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Abstract. This paper is concerned with the following elliptic system:{
−△u+ b(x)∇u+ V (x)u = g(x, v),
−△v − b(x)∇v + V (x)v = f(x, u),

for x ∈ RN , where V , b and W are 1-periodic in x, and f(x, t), g(x, t) are

Superlinear. In this paper, we give a new technique to show the bound-
edness of Cerami sequences and establish the existence of ground state
solutions with mild assumptions on f and g.
Keywords: Hamiltonian elliptic system, superlinear, ground state solu-

tions, strongly indefinite functionals.
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1. Introduction

In this paper, we study the following elliptic system

(1.1)

{
−△u+ b(x)∇u+ V (x)u = g(x, v),
−△v − b(x)∇v + V (x)v = f(x, u),

x ∈ RN , where V ∈ C(RN ,RN ), b = (b1, . . . , bn) ∈ C(RN ,RN ) and f, g ∈
C(RN × R,R) are superlinear at infinity. It was called an unbounded Hamil-
tonian system [3], or an infinite-dimensional Hamiltonian system [4], which
can also be obtained from the diffusion system, see [10]. Such a system arises
when one is looking for stationary solutions to certain systems of diffusion
equtions [15, 21] or systems of optimal control [17]. We make the following
assumptions:
(V) V (x) ∈ C(RN ,RN ) is 1-periodic in each of x1, x2, . . . , xN , and a :=

minRN V > 0;
(B) b(x) ∈ C1(RN ,RN ) is 1-periodic in each of x1, x2, . . . , xN , and divb = 0;
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Ground state solutions for Hamiltonian elliptic systems 1132

(W1) f(x, t), g(x, t) ∈ C(RN × R) are 1-periodic in each of x1, x2, . . . , xN ,
tf(x, t) ≥ 0, tg(x, t) ≥ 0, and there exist constants p ∈ (2, 2∗) and C > 0
such that

|f(x, t)| ≤ C
(
1 + |t|p−1

)
, |g(x, t)| ≤ C

(
1 + |t|p−1

)
,

(
(x, t) ∈ RN × R

)
.

We assume F (x, t) =
∫ t

0
f(x, s)ds and G(x, t) =

∫ t

0
g(x, s)ds.

(W2) |f(x, t)|+ |g(x, t)| = o(|t|), as |t| → 0, uniformly in x ∈ RN .
The existence of solutions of Hamiltonian elliptic systems has been a subject

of active research in recent years. For the case of a bounded domain the systems
like or similar to (1.1) were studied by a number of authors, however they all
focused on the case b ≡ 0, see [5, 11, 12,14] and the references therein.

Problems in the whole space RN have been considered in various studies,
most of which focused on the case b ≡ 0, see [1, 2, 5, 9, 13, 19, 20, 26–28, 31–34].
Since the system (1.1) is of Hamiltonian type in RN , we need to overcome
some difficulties. The main difficulty of this problem is the lack of compactness
for Sobolev embedding theorem. The usual way to overcome this difficulty
is to work on a radically symmetric function space that possesses compact
embedding. Using this approach, De Figueiredo and Yang [13] considered this
system when b = 0 and V = 1 and obtained a positive radially symmetric
solution that decays exponentially to 0 at infinity. Their results were later
generalized by Sirakov [20]. Later, Bartsch and De Figueiredo [5] proved that
the system admits infinitely many radial as well as non-radial solutions. By a
generalized linking theorem, Li and Yang [19] proved the system has a positive
ground state solution for V = 1 and an asymptotically quadratic nonlinearity.
Another usual way is avoiding the indefinite character of the original functional
by using the dual variational method, see for instance Ávila and Yang [1,2] and
references therein.

Applying the critical point theory for strongly indefinite functionals devel-
oped by Bartsch and Ding, Zhao and coworkers [31, 32] proved the existence
and multiplicity of solutions of (1.1) with asymptotically linear and superlin-
ear and periodic assumptions [27, 33, 34]. Using a suitable fractional power of
some self-adjoint operator on Sobolev space to define the energy functional, [33]
Zhao et al. proved the existence of a ground-state solution with the following
monotonous condition:
(Ne) t→ f(x,t)

|t| and t→ g(x,t)
|t| is strictly increasing on (−∞, 0) ∪ (0,∞).

Zhao and Ding [28] studied the asymptotically quadratic case for (1.1) with
periodic or non-periodic potential V (x). They first established a suitable vari-
ational framework and obtained the multiplicity of a solution for the non-
periodic case. Moreover, without the assumption that the nonlinearity is even
in z, they obtained infinitely many geometrically distinct solutions for the peri-
odic case using a reduction method. Yang et al. [26] considered the non-periodic
superquadratic case for (1.1) with b is a constant vector and V = 1.
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Let

J =

(
0 −1
1 0

)
, J0 =

(
0 1
1 0

)
and let S = −△ + V denote the Schrödinger operator. We denote A0 := SJ0
and

A := A0 + b · ∇J =

(
0 −△− b · ∇+ V

−△+ b · ∇+ V 0

)
.

Then (1.1) can be expressed as

Az = Hz(x, z), z = (u, v) ∈ H1(RN , R2),

where and in the sequel H(x, z) = F (x, u)+G(x, v), F (x, t) =
∫ t

0
f(x, s)ds and

G(x, t) =
∫ t

0
g(x, s)ds.

Recently, Zhang et. al. [30] studied problem (1.1) and obtained the existence
of ground state solution (V), (B), (W1), (W2) and the following assumptions:
(H1) H(x, z)|z|−2 → ∞ as |z| → ∞ uniformly in x;

(H2) H(x, z) > 0, and Ĥ(x, z) = 1
2 (Hz(x, z), z)−H(x, z) > 0 for all z ̸= 0,

where (·, ·) denotes the Euclidean scalar product;
(H3) (Hz(x, z), w)(z, w) ≥ 0 uniformly in x for all z, w ∈ R2;
(H4) H(x, z) = H(x,w) and (Hz(x, z), w) ≤ (Hz(x, z), z) uniformly in x if

|z| = |w|;
(H5) (Hz(x, z), w) ̸= (Hz(x,w), z) uniformly in x if |z| ̸= |w| and (z, w) ̸= 0.

Motivated by these researches about Hamiltonian systems, we will continue
to study the existence of ground state solutions of problem (1.1). We replace
(H2)-(H5) with the following much weaker assumptions:
(W3)

lim
|(t,s)|→∞

F (x, t) +G(x, s)

|t|2 + |s|2
= ∞, a.e. x ∈ RN ;

(W4) there exists a η0 ∈ (0, 1) such that

1− η2

2
tf(x, t) >

∫ t

ηt

f(x, s)ds,
1− η2

2
tg(x, t) >

∫ t

ηt

g(x, s)ds, ∀ η ∈ [0, η0].

Let E be the Hilbert space defined in Section 2. Under assumptions (V),
(B), (W1) and (W2), the following functional

(1.2) Φ(z) :=

∫
RN

(
1

2
Az · z −H(x, z))dx,

is well defined for all z ∈ E, moreover Φ ∈ C1(E,R). Let

K := {z ∈ E \ {0},Φ′(z) = 0}.

Now, we are ready to state the main results of this paper:
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Theorem 1.1. Let (V), (B), (W1)-(W4) be satisfied. Then (1.1) has a non-
trivial z0 ∈ E such that Φ(z0) = infKΦ ≥ κ, where κ is a positive constant.

Remark 1.2. Obviously (W3) is fine than (H1), and (W4) implies that Ĥ(x, z) ≥
0 for all (x, z) ∈ RN ×R2, which is much better than (H2). We point out that
condition (W4) first introduced by Tang [24] is weaker than (Ne). In fact, if
the weak version of condition (Ne) is satisfied, that is,

(WN) t→ f(x,t)
|t| and t→ g(x,t)

|t| is increasing on (−∞, 0) ∪ (0,∞).

Then, for any x ∈ RN and t ̸= 0, set

h(θ) =
1

2
θ2tf(x, t)− F (x, θt).

It is easy to check that (WN) implies that h(1) ≥ h(θ), ∀ θ ≥ 0. Then

1− θ2

2
tf(x, t) ≥

∫ t

θt

f(x, s)ds, ∀ θ ≥ 0, (x, t) ∈ RN × R.

The same inequality also holds for g(x, t). This shows that (W4) is weaker
than (WN).

Remark 1.3. It should be remarked that (W4) is also weaker that the classical
Ambrosetti-Rabinowitz condition, (AR) for short. Indeed, if the weaker version
of condition (AR) is satisfied, i.e.,
(WAR) there exists a µ > 2 such that

0 ≤ µF (x, t) ≤ tf(x, t), 0 ≤ µG(x, t) ≤ tg(x, t), (x, t) ∈ RN × R.

Then one has

1− θ2

2
tf(x, t) ≥ 1

µ
tf(x, t) ≥ F (x, t) ≥ F (x, t)− F (x, θt),

1− θ2

2
tg(x, t) ≥ 1

µ
tg(x, t) ≥ G(x, t) ≥ G(x, t)−G(x, θt), ∀ θ ∈ [0, [(µ−2)/µ]

1
2 ],

which implies that (W4) holds. It is well known that (WN) and (WAR) are
complementary. However, the above facts show that they are stronger than
(W4). Consequently, (W4) unifies condition (WN), (WAR), and then (Ne)
and (AR).

Since the energy functional is strongly indefinite, the classical critical point
theory cannot be applied directly, so we will apply a generalized linking theorem
for strongly indefinite functionals. In this paper, we give a much more direct
and simpler approach to establish the existence of ground state solutions with
a new superquadratic condition. The rest of the paper is organized as follows.
In section 2, we provide a variational setting. In Section 3, we give the proofs
of our theorems.
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2. Variational setting

We denote by | · |p the usual Lp-norm and (·, ·)2 the L2 inner product.

Lemma 2.1. ( [28, Lemma 2.1, 2.3]) Suppose that (V) and (B) are satisfied.
Then the operator A is a self-adjoint operator on L2(RN ,R2) with domain
D(A) = H2(RN ,R2), moreover A has only essential spectrum and σ(A) ⊂
R \ (−a, a) is symmetric with respect to the origin.

Lemma 2.1 implies that the space L2 = L2(RN ,R2) has the orthogonal
decomposition

L2 = L− ⊕ L+, z = z− + z+, z± ∈ L±

such that A is negative (resp. positive) definite in L− (resp. L+). Let |A|
denote the absolute of A and |A| 12 be the square root of |A|. Let E = D(|A| 12 )
be the Hilbert space with the inner product

⟨z, w⟩ = (|A| 12 z, |A| 12w)2
and the norm ∥z∥ = ⟨z, z⟩ 1

2 . There is an induced decomposition

E = E− ⊕ E+, E+ = E ∩ L±,

that is orthogonal with respect to the inner products (·, ·)2 and ⟨·, ·⟩.

Lemma 2.2. ( [28, Lemma 2.4]) ∥·∥ and ∥·∥H1 are equivalent norms. There-
fore, E embeds continuously in Lp(RN ,R2) for any p ∈ [2, 2∗] and compactly
in Lp

loc(RN ,R2) for any p ∈ [2, 2∗), and there exists a constant Cp such that

(2.1) |z|p ≤ Cp∥z∥, for all z ∈ E, p ∈ [2, 2∗].

It follows from Lemma 2.2 that the following functional is well defined for
any z = (u, v) ∈ E,

(2.2) Φ(z) =
1

2
(∥z+∥2 − ∥z−∥2)−Ψ(z),

where

(2.3) Ψ(z) =

∫
RN

H(x, z)dx =

∫
RN

(F (x, u) +G(x, v)) dx.

Moreover, Φ ∈ C1(E,R) and for any z = (u, v), ζ = (ξ, η) ∈ E,

⟨Φ
′
(z), ζ⟩ = (Az, ζ)2 −

∫
RN

Hz(x, z)ζdx

= (z, ζ)−
∫
RN

(f(x, u)ξ + g(x, v)η)dx.(2.4)

Lemma 2.1 also implies that Φ is strongly indefinite and a standard arugment
shows that the critical points of Φ are solutions of (1.1)(see [7]).

The following generalized linking theorem plays an important role in proving
our main results.
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Lemma 2.3. ( [7, Lemma 4.5] [18, Lemma 2.1]) Let X be a Hilbert space
with X = X− ⊕X+ and X−⊥X+, and let φ ∈ C1(X,R) be of the form

φ(u) =
1

2
(∥u+∥2 − ∥u−∥2)− ψ(u), u = u+ + u− ∈ X− ⊕X+.

Suppose that the following assumptions are satisfied:
(I1) ψ ∈ C1(X,R) is bounded from below and weakly sequentially lower semi-
continuous;
(I2) ψ′ is weakly sequentially continuous;
(I3) there exists r > ρ > 0 and e ∈ X+ with ∥e∥ = 1 such that

κ := inf φ(Sρ) > supφ(∂Q),

where

Sρ = {u ∈ X+ : ∥u∥ = ρ}, Q = {se+ v : v ∈ X−, s ≥ 0, ∥se+ v∥ ≤ r}.

Then for some c ≥ k , there exists a sequence {zn} ⊂ E satisfying

Φ(zn) → c, ∥Φ
′
(zn)∥(1 + ∥zn∥) → 0.

Such a sequence is called a Cerami sequence on the level c,or a (Cc) sequence.

Lemma 2.4. Suppose that (V), (B), (W1) and (W2) are satisfied. Then Ψ
is bounded from below, and weakly sequentially lower semicontinuous and Ψ′ is
weakly sequentially continuous.

The proof is standard (see [7] and [25]), so we omit it.
Similar to the paper [24] (lemma 2.3), we can get the following Lemma 2.5,

whose proof is given in the Appendix.

Lemma 2.5. Suppose that (V), (B), (W1), (W2) and (W4) are satisfied. Then
for z ∈ E, there holds

Φ(z) ≥ Φ(θz+) +
θ2∥z−∥2

2
+

1− θ2

2
⟨Φ′(z), z⟩+ θ2⟨Φ′(z), z−⟩

−θ2
∫
θ|z+|>η0|z|

Hz(x, z)z
+dx, ∀ θ ≥ 0,(2.5)

where η0 is given in (W4).

3. Proofs of the main results

In this section, we give the proofs of our results.

Lemma 3.1. Suppose that (V), (B), (W1) and (W2) are satisfied. Then there
is a ρ > 0 such that k0 = inf Φ(Sρ+) > 0, where Sρ+ = ∂Bρ ∩ E+.
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Proof. Given ε > 0, (W1) and (W2) imply the existence of Cε > 0 such that

(3.1) |f(x, t)| ≤ ε|t|+ Cε|t|p−1, |g(x, t)| ≤ ε|t|+ Cε|t|p−1.

Therefore

(3.2) |Hz(x, z)| ≤ ε|z|+ Cε|z|p−1, |H(x, z)| ≤ ε|z|2 + Cε|z|p, ∀ z ∈ E.

Then for z ∈ E+, we have

Φ(z) =
1

2
∥z∥2 −

∫
RN

H(x, z)dx

≥ 1

2
∥z∥2 − (ε|z|2 + Cε|z|p)

≥ 1

2
∥z∥2 − C2

2ε∥z∥2 − Cp
pCε∥z∥p,

Choosing an appropiate ε, we see that the desired conclusion holds for some
ρ > 0. □

Lemma 3.2. Suppose that (V), (B), (W1) and (W2) are satisfied. Let e ∈ E+

with ∥e∥ = 1. Then there is a r0 > 0 such that supΦ(∂Q) ≤ 0, where

(3.3) Q =
{
ζ + se : ζ ∈ E−, s ≥ 0, ∥ζ + se∥ ≤ r0

}
.

Proof. Obviously, Φ(z) ≤ 0 for z ∈ E−. Next, it is sufficient to show that
Φ(z) → −∞ as z ∈ E− ⊕ Re and ∥z∥ → ∞. Suppose that for some sequence
{zn} ⊂ E− ⊕ Re with ∥zn∥ → ∞, there is M > 0 such that Φ(zn) ≥ −M for
all n ∈ N. Set ξn = zn/∥zn∥ = ξ−n + tne, then ∥ξ−n + tne∥ = 1. Passing to
a subsequence, we may assume that ξn ⇀ ξ in E, then ξn → ξ a.e. on RN ,
ξ−n ⇀ ξ− in E, tn → t̄, and

(3.4) − M

∥zn∥2
≤ Φ(zn)

∥zn∥2
=
t2n
2

− 1

2
∥ξ−n ∥2 −

∫
RN

H(x, zn)

∥zn∥2
dx.

If t̄ = 0, then it follows from (3.4) that

0 ≤ 1

2
∥ξ−n ∥2 +

∫
RN

H(x, zn)

∥zn∥2
dx ≤ t2n

2
+

M

∥zn∥2
→ 0,

which yields ∥ξ−n ∥ → 0, and so 1 = ∥ξn∥ → 0, a contradiction.
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If t̄ ̸= 0, then ξ ̸= 0, it follows from 3.4, (W3) and Fatou’s lemma that

0 ≤ lim sup
n→∞

[
t2n
2

− 1

2
∥ξ−n ∥2 −

∫
RN

H(x, zn)

∥zn∥2
dx

]
= lim sup

n→∞

[
t2n
2

− 1

2
∥ξ−n ∥2 −

∫
RN

H(x, zn)

|zn|2
|ξn|2dx

]
≤ 1

2
lim

n→∞
t2n − lim inf

n→∞

∫
RN

H(x, zn)

|zn|2
|ξn|2dx

≤ t̄2

2
−
∫
RN

lim inf
n→∞

H(x, zn)

|zn|2
|ξn|2dx

= −∞,

a contradiction. □

Lemma 3.3. Suppose that (V), (B) and (W1)-(W4) are satisfied. Then there
exist a constant c∗ ∈ [κ0, sup {Φ(ζ + se) : ζ ∈ E−, s ≥ 0}] and a sequence {zn} =
{(un, vn)} ⊂ E satisfying

(3.5) Φ(zn) → c∗, ∥Φ′(zn)∥(1 + ∥zn∥) → 0.

Proof. Follows directly from Lemmas 2.3, 2.4, 3.1 and 3.2. □

Lemma 3.4. Suppose that (V), (B) and (W1)-(W4) are satisfied. Then any
sequence {zn} ⊂ E satisfying (3.5) is bounded in E.

Proof. To prove the boundedness of {zn}, arguing by contradiction, suppose
that ∥zn∥ → ∞. Let ξn = zn/∥zn∥, then ∥ξn∥ = 1. By Lemma 2.2, there exists
a constant C1 > 0 such that ∥ξn∥2 ≤ C1. If

δ := lim sup
n→∞

sup
y∈RN

∫
B(y,1)

|ξ+n |2dx = 0,

then by Lion’s concentration compactness principle [22] (or [25, Lemma 1.21]),
ξ+n → 0 in Ls(RN ,R2) for 2 < s < 2∗. For any ε > 0, it follows from (3.2) that

lim
n→∞

R2

∥zn∥

∫
R|ξ+n |>η0|zn|

Hz(x, zn)ξ
+
n dx

≤ lim
n→∞

R2

∥zn∥

∫
R|ξ+n |>η0|zn|

(
ε|zn|+ Cε|zn|p−1

)
|ξ+n |dx

≤ lim
n→∞

R2

∥zn∥

∫
R|ξ+n |>η0|zn|

(
εη0

−1R|ξ+n |2 + Cεη0
1−pRp−1|ξ+n |p

)
dx

≤ lim
n→∞

R2

∥zn∥
(
εη0

−1R|ξ+n |22 + Cεη0
1−pRp−1|ξ+n |p

)
= 0.(3.6)
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Fix R > [2(1 + c∗)]
1/2, for ε = 1/4[(RC1)

2] > 0, (3.2) implies that

lim sup
n→∞

∫
RN

H(x,Rξ+n )dx ≤ ε(RC1)
2 +RpCε lim

n→∞
|ξ+n |pp =

1

4
.(3.7)

Let θn = R/∥zn∥. Hence, by (3.5)-(3.7) and Lemma 2.5, one has

c∗ + o(1) = Φ(zn)

≥ Φ(θnz
+
n ) +

θ2n∥z−n ∥2

2
+

1− θ2n
2

⟨Φ′(zn), zn⟩+ θ2n⟨Φ′(zn), z
−⟩

−θ2
∫
ηn|z+

n |>θ0|zn|
Hz(x, zn)z

+
n dx

= Φ(Rξ+n ) +
R2∥ξ−n ∥2

2
+

(
1

2
− R2

2∥zn∥2

)
⟨Φ′(zn), zn⟩

+
R2

∥zn∥2
⟨Φ′(zn), z

−
n ⟩ − R2

∥zn∥

∫
R|ξ+n |>η0|zn|

Hz(x, zn)ξ
+
n dx

=
R2

2
(∥ξ+n ∥2 + ∥ξ−n ∥2) +

(
1

2
− R2

2∥zn∥2

)
⟨Φ′(zn), zn⟩+

R2

∥zn∥2
·

⟨Φ′(zn), z
−
n ⟩ − R2

∥zn∥

∫
R|ξ+n |>η0|zn|

Hz(x, zn)ξ
+
n dx−

∫
RN

H(x,Rξ+n )dx

=
R2

2
− 1

4
+ o(1) > c∗ +

3

4
+ o(1),

which is a contradiction. Thus δ > 0.
Passing to a subsequence, if necessary, we may assume the existence of kn ∈

ZN such that
∫
B1+

√
N (kn)

|ξ+n |2dx > δ
2 . Let ζn(x) = ξn(x+ kn). Then

(3.8)

∫
B1+

√
N (0)

|ζ+n |2dx > δ

2
.

Now we define z̃n(x) = (ũn, ṽn) = zn(x+ kn), then z̃n/∥zn∥ = ζn and ∥ζn∥2 =
∥ξn∥2. Passing to a subsequence, we have ζn ⇀ ζ in E, ζn → ζ in Ls

loc(RN ),
2 ≤ s < 2∗ and ζn → ζ a.e. on RN . Obviously, (3.8) implies that ζ+ ̸= 0. For
a.e. x ∈ {y ∈ RN : ζ+(y) ̸= 0} := Ω, we have limn→∞ |z̃n(x)| = ∞. Hence, it
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follows from (2.2), (3.5), (W1), (W3) and the Fatou’s lemma that

0 = lim
n→∞

c+ o(1)

∥zn∥2
= lim

n→∞

Φ(zn)

∥zn∥2

= lim
n→∞

[
1

2

(
∥ξ+n ∥2 − ∥ξ−n ∥2

)
−
∫
RN

H(x, zn)

∥zn∥2
dx

]
= lim

n→∞

[
1

2

(
∥ξ+n ∥2 − ∥ξ−n ∥2

)
−
∫
RN

H(x, zn)

|zn|2
|ξn|2dx

]
≤ 1

2
− lim inf

n→∞

∫
RN

H(x, zn)

|zn|2
|ξn|2dx

≤ 1

2
−
∫
Ω

lim inf
n→∞

H(x, z̃n)

|z̃n|2
|ξn|2dx = −∞.

This contradiction shows that {zn} is bounded. □
Lemma 3.5. Suppose that (V), (B) and (W1)-(W4) are satisfied. Then K ̸= ∅,
i.e., problem (1.1) has a nontrivial solution.

Proof. Applying Lemmas 3.3 and 3.4, we deduce that there exists a bounded
sequence {zn} ⊂ E satisfying (3.5). Thus there exists a constant C2 > 0 such
that ∥zn∥2 ≤ C2. If

(3.9) δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)

|zn|2dx = 0,

then by Lions’ concentration compactness principle [22] or [25, Lemma 1.21],
zn → 0 in Lp(RN ), as n → ∞. Consequently, by (2.1), (2.2), (2.4), (3.2) and
(3.5), we have

c∗ + o(1) = Φ(zn)−
1

2
⟨Φ′(zn), zn⟩

=

∫
RN

(
1

2
Hz(x, zn)zn −H(x, zn)

)
dx

≤ 2εC2
2∥zn∥22 + 2Cε|zn|pp = o(1),

which is a contradiction. Thus δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ ZN

such that
∫
B1+

√
N (kn)

|zn|2dx > δ
2 . Let us define ζn(x) = zn(x+ kn) so that

(3.10)

∫
B1+

√
N (0)

|ζn|2dx >
δ

2
.

Since V (x), f(x, u) and g(x, v) are periodic on x, we have ∥ζn∥ = ∥zn∥ and

(3.11) Φ(ζn) → c∗, ∥Φ′(ζn)∥(1 + ∥ζn∥) → 0.

Passing to a subsequence, we have ζn ⇀ ζ = (φ,ψ) in E, ζn → ζ in L2
loc(RN )

and ζn → ζ a.e. on RN . Obviously, (3.10) implies that ζ ̸= 0. By a standard
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argument, we have Φ′(ζ) = 0. Then ζ ∈ K, i.e. ζ = (φ,ψ) is a nontrivial
solution of (1.1). □

Proof of Theorem 1.1. Lemma 3.5 shows that K ̸= ∅. Let C̃ = infz∈K Φ(z).
Then, for any z = (u, v) ∈ K, by (2.2), (2.4) and (W4), we have

Φ(z) = Φ(z)− 1

2
⟨Φ′(z), z⟩ =

∫
RN

(
1

2
Hz(x, z)z −H(x, z)

)
dx

=

∫
RN

(
1

2
f(x, u)u− F (x, u) +

1

2
g(x, v)v −G(x, v)

)
dx ≥ 0.

Therefore, C̃ ≥ 0. Suppose that {zn} ⊂ K such that Φ(zn) → C̃. Then
⟨Φ′(zn), ζ⟩ = 0 for any ζ ∈ E. According to the proof of Lemma 3.4(c∗ > 0 is
not necessary), we can certify that {zn} is bounded in E. Denote δ as in (3.9).
If δ = 0, then Lions’ concentration compactness principle implies that zn → 0
in Ls(RN ,R2) for any s ∈ (2, 2∗). By (3.2) and Lemma 2.2, it is easy to check∫

RN

(
1

2
Hz(x, zn)(z

+
n − z−n )

)
dx→ 0, n→ ∞.

Therefore,

∥zn∥2 = ⟨Φ′(zn), z
+
n − z−n ⟩+

∫
RN

(
1

2
Hz(x, zn)(z

+
n − z−n )

)
dx = o(1).

On the other hand,

∥zn∥ = ⟨Φ′(zn), z
+
n − z−n ⟩+

∫
RN

(
1

2
Hz(x, zn)(z

+
n − z−n )

)
dx

≤ εC2
2∥zn∥2 + CεC

p
p∥zn∥p,(3.12)

which implies that

∥zn∥2 ≥
(
1− εC2

2

CεC
p
p

)1/(p−2)

> 0, for some appropriate ε.

This is a contradiction. Thus δ > 0. After a suitable ZN -translation, a subse-
quence of {zn} converges weakly to some z0 ∈ K. Thus Φ(z0) ≥ C̃. It follows
from (W4) and Fatou’s lemma that

C̃ = lim
n→∞

[
Φ(zn)−

1

2
⟨Φ′(zn), zn⟩

]
= lim

n→∞

∫
RN

[
1

2
Hz(x, zn)zn −H(x, zn)

]
≥

∫
RN

lim
n→∞

[
1

2
Hz(x, zn)zn −H(x, zn)

]
=

∫
RN

[
1

2
Hz(x, z0)z0 −H(x, z0)

]
= Φ(z0).
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This show that Φ(z0) = C̃ = infz∈K Φ(z). Since (3.12) holds also for z0, let

ε0 =
η0

2(2 + η0)C2
2

, β0 =

(
1

ηp−1
0

+
1

p

)
Cε0C

p
p .(3.13)

Then (3.12) implies that

2pβ0∥z0∥p−2 > 2Cε0C
p
p∥z0∥p−2 ≥ 1.(3.14)

Let θ0 = 1
∥z0∥ (2pβ0)

−1/(p−2)
. Then (3.14) implies that 0 < θ0 < 1. Since

z0 ∈ K, it follows from (2.1), (2.5), (3.2) and (3.13) that

Φ(z0) ≥ θ20∥z0∥2

2
− θ20

∫
θ0|z+

0 |>η0|z0|
Hz(x, z0)z

+
0 dx−

∫
RN

H(x, θ0z
+
0 )dx

≥ θ20∥z0∥2

2
−
(
θ0
η0

+
1

2

)
ε0θ

2
0|z+0 |22 −

(
θ0

ηp−1
0

+
1

p

)
Cε0θ

p
0 |z

+
0 |pp

≥ θ20∥z0∥2

2
−
(

1

η0
+

1

2

)
ε0C

2
2θ

2
0∥z0∥2 −

(
1

ηp−1
0

+
1

p

)
Cε0C

p
pθ

p
0∥z0∥p

=
θ20∥z0∥2

4
− β0θ

p
0∥z0∥p =

(
1

2
− 1

p

)
2

−p
p−2 (β0p)

−2
p−2 := κ.(3.15)

This completes the proof. □

4. Appendices

Proof. Here we give a proof of Lemma 2.5 Fix x ∈ RN and t, t
′ ∈ R. Set

h(θ) =
1 + θ2

2
f(x, t)t− θ2f(x, t)t

′
+ F (x, θt

′
)− F (x, t).

If tt
′ ≤ 0, then it follows from (W1) that

h(θ) =
1 + θ2

2
f(x, t)t− θ2f(x, t)t

′
+ F (x, θt

′
)− F (x, t)

≥ 1 + θ2

2
f(x, t)t− F (x, t) ≥ 0, θ ≥ 0.(4.1)
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If tt
′
> 0, set η = θt

′
/t, then it follows from (W1) and (W4) that

h(θ) =
1 + θ2

2
f(x, t)t− θ2f(x, t)t

′
+ F (x, θt

′
)− F (x, t)

=
1 + θ2 − 2ηθ

2
f(x, t)t−

∫ t

ηt

F (x, s)ds

=
(η − θ)2

2
f(x, t)t+

1− η2

2
f(x, t)t−

∫ t

ηt

F (x, s)ds

≥ 1− η2

2
f(x, t)t−

∫ t

ηt

F (x, s)ds

≥ 0, ∀ θ ≥ 0, θt
′
/t ≤ η0.(4.2)

Combining the above two cases, for any θ ≥ 0, θ|t′ | ≤ η0|t|, one has

1 + θ2

2
f(x, t)t− θ2f(x, t)t

′
+ F (x, θt

′
)− F (x, t) ≥ 0(4.3)

and the same inequality also holds for g(x, t) by a similar argument.
Let z+ = (u1, v1) and z

− = (u2, v2). It follows from (W4) and (4.3), for any
θ ≥ 0 that

Φ(z)− Φ(θz+)

=
1

2

[
(Az, z)2 − (Aθz, z+)2

]
+

∫
RN

[F (x, θu1) +G(x, θv1)]−
∫
RN

[F (x, u) +G(x, v)]

=
1

2

[
(1− θ2)(Az, z)2 + θ2(Az, z−)

]
+

∫
RN

[F (x, θu1) +G(x, θv1)]−
∫
RN

[F (x, u) +G(x, v)]

=
1− θ2

2
(Az, z)2 +

θ2

2
∥z−∥2 + θ2(Az, z−)2

+

∫
RN

[F (x, θu1) +G(x, θv1)]−
∫
RN

[F (x, u) +G(x, v)]
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=
1− θ2

2
⟨Φ′(z), z⟩+ θ2

2
∥z−∥2 + θ2⟨Φ′(z), z−⟩

+

∫
RN

{
1− θ2

2
f(x, u)u+ θ2f(x, u)u2 + F (x, θu1)− F (x, u)

}
+

∫
RN

{
1− θ2

2
g(x, v)v + θ2g(x, v)v2 +G(x, θv1)−G(x, u)

}
=

1− θ2

2
⟨Φ′(z), z⟩+ θ2

2
∥z−∥2 + θ2⟨Φ′(z), z−⟩

+

∫
RN

{
1 + θ2

2
f(x, u)u− θ2f(x, u)u1 + F (x, θu1)− F (x, u)

}
+

∫
RN

{
1 + θ2

2
g(x, v)v − θ2g(x, v)v1 +G(x, θv1)−G(x, u)

}
≥ 1− θ2

2
⟨Φ′(z), z⟩+ θ2

2
∥z−∥2 + θ2⟨Φ′(z), z−⟩

+

∫
θ|u1|>η0|u|

{
1 + θ2

2
f(x, u)u− θ2f(x, u)u1 + F (x, θu1)− F (x, u)

}
+

∫
θ|v1|>η0|v|

{
1 + θ2

2
g(x, v)v − θ2g(x, v)v1 +G(x, θv1)−G(x, u)

}
≥ 1− θ2

2
⟨Φ′(z), z⟩+ θ2

2
∥z−∥2 + θ2⟨Φ′(z), z−⟩

+θ2

{ ∫
θ|u|>η0|u|

f(x, u)u1 +

∫
θ|v|>η0|v|

g(x, v)v1

}

≥ 1− θ2

2
⟨Φ′(z), z⟩+ θ2

2
∥z−∥2 + θ2⟨Φ′(z), z−⟩+ θ2

∫
θ|z+|>η0|z|

Hz(x, z)z
+.

This shows that (2.5) holds. □
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