradiction. If $\dim(L^2) = n-3$, then by Corollary 2.5, n-1 = 2(n-3), which implies that n = 5. Second suppose that

 $\dim(Z(L)) = 2$. Then $\dim(Z_2(L)) = 3$ and hence $Z(\operatorname{IDer}(L))$ is 1-dimensional, which is a contradiction.

Now, assume that $Z(L) \not\leq L^2$. Then $\dim(Z(L)) = 2$. If $\dim(L^2) = n-2$, then $L^2 = \Phi(L)$ and hence d(L/Z(L)) = 1, which contradicts the assumption that L is non-abelian. If $\dim(L^2) = n-3$, then $d(L/Z(L)) = d(L/(L^2 + Z(L))) = 2$ and by Corollary 2.5, it follows that n = 4.

3. Proof of Theorems B and C

In what follows we state some lemmas that will be used in the proof of theorems.

Lemma 3.1. Let H be a subalgebra of a Lie algebra L generated by x_1, x_2, \dots, x_d and Z(L). If dim Imad_{x_i} = m_i for $1 \le i \le d$, then dim $L/C_L(H) \le \sum_{i=1}^d m_i$, where $C_L(H)$ is the centralizer of H in L.

Proof. The same as in the proof of Theorem A, we just need to consider the following mapping.

$$\psi: \frac{L}{C_L(H)} \longrightarrow \operatorname{Imad}_{x_1} \oplus \cdots \oplus \operatorname{Imad}_{x_d} \\ x + C_L(H) \longmapsto ([x_1, x], \dots, [x_d, x]).$$

Clearly ψ is an injective linear map, from which the result follows.

Corollary 3.2. Let *L* be a Lie algebra such that L/Z(L) is generated by $x_1 + Z(L), \ldots, x_d + Z(L)$. If dim $\operatorname{Imad}_{x_i} = m_i$ for $1 \le i \le d$, then dim $L/Z(L) \le \sum_{i=1}^d m_i$. Moreover, L^2 is finite dimensional and dim $L/Z(L) \le d \cdot \dim L^2$.

Proof. Put H = L in Lemma 3.1.

The Heisenberg algebra H(k) of dimension 2k + 1 is an example in which the equality holds in the above corollary. In the sequel, we state some lemma which will be used in the proof of Theorem C.

Lemma 3.3. Let L be a Lie algebra and H < L be a proper subalgebra of L. Then $L^2 = [L \setminus H, L]$.

Proof. It is enough to show $[H, L] \subseteq [L \setminus H, L]$. Suppose y is an arbitrary element of $L \setminus H$. Then [x, t] = [x + y, t] - [y, t] for all $x \in H$ and $t \in L$, which implies that $[x, t] \in [L \setminus H, L]$.

Lemma 3.4. Let $Z = L \cap Z(L)$ and U, V be subalgebras of L such that $Z \leq U$ and $V \leq L^2$. Then there exist elements x, y of L satisfying the following properties:

- (1) if Z < U, then $U \cap C_L(x) < U$, and
- (2) if $V < L^2$, then $V < \mathcal{G}enV, [x, y]$.

Proof. Let $C = C_L(U)$. If Z < U then C < L. Thus $U \cap C_L(x) < U$ for all $x \in L \setminus C$. By Lemma 3.3, $L^2 = [L \setminus C, L]$. If $V < L^2$ we can choose $x \in L \setminus C$ and $y \in L$ such that $V < \mathcal{G}enV, [x, y]$. If Z = U and $V < L^2$ we can find x, y such that $[x, y] \notin V$. Thus $V < \mathcal{G}enV, [x, y]$.

Lemma 3.5. Let $Z = L^2 \cap Z(L)$ and suppose dim $L^2/Z = n$. Let T be a subalgebra of L with $L^2 \leq T \leq L$ having the following properties:

- (1) $L^2 = T^2 + Z$,
- (2) $L^2 \cap Z(T) = Z$, and
- (3) T/Z can be generated by k elements.

Then there exists $M \leq L$ such that [M, L, L] = 0 and dim $L/M \leq nk$.

Proof. Let $M/Z = C_{L/Z}(T/Z)$. By lemma 3.1, dim $L/M \le nk$. Now [T, M, L] = 0. In particular, [T, M, T] = 0. However, according to the Jacobi identity we can see [T, T, M] = 0 and using Jacobi identity once more we have [M, L, T] = 0. Thus $[M, L] \le Z(T) \cap L^2 = Z$. Therefore [M, L, L] = 0.

Lemma 3.6. Let L be a finite dimensional Lie algebra and dim $L^2/Z = n$, in which $Z = L^2 \cap Z(L)$. Then there exists a subalgebra T of L satisfying the conditions of Lemma 3.5 such that $k \leq 2n$.

Proof. By lemma 3.5, we have elements x_{i+1}, y_{i+1} $(0 \le i \le l-1)$ such that $V_i = \mathcal{G}enZ, [x_1, y_1], \ldots, [x_i, y_i]$ and $U_i = C_{L^2}(V_i)$. Now, we have

$$Z = V_0 \le V_1 \le V_2 \le \dots \le V_l = L^2$$

and

$$L^2 = U_0 \mathcal{G}eq U_1 \mathcal{G}eq U_2 \mathcal{G}eq \cdots \mathcal{G}eq U_l = Z$$

where l is the smallest integer such that $V_l = L^2$ and $U_l = Z$. Let $T = \mathcal{G}enZ, x_1, y_1, \ldots, x_l, y_l$. We can see that $n\mathcal{G}eql$. Hence $k \leq 2n$ and it can be easily verified that the subalgebra T of L satisfies the conditions of Lemma 3.5.

Now, we are in a position to prove Theorem C.

Proof of Theorem C. By Lemma 3.6, there exists a subalgebra T of L such that $k \leq 2n$ and T satisfies the conditions of Lemma 3.5. Thus there exists a subalgebra M of L such that [M, L, L] = 0 and dim $L/M \leq nk$. Hence $[M, L] \subseteq Z(L)$ and $M/Z(L) \leq Z_2(L)/Z(L)$. Therefore dim $L/Z_2(L) \leq \dim L/M \leq nk \leq 2n^2$.

Example 3.7. Let $L = \mathcal{G}en \ x_1, \ldots, x_{2n} : [x_1, x_2] = x_3, [x_1, x_i] = x_{i+n-1},$ $3 \leq i \leq n+1$. Clearly, $L^2 = \mathcal{G}enx_2, x_{n+2}, \ldots, x_{2n}, Z(L) = \mathcal{G}enx_{n+2}, \ldots, x_{2n}$ and $Z_2(L) = \mathcal{G}enx_3, x_4, \ldots, x_{2n}$. Hence $\dim(L/Z_2(L)) = 2$ and $\dim(L^2/L^2 \cap Z(L)) = 1$, which imply that the upper bound introduced in Theorem C is sharp. The following corollaries are direct consequences of Theorem C.

Corollary 3.8. Let L be a Lie algebra such that L^2 is finite dimensional. Then $L/Z_2(L)$ is also finite dimensional.

A Lie algebra H is said to be *capable* if there exists a Lie algebra L such that $H \cong L/Z(L)$.

Corollary 3.9. Let H be a capable Lie algebra such that dim $H^2 = n$. Then dim $H/Z(H) \leq 2n^2$.

A group theoretical analogue of the above corollary is prove by Podoski and Szegedy in [5].

Another consequence of Corollaries 3.2 and 3.7 is

Corollary 3.10. Let L be a Lie algebra such that L^2 is finite dimensional. Then L/Z(L) is finite dimensional if and only if $Z_2(L)/Z(L)$ is finitely generated.

Theorem B gives a better result.

Lemma 3.11. Let *L* be a Lie algebra with an abelian ideal *A* such that $L/C_L(A)$ is finite dimensional and L/A is generated by elements $x_1 + A, \ldots, x_d + A$, where dim Imad_{x_i} < ∞ for $1 \le i \le d$. Then L/Z(L) is finite dimensional.

Proof. Let $X = \{x_1, \dots, x_d\}$ and Y be a generating set for A. Then $L = \mathcal{G}enX, Y$ and $Z(L) = C_L(X) \cap C_L(Y)$. Since $L/C_L(A)$ is finite dimensional, $L/C_L(Y)$ is finite dimensional too. On the other hand, since $\operatorname{Imad}_{x_i}$ is finite dimensional for $1 \leq i \leq d$, by Corollary 3.2, $L/C_L(X)$ has finite dimension. Therefore L/Z(L) is finite dimensional, as required.

Proof of Theorem B. Suppose that $Z_2(L)/Z(Z_2(L))$ is finitely generated. If L/Z(L) has infinite dimension, then by Corollary 3.7, $Z_2(L)/Z(L)$ has infinite dimension. On the other hand, since $L/Z_2(L)$ is finite dimensional, $L/Z(Z_2(L))$ is finitely generated. Now, since $Z_2(L) \leq C_L(Z(Z_2(L)))$, by Lemma 3.10, L/Z(L) is finite dimensional, which is a contradiction. Therefore L/Z(L) is finite dimensional. The converse is obvious.

Lemma 3.12. Let L be a Lie algebra and A be an abelian subalgebra of L such that dim L/A = m and dim $L^2 = n$. Then

$$\dim \frac{L}{Z(L)} \le m(n+1).$$

Proof. We can chose a subspace X of L such that $L = \mathcal{G}enA, X$ and $\dim X = r \leq m$. Similarly, as in the proof of Lemma 3.1, we can show that $\dim L/C_L(X) \leq rn$. Since A is abelian, we can see that $A \cap C_L(X) \subseteq Z(L)$. Thus $\dim L/Z(L) \leq m + mn = m(n + 1)$.

By Theorem B and Lemma 3.12, we can prove a partial of converse Schur theorem in Lie algebra.

Corollary 3.13. If L is a Lie algebra such that dim $L^2 = n$ and $Z_2(L)$ is abelian, then

$$\dim \frac{L}{Z(L)} \le 2(n^3 + n^2).$$

4. Lie algebras with the property \mathcal{G}

Let \mathcal{G} be the family of all Lie algebras L whose derived subalgebras are finite dimensional and $2(\dim L^2)^2$ is greater that or equal to the dimension of their central factor. As it is illustrated in Corollary 3.8, capable Lie algebras belong to this family. hence, a natural question to ask is whether there no-capable Lie algebras belonging to this family? For example, An abelian Lie algebra of dimension 1 and Heisenberg Lie algebras H(k) of dimension 2k + 1 for k > 1are non-capable Lie algebras which belong to this family (see [4] for details).

In this section we shall determine some families of non-capable Lie algebras which belong to this family. The first example is given as in the following theorem.

Theorem 4.1. Let L be a Lie algebra with trivial Frattini subalgebra. If L^2 is finite dimensional, then L belongs to \mathcal{G} .

Proof. Since the Frattini subalgebras of L is trivial, $L^2 \cap Z(L) = 0$. Hence $Z_2(L) = Z(L)$ and by Theorem C, the result follows.

The above theorem gives us non-capable Lie algebras which belong to \mathcal{G} . Indeed, the abelian Lie algebra of dimension 1 is a non-capable Lie algebra satisfying the conditions of the above theorem.

To introduce the other family, we need to give a definition. The following important equivalence relation was defined by salemkar [6].

Definition 4.2. Let *L* and *H* be two Lie algebras. Then *L* and *H* are called *n*-isoclinic and denoted by $L \sim H$ if there exists a pair of isomorphisms $\alpha : L/Z_n(L) \to H/Z_n(H)$ and $\beta : L^{n+1} \to H^{n+1}$ such that the following diagram is commutative.

$$\begin{array}{c} \frac{L}{Z_n(L)} \oplus \cdots \oplus \frac{L}{Z_n(L)} \longrightarrow L^{n+1} \\ & & \downarrow \beta \\ \\ \frac{H}{Z_n(H)} \oplus \cdots \oplus \frac{H}{Z_n(H)} \longrightarrow H^{n+1}. \end{array}$$

in which the horizontal maps are defined by $(\overline{x}_1, \ldots, \overline{x}_{n+1}) \mapsto [x_1, \ldots, x_{n+1}]$. If n = 1, then L and H are called *isoclinic* and denoted by $L \sim H$. Clearly, if L and H are isoclinic Lie algebras and $H \in \mathcal{G}$, then so is L. Indeed, if L and H are Lie algebras whose central factors are isomorphic and $\dim H^2 \leq \dim L^2$, then the condition $H \in \mathcal{G}$ implies that $L \in \mathcal{G}$ too.

Now, we enjoy to know under which conditions two Lie algebras with isomorphic central factors one of them belonging to \mathcal{G} implies that the other is also belongs to \mathcal{G} .

Proposition 4.3. Let L be a finite dimensional Lie algebra and S be a subalgebra of L such that the central factors of L and S are isomorphic. If L belongs to the family \mathcal{G} , then so is S.

Proof. It is not difficult to show that L = S + Z(L). Hence $L^2 = S^2$ and the result follows.

Definition 4.4. Let *L* be a Lie algebra. Then *L* is said to be an *n*-stem Lie algebra if $Z(L) \subseteq L^{n+1}$.

Salemkar [6] showed that each n-isoclinism class of Lie algebras contains at least a n-stem Lie algebra.

Theorem 4.5. [6] Let H be a Lie algebra with dim H^n finite. Then $Z(H) \cap H^n$ is a subalgebra of H^{n+1} if and only if for each Lie algebra L n-isoclinic to H, dim $H^n \leq \dim L^n$.

Utilizing the above theorem, we have

Theorem 4.6. Let L and H be Lie algebras such that $L \sim H$ and $L/Z(L) \cong H/Z(H)$. If H is n-stem and $H \in \mathcal{G}$, then L belongs to \mathcal{G} too.

Proof. Since the central factors of L and H are isomorphic, we have $L^n/L^n \cap Z(L) \cong H^n/H^n \cap Z(H)$. On the other hand, H is *n*-stem, and by the previous theorem, dim $H^n \leq \dim L^n$. Hence dim $H^n \cap Z(H) \leq \dim L^n \cap Z(L)$ so that dim $Z(H) \leq \dim L^2 \cap Z(L)$. Therefore, dim $H^2 \leq \dim L^2$ and the result follows.

The following example illustrates how the above theorem can be used to find non-capable Lie algebras belonging to \mathcal{G} .

Example 4.7. Let $L_n = \mathcal{G}enx_1, \ldots, x_n : [x_i, x_j] = x_{i+j}, 1 \le i < j \le n-i$ and $H_n = \mathcal{G}enx_1, \ldots, x_n : [x_1, x_i] = x_{i+1}, 2 \le i \le n-1$. Then L_n and H_n are capable nilpotent Lie algebras of dimension n for $L_n/Z(L_n) \cong L_{n-1}$ and $H_n/Z(H_n) \cong H_{n-1}$. On the other hand, $L_5/Z(L_5) \cong H_5/Z(H_5)$, L_5 is 3-stem and $L_5 \simeq H_5$. Now, assume that $L = L_5$ and $H = H_5 \oplus A$. Then L and H satisfy the conditions of the previous theorem while H is not capable.

References

- [1] P. Hilton, On a theorem of Schur, Int. J. Math. Math. Sci. 28 (2001), no. 8, 455–460.
- [2] K. Moneyhun, Isoclinism in Lie algebra, Algebras Groups Geom. 11 (1994), no. 1, 9–22.
- [3] P. Niroomand, The converse of Schur's theorem, Arch. Math. (Basel) **94** (2010), no. 5, 401–403.
- [4] P. Niroomand, M. Pravizi and F. G. Russo, Some criteria for detecting capable Lie algebras, J. Algebra 384 (2013) 36–44.
- [5] K. Podoski and B. Szegedy, Bounds for the index of the centre in capable groups, Proc. Amer. Math. Soc. 133 (2005), no. 12, 3441–3445
- [6] A. R. Salemkar and F. Mirzaei, Characterizing n-isoclinism classes of Lie algebras, Comm. Algebra 38 (2010), no. 9, 3392–3403.
- [7] B. Sury, A generalization of a converse to Schur's theorem, Arch. Math. (Basel) 95 (2010), no. 4, 317–318.
- [8] M. Yadav, Converse of Schur's theorem A statement, http://arxiv.org/abs/1212. 2710.

(Homayoon Arabyani) DEPARTMENT OF MATHEMATICS, MASHHAD BRANCH, ISLAMIC AZAD UNIVERSITY, MASHHAD, IRAN.

E-mail address: arabyani_h@yahoo.com

(Farshid Saeedi) DEPARTMENT OF MATHEMATICS, MASHHAD BRANCH, ISLAMIC AZAD UNIVERSITY, MASHHAD, IRAN.

E-mail address: saeedi@mshdiau.ac.ir