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Abstract. A function is said to be bi-univalent on the open unit disk D
if both the function and its inverse are univalent in D. Not much is known
about the behavior of the classes of bi-univalent functions let alone about
their coefficients. In this paper we use the Faber polynomial expansions to
find coefficient estimates for four well-known classes of bi-univalent func-

tions which are defined by subordinations. Both the coefficient bounds
and the techniques presented are new and we hope that this paper will
inspire future researchers in applying our approach to other related prob-
lems.
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1. Introduction

Let A denote the class of functions f which are analytic on the open unit
disk D := {z ∈ C : |z | < 1} and normalized by

(1.1) f(z) = z +
∞∑

n=2

anz
n.

Let S denote the class of functions f ∈ A that are univalent in D and P be
the class of functions φ(z) = 1+

∑∞
n=1 φnz

n that are analytic in D and satisfy
the condition Re(φ(z)) > 0 in D. By the Caratheodory Lemma (see [13]) we
have |φn| ≤ 2. A functions f ∈ S is said to be starlike in D if zf ′(z)/f(z) ∈ P
and is said to be convex in D if 1 + zf ′′(z)/f ′(z) ∈ P (see [13]).

If g = f−1 is the inverse of a function f ∈ S, then g has a Maclaurin series
expansion in some disk about the origin [13]. In 1923, Lowner [25] proved that
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the inverse of the Koebe function f(z) = z/(1 − z)2 provides the best upper
bounds for the coefficients of the inverses of the functions f ∈ S. Sharp bounds
for the coefficients of the inverses of univalent functions have been obtained
in a surprisingly straightforward way, whereas the case for the subclasses of
univalent functions turned out to be a challenge. In 1979, Krzyz, and et. al. [18]
obtained sharp upper bounds for the first two coefficients of inverses of classes
of starlike functions. In 1982, Libera and Zlotkiewicz [21] found the bounds for
the first seven coefficients of the inverse of convex functions. Later in [22] they
obtained the bounds for the first six coefficients of the inverse of f provided
f ′(z) ∈ P. In [23] they considered the odd functions f(z) = z+a3z

3+a5z
5+· · ·

and showed that if f ′(z) ∈ P then [−z+log((1+ z)/(1− z))]−1 is the extremal
function for the inverse of f . In 1986, Juneja and Rajasekaran [17] obtained
coefficient estimates for inverses of α-spiral functions. In 1989, Silverman [34]
proved that if f ∈ S is so that

∑∞
n=2 n|an| ≤ 1 then the n − th coefficient

of the inverse of f is bounded above by 1
n

(
2n−3
n−2

)
1

2n−2 . In 1992, Libera and

Zlotkiewicz [24] proved that the n − th coefficients of the inverse of starlike
functions are bounded above by [(2n)!/n!(n + 1)!]. Chou [12] in 1994, proved
that if f ∈ S and f ′(z) ∈ P then −z + 2 log(1 + z) is the extremal function
for the inverse of f . Estimates for the first two coefficients of the inverses of
subclasses of starlike functions were also obtained in [11] and [36].

Finding coefficient estimates for the inverses of univalent function becomes
even more involved when the bi-univalency condition is imposed on these func-
tions. A function f ∈ S is said to be bi-univalent in D if its inverse map g = f−1

is also univalent in D. The class of bi-univalent analytic functions was first in-
troduced and studied by Lewin [20] where it was proved that |a2| < 1.51.

Brannan and Clunie [9] improved Lewin’s result to |a2| ≤
√
2 and later Ne-

tanyahu [32] proved that |a2| ≤ 4/3. Brannan and Taha [10] and Taha [37] also
investigated certain subclasses of bi-univalent functions and found estimates for
their initial coefficients. Recently, Srivastava, et. al. [35], Frasin and Aouf [14],
and Ali, et. al. [7] found estimates for the first two coefficients of certain sub-
classes of bi-univalent functions. The bi-univalency requirement makes the be-
havior of the coefficients of the function f and its inverse g = f−1 unpredictable.
Not much is known about the higher coefficients of bi-univalent functions as
Ali, Lee, Ravichandaran and Supramaniam [7] also remarked that finding the
bounds for the n − th, (n ≥ 4) coefficients of classes of bi-univalent functions
is an open problem. In this paper, we use the Faber polynomial expansions
to find upper bounds for the n − th, (n ≥ 3) coefficients of four well known
classes of analytic functions, namely Rb(φ), S∗(α;φ), L(α;φ) and M(α;φ).
An examination of the unexpected behavior of the first two coefficients of each
of these four classes are also presented. The use of Faber polynomials for the
coefficients of bi-univalent functions and the techniques presented in this paper
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are new in their kinds. We hope that they inspire future applications of our
methods to other related problems.

For f(z) and F (z) analytic in D, we say that f(z) is subordinate to F (z),
written f ≺ F , if there exists a Schwarz function u(z) =

∑∞
n=1 cnz

n with
|u(z)| < 1 in D, such that f(z) = F (u(z)). For the Schwarz function u(z) we
note that |cn| ≤ 1. (see [13]).

For z ∈ D, b ∈ C\{0}, 0 ≤ α ≤ 1 and for the functions f ∈ A and φ ∈ P we
consider the following well-known classes of functions

Rb(φ) :=

{
1 +

1

b
(f ′(z)− 1) ≺ φ(z)

}
,

S∗(α;φ) :=

{
zf ′(z)

f(z)
+ α

z2f ′′(z)

f(z)
≺ φ(z)

}
,

L(α;φ) :=

{(
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)1−α

≺ φ(z)

}
,

M(α;φ) :=

{
(1− α)

(
zf ′(z)

f(z)

)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
≺ φ(z)

}
.

The class R1(φ) consists of bounded turning functions first defined by Mac-
Gregor [27]. The functions in the class S∗(α;φ) are starlike (e.g. see Ramesha,
Kumar and Padmanabhan [33]). The class L(α;φ) consists of logarithmic
α − convex functions (see [19]). The class M(α;φ) consists of α − convex
functions first defined by Mocanu [31] (also see Miller [28] and Miller, et.
al. [29] and [30]). A unified treatment of various classes of functions consist-
ing of convex and starlike functions for which either or both of the expressions
1+zf ′′(z)/f ′(z) and zf ′(z)/f(z) are subordinate to certain superordinate func-
tions can also be found in Jahangiri, et. al [15, 16], Ma and Minda [26], and
Ali, Lee, Ravichandaran and Supramaniam [6].

2. Main results

Prior to stating and proving our theorems, we shall need the following pre-
liminaries. Using the Faber Polynomial expansion for functions f ∈ A of the
form (1.1), the coefficients of its inverse map g = f−1 may be expressed as,
(see [3] and [4]),

(2.1) g(w) = f−1(w) = w +

∞∑
n=2

1

n
K−n

n−1(a2, a3, · · · )wn,

where
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K−n
n−1 =

(−n)!

(−2n+ 1)!(n− 1)!
an−1
2 +

(−n)!

(2(−n+ 1))!(n− 3)!
an−3
2 a3

+
(−n)!

(−2n+ 3)!(n− 4)!
an−4
2 a4

+
(−n)!

(2(−n+ 2))!(n− 5)!
an−5
2

[
a5 + (−n+ 2)a23

]
+

(−n)!

(−2n+ 5)!(n− 6)!
an−6
2 [a6 + (−2n+ 5)a3a4] +

∑
j≥7

an−j
2 Vj ,

such that Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables

a3, a4, · · · , an. In particular, the first three terms of K−n
n−1 are K−2

1 = −2a2,

K−3
2 = +3(2a22 − a3), and K−4

3 = −4(5a32 − 5a2a3 + a4).
In general, (see [1, 3, 38]) for any p ∈ R, an expansion of Kp

n is given by

Kp
n = pan +

p(p− 1)

2
D2

n +
p!

(p− 3)!3!
D3

n + · · ·+ p!

(p− n))!n!
Dn

n,

where for m ≤ n,

Dm
n−1 (a2, · · · , an) =

∞∑
n=2

m!(a2)
µ1 · · · (an)µn−1

µ1! · · ·µn−1!
,

and the sum is taken over all nonnegative integers µ1, · · · , µn−1 satisfying{
µ1 + µ2 + · · ·+ µn−1 = m,
µ1 + 2µ2 + · · ·+ (n− 1)µn−1 = n− 1.

Evidently: Dn−1
n−1(a2, · · · , an) = an−1

2 , [2].
We shall also need the following lemma which can be found in [3, Theorem

3.2].

Lemma 2.1. Consider the Faber polynomial

(b1, b2, · · · , bn) −→ Fn(b1, b2, · · · , bn).
Therefore

Fn (−F1(b1),−F2(b1, b2), · · · ,−Fn(b1, b2, · · · , bn))
= Fn(2b1, 3b2, · · · , (n+ 1)bn+1)− Fn(b1, b2, · · · , bn).

Our first theorem provides an estimate for the n-th coefficients of the func-
tions in Rb(φ) subject to a gap series condition.

Theorem 2.2. Let f ∈ Rb(φ) and g = f−1 ∈ Rb(φ). If ak = 0 for 2 ≤ k ≤
n− 1 then

|an| ≤
2|b|
n

; n ≥ 3.
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Proof. Let f be as given in (1.1). Therefore

(2.2) f ′(z)− 1 =

∞∑
n=2

nanz
n−1

and if by (2.1) we assume that

(2.3) g(w) = f−1(w) = w +
∞∑

n=2

1

n
K−n

n−1(a2, a3, · · · )wn = w +
∞∑

n=2

bnw
n,

then

(2.4) g′(w)− 1 =

∞∑
n=2

K−n
n−1(a2, a3, · · · )wn−1 =

∞∑
n=2

nbnw
n−1.

On the other hand, for f ∈ Rb(φ) and φ ∈ P there are two Schwarz functions
u(z) = c1z + c2z

2 + · · · and v(w) = d1w + d2w
2 + · · · such that

(2.5) 1 +
1

b
(f ′(z)− 1) = φ(u(z))

and

(2.6) 1 +
1

b
(g′(w)− 1) = φ(v(w))

where

(2.7) φ(u(z)) = 1 +
∞∑

n=1

n∑
k=1

φkD
k
n(c1, c2, · · · , cn)zn

and

(2.8) φ(v(w)) = 1 +
∞∑

n=1

n∑
k=1

φkD
k
n(d1, d2, · · · , dn)wn.

Therefore, from (2.2), (2.5) and (2.7) we may write

(2.9)
1

b
nan =

n−1∑
k=1

φkD
k
n−1(c1, c2, · · · , cn−1), n ≥ 2.

Similarly, from (2.4),(2.6) and (2.8) we may write

(2.10)
1

b
nbn =

n−1∑
k=1

φkD
k
n−1(d1, d2, · · · , dn−1), n ≥ 2.

Now, (2.9) and (2.10) for ak = 0 (2 ≤ k ≤ n− 1), respectively, yield

1

b
nan = φ1cn−1

and
1

b
nbn = −1

b
nan = φ1dn−1,
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since by definition of Kp
n we have bn = −an.

Upon simplification, we obtain

(2.11) an =
b

n
(φ1cn−1)

and

(2.12) an = − b

n
(φ1dn−1).

Taking the absolute values of (2.11) or (2.12) and using the facts that |φ1| ≤ 2,
|cn−1| ≤ 1 and |dn−1| ≤ 1 we obtain

|an| ≤
2|b|
n

.

□

Our next theorem clearly demonstrates the unpredictable behavior of the
early coefficients of classes of bi-univalent functions.

Theorem 2.3. Let f ∈ Rb(φ) and g = f−1 ∈ Rb(φ). Then

(i). |a2| ≤


|b|, |b| < 4

3 ;

2

√
4|b|
3 , |b| ≥ 4

3 .

(ii). |a3| ≤

{
2|b|
3 + |b|2, |b| < 2

3 ;
4|b|
3 , |b| ≥ 2

3 .

(iii). |a3−µa22| ≤
2µ|b|
3

, µ = 1, 2.

Proof. Letting n = 2 and n = 3 in (2.9) and (2.10), respectively, imply

(2.13)
1

b
2a2 = φ1c1,

(2.14)
1

b
3a3 = φ1c2 + φ2c

2
1,

and

(2.15)
1

b
2b2 = φ1d1,

(2.16)
1

b
3b3 = φ1d2 + φ2d

2
1.

Comparing the corresponding coefficients of (2.3) with the relations (2.15) and
(2.16) we deduce

(2.17) − 1

b
2a2 = φ1d1
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and

(2.18)
1

b
(6a22 − 3a3) = φ1d2 + φ2d

2
1.

Obviously c1 = −d1. Therefore, from either of (2.13) or (2.17) we obtain

|a2| =
|b||φ1c1|

2
≤ |b|.

Adding (2.14) to (2.18) we obtain

6
1

b
a22 = φ1(c2 + d2) + φ2(c

2
1 + d21)

and therefore

|a2| =
2

√
|b||φ1(c2 + d2) + φ2(c21 + d21)|

6
≤ 2

√
4|b|
3

.

Now the bounds for |a2| are justified since |b| < 2

√
4|b|
3 for |b| < 4

3 .

From (2.14) we obtain

(2.19) |a3| =
|b||φ1c2 + φ2c

2
1|

3
≤ 4|b|

3
.

On the other hand subtracting (2.18) from (2.14) implies

(2.20)
6

b
(a3 − a22) = φ1(c2 − d2) + φ2(c

2
1 − d21) = φ1(c2 − d2).

Solving the above equation for a3 and taking the absolute values yield

|a3| =
|b|
6
|φ1(c2 − d2)|+ |a2|2 ≤ 2|b|

3
+ |a2|2.

Applying the estimate |a2| ≤ |b| we obtain

(2.21) |a3| ≤
2|b|
3

+ |b|2.

Now, Theorem 3.2 (ii) follows from (2.19) and (2.21) upon noting that

2|b|
3

+ |b|2 <
4|b|
3

if |b| < 2

3
.

For the third part of the theorem, we rewrite (2.18) as

3(a3 − 2a22) = −b(φ1d2 + φ2d
2
1).

Dividing by 3 and taking the absolute values we get

|a3 − 2a22| ≤
|b||φ1d2 + φ2d

2
1|

3
≤ 4|b|

3
.

Finally, solving the equation (2.20) for (a3−a22) and taking the absolute values
we obtain

|a3 − a22| =
|b||φ1(c2 − d2)|

3
≤ 2|b|

3
.
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□

Theorem 2.4. Let f ∈ S∗(α;φ) and g = f−1 ∈ S∗(α;φ). If ak = 0 for
2 ≤ k ≤ n− 1 then

|an| ≤
2

(n− 1)(αn+ 1)
; n ≥ 3.

Proof. Consider the function f given by (1.1). Then for f ∈ S∗(α;φ) we can
write (see [4, equation 1.6])

(2.22)
zf ′(z)

f(z)
= 1−

∞∑
n=2

Fn−1(a2, a3, · · · , an)zn−1,

where the first few coefficients of Fn−1(a2, a3, · · · , an) are as follow:

F1 = −a2,

F2 = a22 − 2a3,

F3 = −a32 + 3a2a3 − 3a4,

F4 = a42 − 4a22a3 + 4a2a4 + 2a23 − 4a5,

F5 = −a52 + 5a32a3 + 5a22a4 − 5(a23 − a5)a2 + 5a3a4 − 5a6,

F6 = a62 − 6a42a3 + 6a32a4 − 6(2a3a4 − a6)a2 − 2a33 + 9a22a
2
2 + 6a3a5

+3a24 − 3a22a5 − 6a7.

In general, [8, Remark 1.1],

Fn−1(a2, a3, · · · , an) =
∑

i1+2i2+···+(n−1)in−1=n−1

A(i1, i2, · · · , in−1)(a
i1
2 ai2

3 · · · ain−1
n )

where

A(i1, i2, · · · , in−1) := (−1)(n−1)+2i1+···+nin−1
(i1 + i2 + · · ·+ in−1 − 1)!(n− 1)

(i1)!(i2)! · · · (in−1)!
.

For f ∈ S∗(α;φ) we also have, by [5, Proposition 3.1 (b)],

(2.23)
z2f ′′(z)

f(z)
=

∞∑
n

∑
m

(−1)
∑n−1

i=1 mi+1

(
n−1∑
i=1

mi − 1

)
!

(
n− 1 +

n−1∑
i=1

i2mi

)
(a2)

m1 · · · (an)
mn−1

m1!m2! · · ·mn−1!
zn−1,

where ∑
m

=
∑

m1+2m2+···+(n−1)mn−1=n−1

, and n = 2, 3, · · · .
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Similarly, for g = f−1 ∈ S∗(α;φ) we have

(2.24)
wg′(w)

g(w)
= 1−

∞∑
n=2

Fn−1(b2, b3, · · · , bn)wn−1

and,

(2.25)
w2g′′(w)

g(w)
=

∞∑
n

∑
m

(−1)
∑n−1

i=1 mi+1

(
n−1∑
i=1

mi − 1

)
!

(
n− 1 +

n−1∑
i=1

i2mi

)
(b2)

m1 · · · (bn)mn−1

m1!m2! · · ·mn−1!
wn−1.

Now, by definition of subordinations, there exist two Schwarz functions
u(z) =

∑∞
n=1 cnz

n and v(w) =
∑∞

n=1 dnw
n so that

(2.26)
zf ′(z)

f(z)
+ α

z2f ′′(z)

f(z)
= φ(u(z))

and

(2.27)
wg′(w)

g(w)
+ α

w2g′′(w)

g(w)
= φ(v(w)),

where the Faber polynomial expansions of φ(u(z)) and φ(v(w)) are given by
(2.7) and (2.8).
Under the stated coefficient hypothesis in the theorem, the equations (2.7),
(2.22) and (2.23), respectively, yield

φ(u(z)) = 1 + φ1cn−1,

zf ′(z)

f(z)
= 1 + (n− 1)an,

and
z2f ′′(z)

f(z)
= n(n− 1)an.

Therefore, in light of (2.26) we conclude

(2.28) (n− 1) (αn+ 1) an = φ1cn−1.

Similarly, (2.8), (2.24) and (2.25) reduce to

φ(v(w)) = 1 + φ1dn−1,

wg′(w)

g(w)
= 1 + (n− 1)bn,

and
w2g′′(z)

g(z)
= n(n− 1)bn.

These in conjunction with (2.27) imply

(2.29) − (n− 1) (αn+ 1) an = φ1dn−1,
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where the relations between an and bn are determined by the equation (2.3).
Taking absolute values of both sides of either (2.28) or (2.29) imply

(n− 1) (αn+ 1) |an| = |φ1||cn−1|.
Solving for |an| followed by an application of Caratheodory lemma we obtain

|an| ≤
2

(n− 1)(αn+ 1)
.

□

In the following theorem we present the estimates for a2 and the coefficient
body (a3 − a22).

Theorem 2.5. Let f ∈ S∗(α;φ) and g = f−1 ∈ S∗(α;φ). Then

(i). |a2| ≤
2

1 + 2α
,

(ii). |a3−a22| ≤
1

1 + 3α
.

Proof. For n = 2 and n = 3, the equations (2.26) and (2.27), respectively, yield

(2.30) (1 + 2α)a2 = φ1c1,

(2.31) − (1 + 2α)a2 = φ1d1;

and

(2.32) − (1 + 2α)a22 + 2(1 + 3α)a3 = φ1c2 + φ2c
2
1,

(2.33) (3 + 10α)a22 − 2(1 + 3α)a3 = φ1d2 + φ2d
2
1.

Obviously, c1 = −d1. Taking the absolute values of either (2.30) or (2.31) we
obtain

|a2| ≤
2

1 + 2α
.

Subtracting (2.33) from (2.32) gives

4(1 + 3α)(a3 − a22) = φ1(c2 − d2) + φ2(c
2
1 − d21) = φ1(c2 − d2).

Dividing by 4(1 + 3α) and taking the absolute values we get

|a3 − a22| ≤
|φ1|(|c2|+ |d2|)

4(1 + 3α)
≤ 1

1 + 3α
.

□

Theorem 2.6. Let f ∈ L(α;φ) and g = f−1 ∈ L(α;φ). If ak = 0 for
2 ≤ k ≤ n− 1 then

|an| ≤
2

(n− 1)[n(1− α) + α]
; n ≥ 3.
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Proof. Suppose that f ∈ L(α, φ) where f is given by the series expansion (1.1).
The terms zf ′/f and 1 + zf ′′/f ′ can be expressed by the Faber polynomial
expansions (see [3, page 199])(

zf ′(z)

f(z)

)α

= 1 +

∞∑
n=2

Kα
n−1 (−F1(a2),−F2(a2, a3), · · · ,−Fn−1(a2, a3, · · · , an)) z

n−1

and(
1 +

zf ′′(z)

f ′(z)

)1−α

=

1 +

∞∑
n=2

K1−α
n−1 (−F1(2a2),−F2(2a2, 3a3), · · · ,−Fn−1(2a2, 3a3, · · · , nan)) z

n−1.

Therefore
(2.34)(

zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)1−α

=( ∞∑
n=1

Kα
n−1 (−F1(a2),−F2(a2, a3), · · · ,−Fn−1(a2, a3, · · · , an)) zn−1

)

×

(
∞∑

n=1

K1−α
n−1 (−F1(2a2),−F2(2a2, 3a3), · · · ,−Fn−1(2a2, 3a3, · · · , nan)) z

n−1

)
.

Similarly
(2.35)(

wg′(w)

g(w)

)α(
1 +

wg′′(w)

g′(w)

)1−α

=( ∞∑
n=1

Kα
n−1 (−F1(b2),−F2(b2, b3), · · · ,−Fn−1(b2, b3, · · · , bn))wn−1

)

×

(
∞∑

n=1

K1−α
n−1 (−F1(2b2),−F2(2b2, 3b3), · · · ,−Fn−1(2b2, 3b3, · · · , nbn))wn−1

)
.

In light of the hypothesis, (2.34) and (2.35), respectively, yield
(2.36)(

zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)1−α

=

1+(n−1)(n(1−α)+α)anz
n−1+αn(n−1)2(1−α)a2nz

2(n−1)

and
(2.37)(

wg′(w)

g(w)

)α(
1 +

wg′′(w)

g′(w)

)1−α

=

1−(n−1)(n(1−α)+α)anw
n−1+αn(n−1)2(1−α)a2nw

2(n−1),
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where the relations between an and bn are determined by the equation (2.3).
Since f ∈ L(α;φ) and g = f−1 ∈ L(α;φ), by definition, there exist two Schwarz
functions u(z) =

∑∞
n=1 cnz

n and v(w) =
∑∞

n=1 dnw
n so that

(2.38)

(
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)1−α

= φ(u(z)),

and

(2.39)

(
wg′(w)

g(w)

)α(
1 +

wg′′(w)

g′(w)

)1−α

= φ(v(w)).

A comparison of the corresponding coefficients of (2.36) and (2.38) yields

(n− 1)(n(1− α) + α)an = φ1cn−1.

Similarly, from (2.37) and (2.39) we obtain

−(n− 1)(n(1− α) + α)an = φ1dn−1.

Solving either of the above two equation for an and taking the absolute values
of both sides coupled by an application of Caratheodory Lemma yield

|an| ≤
2

(n− 1)[n(1− α) + α]
.

□

The estimations for a2 and the coefficient body (a3 − a22) are presented in
the following result.

Theorem 2.7. Let f ∈ L(α;φ) and g = f−1 ∈ L(α;φ). Then

(i). |a2| ≤
2

2− α
,

(ii). |a3 − a22| ≤
1

3− 2α
.

Proof. Letting n = 2 in the equations (2.34), (2.35), (2.38) and (2.39) and
equating the corresponding coefficients we obtain{

(2− α)a2 = φ1c1,
−(2− α)a2 = φ1d1;

and {
2α(1− α)a22 = φ1c2 + φ1c

2
1,

2α(1− α)a22 = φ1d2 + φ1d
2
1.

Solving the first set of the equations for a2 and taking the absolute values
followed by an application of Caratheodory Lemma yield

|a2| ≤
2

2− α
.
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By the same token, for n = 3, we have

(2.40)
1

2
(α2 + 5α− 8)a22 + 2(3− 2α)a3 = φ1c2 + φ2c

2
1,

and

(2.41)
1

2
(α2 − 11α+ 16)a22 − 2(3− 2α)a3 = φ1d2 + φ2d

2
1.

Subtracting (2.41) from (2.40) yields

4(3− 2α)(a3 − a22) = φ1(c2 − d2) + φ2(c
2
1 − d21) = φ1(c2 − d2).

Dividing by 4(3−2α), taking the absolute values and applying the Caratheodory
Lemma yield

|a3 − a22| ≤
|φ1|(|c2|+ |d2|)

4|3− 2α|
≤ 1

3− 2α
.

□

Theorem 2.8. Let f ∈ M(α;φ) and g = f−1 ∈ M(α;φ). If ak = 0 for
2 ≤ k ≤ n− 1 then

|an| ≤
2

(n− 1)(1 + (n− 1)α)
; n ≥ 3.

Proof. Suppose that f ∈ M(α;φ) and has the series expansion (1.1). There-
fore, for the term 1 + zf ′′/f ′ we have (see [3, page 204])

1 +
zf ′′(z)

f ′(z)
= 1−

∞∑
n=2

Fn−1(2a2, 3a3, · · · , nan)zn−1.

Moreover, an application of Lemma 2.1 implies
(2.42)

(1−α)
zf ′(z)

f(z)
+α

(
1 +

zf ′′(z)

f ′(z)

)
= 1−

∞∑
n=2

[Fn−1(a2, · · · , an) + αFn−1(−F1(a2),−F2(a2, a3), · · · ,−Fn−1(a2, · · · , an))] z
n−1.

In a similar manner, for the inverse map g = f−1 we obtain
(2.43)

(1−α)
wg′(w)

g(w)
+α

(
1 +

wg′′(w)

g′(w)

)
= 1−

∞∑
n=2

[Fn−1(b2, · · · , bn) + αFn−1(−F1(b2),−F2(b2, b3), · · · ,−Fn−1(b2, · · · , bn))]wn−1.
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For f and g = f−1 in M(α;φ), by definition, there exist two Schwarz functions
u(z) =

∑∞
n=1 cnz

n and v(w) =
∑∞

n=1 dnw
n, satisfying the series expansion

(2.7) and (2.8) so that

(2.44) (1− α)
zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
= φ(u(z))

and

(2.45) (1− α)
wg′(w)

g(w)
+ α

(
1 +

wg′′(w)

g′(w)

)
= φ(w).

From (2.7), (2.42) and (2.44) we conclude that
(2.46)
n−1∑
k=1

φkD
k
n−1(c1, c2, · · · , cn−1) =

− [Fn−1(a2, a3, · · · , an) + αFn−1(−F1(a2),−F2(a2, a3), · · · ,−Fn−1(a2, · · · , an))] .

Similarly, (2.8), (2.43) and (2.45) yield

(2.47)
n−1∑
k=1

φkD
k
n−1(d1, d2, · · · , dn−1) =

− [Fn−1(b2, b3, · · · , bn) + αFn−1(−F1(b2),−F2(b2, b3), · · · ,−Fn−1(b2, · · · , bn))] .
Under the assumption ak = 0; 2 ≤ k ≤ n − 1, equations (2.46) and (2.47),
respectively, reduce to

(2.48) (n− 1)(1 + (n− 1)α)an = φ1cn−1, n ≥ 2,

and

(2.49) (n− 1)(1 + (n− 1)α)bn = φ1dn−1, n ≥ 2.

An application of (2.3) reveals that bn = −an. So (2.49) can be rewritten as

(2.50) − (n− 1)(1 + (n− 1)α)an = φ1dn−1, n ≥ 2.

After taking the absolute values of both sides of either (2.48) or (2.50) and
applying the Caratheodory lemma we obtain

|an| ≤
2

(n− 1)(1 + (n− 1)α)
.

□

Finally, the bounds for a2 and the coefficient body (a3−a22) are given in the
following
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Theorem 2.9. Let f ∈ M(α;φ) and g = f−1 ∈ M(α;φ). Then

(i). |a2| ≤
2

1 + α
,

(ii). |a3−a22| ≤
1

1 + 2α
.

Proof. For n = 2 and n = 3, the equations (2.46) and (2.47), respectively, yield

(2.51) (1 + α)a2 = φ1c1,

(2.52) − (1 + α)a2 = φ1d1,

and

(2.53) 2(1 + 2α)a3 − (1 + 3α)a22 = φ1c2 + φ2c
2
1,

(2.54) (3 + 5α)a22 − 2(1 + 2α)a3 = φ1d2 + φ2d
2
1.

where we used the identities b2 = −a2 and b3 = 2a22 − a3 for the equation
(2.54).
Obviously, c1 = −d1. From either of the equations (2.51) or (2.52) upon an
application of Caratheodory Lemma we obtain

|a2| ≤
2

1 + α
.

Subtracting (2.54) from (2.53) gives

4(1 + 2α)(a3 − a22) = φ1(c2 − d2) + φ2(c
2
1 − d21) = φ1(c2 − d2).

Dividing by 4(1+2α), taking the abosolute values and applying the Caratheodory
Lemma we obtain

|a3 − a22| ≤
|φ1|(|c2|+ |d2|)

4(1 + 2α)
≤ 1

1 + 2α
.

□
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