DERIVATIONS INTO N-TH DUALS OF IDEALS OF BANACH ALGEBRAS

M. ESHAGHI GORDJI* AND R. MEMARBASHI

Communicated by Fereidoun Ghahramani

ABSTRACT. We introduce two notions of amenability for a Banach algebra \mathcal{A} . Let $n \in \mathbb{N}$ and I be a closed two-sided ideal in \mathcal{A} . \mathcal{A} is n-I—weakly amenable if the first cohomology group of \mathcal{A} with coefficients in the n-th dual space $I^{(n)}$ is zero; i.e., $H^1(\mathcal{A}, I^{(n)}) = \{0\}$. Further, \mathcal{A} is n-ideally amenable if \mathcal{A} is n-I—weakly amenable for every closed two-sided ideal I in \mathcal{A} . We find some relationships of n-I— weak and m-J— weak amenabilities for some different m and m or for different closed ideals M and M of M.

1. Introduction

Let \mathcal{A} be a Banach algebra and X be a Banach \mathcal{A} -module; that is, X is a Banach space and an \mathcal{A} -module such that the module operations $(a,x)\longmapsto ax$ and $(a,x)\longmapsto xa$ from $\mathcal{A}\times X$ into X are jointly continuous. The dual space X^* of X is also a Banach \mathcal{A} -module by the following module actions:

$$\langle x, ax^* \rangle = \langle xa, x^* \rangle, \langle x, x^*a \rangle = \langle ax, x^* \rangle, \qquad (a \in \mathcal{A}, x \in X, x^* \in X^*).$$

In particular, for every $n \in \mathbb{N}$, the *n*-th dual $X^{(n)}$ of X is a Banach A-module, and so for every closed ideal I of A, I is a Banach A-module

MSC(2000): Primary: 46H25, 16E40

Keywords: Derivation, Arens products, Ideally amenable Received: 27 June 2007, Accepted: 16 November 2007

*Corresponding author

© 2008 Iranian Mathematical Society.

and $I^{(n)}$ is a dual \mathcal{A} -module for every $n \in \mathbb{N}$.

Let X be a Banach A-module. Then a continuous linear map $D: A \longrightarrow \mathcal{X}$ is called a derivation if

$$D(ab) = a \cdot D(b) + D(a) \cdot b \qquad (a, b \in \mathcal{A}). \tag{1.1}$$

For $x \in X$, we define $\delta_x : \mathcal{A} \longrightarrow \mathcal{X}$ as follows:

$$\delta_x(a) = a \cdot x - x \cdot a \qquad (a \in \mathcal{A}).$$

It is easy to show that δ_x is a derivation. Such derivations are called inner derivations. We denote the set of continuous derivations from $\mathcal A$ into X by $Z^1(\mathcal{A},\mathcal{X})$ and the set of inner derivations by $B^1(\mathcal{A},\mathcal{X})$. We denote space by $H^1(\mathcal{A}, \mathcal{X})$ and the quotient space by $Z^1(\mathcal{A}, \mathcal{X})/\mathcal{B}^{\infty}(\mathcal{A}, \mathcal{X})$. The space $H^1(\mathcal{A}, \mathcal{X})$ is called the first cohomology group of \mathcal{A} with coefficients in X. A is called amenable if every derivation from A into every dual A-module is inner; this definition was introduced by B. E. Johnson in [18] (see [22] and [17]). \mathcal{A} is called weakly amenable if, $H^1(\mathcal{A}, \mathcal{A}^*) = \{0\}$ (see [20], [5], [12], [13] and [14]). Bade, Curtis and Dales [2] have introduced the concept of weak amenability for commutative Banach algebras. Let $n \in \mathbb{N}$. A Banach algebra \mathcal{A} is called n-weakly amenable if, $H^1(\mathcal{A}, \mathcal{A}^{(n)}) = \{0\}$. Dales, Ghahramani and Gronback started the concept of n-weak amenability of Banach algebras in [3]. A Banach algebra \mathcal{A} is called ideally amenable if $H^1(\mathcal{A}, I^*) = \{0\}$, for every closed ideal I of \mathcal{A} (see [8]). Here, we shall study $H^1(\mathcal{A}, I^{(n)})$ for a closed ideal I of A. The following definition describes the main new property in our work.

Definition 1.1. Let \mathcal{A} be a Banach algebra, $n \in \mathbb{N}$ and I be a closed two-sided ideal in \mathcal{A} . Then \mathcal{A} is n-I—weakly amenable if $H^1(\mathcal{A}, I^{(n)}) = \{0\}$, \mathcal{A} is n-ideally amenable if \mathcal{A} is n-I—weakly amenable for every closed two-sided ideal I in \mathcal{A} and \mathcal{A} is permanently ideally amenable if \mathcal{A} is n-I—weakly amenable for every closed two-sided ideal I in \mathcal{A} and for each $n \in \mathbb{N}$.

Example 1.2. Let $\mathcal{A} = \ell^1(\mathbb{N})$. We define the product on \mathcal{A} by $f \cdot g = f(1)g$ $(f, g \in \mathcal{A})$. \mathcal{A} is a Banach algebra with this product and norm $\|\cdot\|_1$. Let I be a closed two-sided ideal of \mathcal{A} . It is easy to see that if $I \neq \mathcal{A}$, then $I \subseteq \{f \in \mathcal{A}; f(1) = 0\}$. Then, the right module

action of \mathcal{A} on I is trivial, and therefore the right module action of \mathcal{A} on $I^{(2k)}$ is trivial for every $k \in \mathbb{N}$. On the other hand, \mathcal{A} having left identity, by proposition 1.5 of [18], we have $H^1(\mathcal{A}, I^{(2k+1)}) = \{0\} (k \geq 0)$. If $I = \mathcal{A}$ then by Assertion 2 of [23], $H^1(\mathcal{A}, I^{(2k+1)}) = \{0\}, (k \geq 0)$. Thus, for every $k \geq 0$, \mathcal{A} is 2k + 1 ideally amenable. It is well known that \mathcal{A} is not 2-weakly amenable (see [23]). Thus, \mathcal{A} is not 2-ideally amenable.

The second dual space \mathcal{A}^{**} of a Banach algebra \mathcal{A} admits a Banach algebra product known as first (left) Arens product. We briefly recall the definition of this product. For $m, n \in \mathcal{A}^{**}$, their first (left) Arens product indicated by mn is given by

$$\langle mn, f \rangle = \langle m, nf \rangle \quad (f \in \mathcal{A}^*),$$

where $nf \in \mathcal{A}^*$ is defined by

$$\langle nf, a \rangle = \langle n, fa \rangle \quad (a \in \mathcal{A}) \quad [\mathcal{A}].$$

Let X be a Banach A-module. We can extend the actions of A on X to actions of A^{**} on X^{**} via

$$a''.x'' = w^* - \lim_{i} \lim_{j} a_i x_j$$

and

$$x''.a'' = w^* - \lim_{j} \lim_{i} x_j a_i,$$

such that (a_i) and (x_j) are nets in \mathcal{A} and X, respectively, and that $a'' = w^* - \lim_i a_i$, $x'' = w^* - \lim_j x_j$.

Definition 1.3. Let \mathcal{A} be a Banach algebra and X be a Banach \mathcal{A} —module. We define the topological center of the right module action of \mathcal{A} on X as follows:

$$Z_{\mathcal{A}}(X^{**}) := \{x'' \in X^{**} : \text{ the mapping } a'' \mapsto x''.a'' :$$

$$\mathcal{A}^{**} \to X^{**} \text{ is } weak^* - weak^* \text{ continuous } \}.$$

The right module action of \mathcal{A} on X is Arens regular if and only if $Z_{\mathcal{A}}(X^{**}) = X^{**}$ (see [1] and [6]). For a Banach algebra \mathcal{A} , the set $Z_{\mathcal{A}}(\mathcal{A}^{**})$ is the topological center of \mathcal{A}^{**} with the first Arens product. Let \mathcal{A} be a Banach algebra and let X be a Banach \mathcal{A} -module. Set $P: X^{****} \to X^{**}$ the adjoint of the inclusion map $i: X^* \to X^{***}$. Then, we have the following Theorem.

Theorem 1.4. Let A be a Banach algebra and X be a Banach A-module. Suppose that $Z_A(X^{**}) = X^{**}$. Then the following assertions hold.

- (i) $P: X^{****} \to X^{**}$ is an A^{**} -module morphism. (ii) If $D: A \to X^{**}$ is a derivation, then there exists a derivation $\tilde{D}: A^{**} \to X^{**}$ with \tilde{D} an extension of D.
- **Proof.** (i) conclude from Proposition 1.8 of [3]. For (ii), we know that $D'': \mathcal{A}^{**} \to X^{****}$, the second adjoint of D, is a derivation (see for example Proposition 1.7 of [3]). By (i), $P \circ D''$ is a derivation from \mathcal{A}^{**} into X^{**} .

Corollary 1.5. Let A be an Arens regular Banach algebra. If for every ideal I of A^{**} , $H^1(A^{**}, I^{**}) = \{0\}$, then A is 2-ideally amenable.

For convenience, we will write $x \mapsto J(x)$ for the canonical embedding of a Banach space into its second dual. We find some relations between m and n-ideal amenabilities of a Banach algebra.

Theorem 1.6. Let \mathcal{A} be a Banach algebra and I be a closed ideal of \mathcal{A} . For each $n \in \mathbb{N}$, if \mathcal{A} is n+2-I—weakly amenable then \mathcal{A} is n-I—weakly amenable.

Proof. Let $D: \mathcal{A} \to I^{(n)}$ be a derivation. Since $J: I^{(n)} \to I^{(n+2)}$ is an \mathcal{A} -module homomorphism, then $J \circ D: \mathcal{A} \to I^{(n+2)}$ is a derivation. Therefore, there exists $F \in I^{(n+2)}$ such that $J \circ D = \delta_F$. Let $P: I^{(n+2)} \to I^{(n)}$ be the above projective. Then, for every $a \in \mathcal{A}$, we have $D(a) = P \circ J \circ D(a) = a \cdot P(F) - P(F) \cdot a$. Thus, $D = \delta_{P(F)}$.

Corollary 1.7. Let A be a Banach algebra, and $n \in \mathbb{N}$. If A is n + 2-ideally amenable then A is n-ideally amenable.

Theorem 1.8. Let \mathcal{A} be a Banach algebra and I be a closed two sided ideal of \mathcal{A} with a bounded approximate identity. If \mathcal{A} is n-ideally amenable (or permanently ideally amenable) then I is n-ideally amenable (or permanently ideally amenable).

Proof. Since I has bounded approximate identity, then by Cohen factorization Theorem for every closed ideal J of I, we have JI = IJ = J. Then, J is an ideal of \mathcal{A} . Let $D: I \longrightarrow J^{(n)}$ be a derivation. By [22, Proposition 2.1.6], D can be extend to a derivation $\tilde{\mathbf{D}}: \mathcal{A} \longrightarrow J^{(n)}$. So,

there is $a_n m \in J^{(n)}$ such that $\tilde{\mathbf{D}} = \delta_m$. Then, $D(i) = \tilde{\mathbf{D}}(i) = \delta_m(i)$ for each $i \in I$. Thus, D is inner.

Theorem 1.9. Let \mathcal{A} be a Banach algebra and $n \in \mathbb{N}$. Let I be a closed ideal of \mathcal{A} with $Z_{\mathcal{A}}(I^{(2n)}) = I^{(2n)}$. Suppose that $H^1(\mathcal{A}^{**}, I^{(2n)}) = \{0\}$. Then \mathcal{A} is 2n-2-I-weakly amenable.

Proof. Let $D: \mathcal{A} \longrightarrow I^{(2n-2)}$ be a derivation. Then, by Theorem 1.3, there exists an extension $\tilde{D}: \mathcal{A}^{**} \longrightarrow I^{(2n)}$ such that \tilde{D} is a (bounded) derivation. Thus, \tilde{D} is inner, and so is D.

Theorem 1.10. Let A be a Banach algebra with a left bounded approximate identity. Let I be a closed ideal of A and A be an ideal of A^{**} . If I is left strongly irregular (i.e., $Z_t(I^{**}) = I$) and A is I-weakly amenable then A is 3 - I-weakly amenable.

Proof. First, since we have the following A-module direct sum decomposition,

$$I^{***} = \widehat{I^*} \oplus \widehat{I}^{\perp},$$

then we have,

$$H^1(\mathcal{A}, \mathcal{I}^{***}) = H^1(\mathcal{A}, \widehat{\mathcal{I}}^*) + H^1(\mathcal{A}, \widehat{\mathcal{I}}^{\perp}).$$

We have to show that $H^1(\mathcal{A}, \widehat{\mathcal{I}}^{\perp}) = \{0\}$. To this end, let $a \in \mathcal{A}$, $i'' \in I^{**}$ and $\pi : I \to \mathcal{A}$ be the inclusion map. Then, by Lemma 3.3 of [9],

$$i''a=\pi''(i'')\widehat{a}\in\pi''(I^{**})\cap\widehat{\mathcal{A}}=\widehat{I}.$$

Then, the right module action of \mathcal{A} on \widehat{I}^{\perp} is trivial. Now, let $D: \mathcal{A} \to \widehat{\mathcal{I}}^{\perp}$ be a derivation. Suppose (e_{α}) is a left bounded approximate identity for \mathcal{A} . Since \widehat{I}^{\perp} is a $weak^*$ -closed subspace of I^{***} , then we take $weak^* - \lim_{\alpha} D(e_{\alpha}) = F \in \widehat{I}^{\perp}$. Thus, for every $a \in \mathcal{A}$, we have

$$D(a) = \lim_{\alpha} D(e_{\alpha}a) = Fa = Fa - aF = \delta_F(a).$$

Let $\mathcal{A}^{\#}$ be the unitization of \mathcal{A} . We know that \mathcal{A} is amenable if and only if $\mathcal{A}^{\#}$ is amenable. If \mathcal{A} is weakly amenable then $\mathcal{A}^{\#}$ is weakly amenable [3], and the weak amenability of $\mathcal{A}^{\#}$ does not imply the weak amenability of \mathcal{A} [21]. Also, Gordji and Yazdanpanah have shown that \mathcal{A} is ideally amenable if and only if $\mathcal{A}^{\#}$ is ideally amenable [8]. In the following, we will take the same result for n-ideal amenability.

Proposition 1.11. Let A be a Banach algebra, and $n \in \mathbb{N}$. Then the following assertions hold.

- (i) If $A^{\#}$ is n-ideally amenable, then A is n-ideally amenable.
- (ii) If A is 2n-1-ideally amenable, then $A^{\#}$ is 2n-1-ideally amenable.
- (iii) If A is commutative and n-ideally amenable, then $A^{\#}$ is n-ideally amenable.

Proof. (i): Let $\mathcal{A}^{\#}$ be n-ideally amenable, and I be a closed ideal of \mathcal{A} . Let $D: \mathcal{A} \longrightarrow I^{(n)}$ be a derivation. It is easy to show that I is an ideal of $\mathcal{A}^{\#}$. We define $\tilde{\mathbf{D}}: \mathcal{A}^{\#} \longrightarrow I^{(n)}$ by $\tilde{\mathbf{D}}(a+\alpha) = D(a)$, $(a \in \mathcal{A}, \alpha \in \mathbb{C})$. Then $\tilde{\mathbf{D}}$ is a derivation. Since $\mathcal{A}^{\#}$ is n-ideally amenable, then $\tilde{\mathbf{D}}$ is inner, and hence D is inner. For (ii), let \mathcal{A} be 2n-1-ideally amenable and I be a closed ideal of $\mathcal{A}^{\#}$. First, we know that \mathcal{A} is 2n-1-weakly amenable. Then, by proposition 1.4 of [3], $\mathcal{A}^{\#}$ is 2n-1-weakly amenable. Thus, $\mathcal{A}^{\#}$ is 2n-1-I-weakly amenable whenever $I=\mathcal{A}^{\#}$. Let $I\neq \mathcal{A}^{\#}$. Then $1\notin I$ and I is an ideal of \mathcal{A} . If $D:\mathcal{A}^{\#}\longrightarrow I^{(n)}$ is a derivation, then D(1)=0 and D drops to a derivation from \mathcal{A} into $I^{(n)}$, and hence D is inner. The proof of (iii) is similar to the one given for (ii).

2. Commutative Banach algebras

We know that a commutative Banach algebra \mathcal{A} is weakly amenable if and only if every derivation from \mathcal{A} into a symmetric Banach \mathcal{A} -module is zero (Theorem 1.5 of [2]). Thus, we have the following Theorem.

Theorem 2.1. Let A be a commutative Banach algebra. Then the following assertions are equivalent.

- (i) A is weakly amenable.
- (ii) A is 2k+1-weakly amenable for some $k \in \mathbb{N} \cup \{0\}$.
- (iii) A is ideally amenable.
- (iv) \mathcal{A} is 2k+1-ideally amenable for some $k \in \mathbb{N} \cup \{0\}$.
- (v) \mathcal{A} is permanently ideally amenable.

Theorem 2.2. Let A be a commutative Banach algebra and let $n \in \mathbb{N}$. Then the following assertions are equivalent.

- (i) A is 2n-weakly amenable.
- (ii) A is 2n-ideally amenable.

Proof. (ii) \Rightarrow (i): This is obvious. For (i) \Rightarrow (ii), let \mathcal{A} be 2n-weakly amenable and I be a closed two sided ideal of \mathcal{A} . We let $\pi: I \longrightarrow \mathcal{A}$ be the natural inclusion map. Then $\pi^{(2n)}: I^{(2n)} \longrightarrow \mathcal{A}^{(2n)}$, the 2n-th adjoint of π , is \mathcal{A} -module morphism. Let $D: \mathcal{A} \longrightarrow I^{(2n)}$ be a derivation. Then $\pi^{(2n)} \circ D: \mathcal{A} \longrightarrow \mathcal{A}^{(2n)}$ is a derivation. Since $\mathcal{A}^{(2n)}$ is symmetric \mathcal{A} -module and $H^1(\mathcal{A}, \mathcal{A}^{(2n)}) = \{0\}$, then $\pi^{(2n)} \circ D = 0$. Therefore, D = 0.

Corollary 2.3. Let A be a commutative Banach algebra which is Arens regular, and suppose that A^{**} is semisimple. Then A is 2-ideally amenable.

Proof. By Corollary 1.11 of [3], \mathcal{A} is 2-weakly amenable. Then, by Theorem 2.2, \mathcal{A} is 2-ideally amenable.

Corollary 2.4. Let \mathcal{A} be a commutative Banach algebra such that $\mathcal{A}^{(2n)}$ is Arens regular, and $H^1(\mathcal{A}^{(2n+2)}, \mathcal{A}^{(2n+2)}) = \{0\}$ for each $n \in \mathbb{N}$. Then, \mathcal{A} is 2n-ideally amenable for each $n \in \mathbb{N}$.

Proof. By Corollary 1.12 of [3], \mathcal{A} is 2n-weakly amenable for each $n \in \mathbb{N}$. Then, by Theorem 2.2, \mathcal{A} is 2n-ideally amenable for each $n \in \mathbb{N}$.

Corollary 2.5. Every uniform Banach algebra is 2n-ideally amenable for each $n \in \mathbb{N}$.

Proof. Applying Theorem 2.2 above and Theorem 3.1 of [3], the proof is easily obtained.

Let $\mathbb{D}=\{F\in\mathbb{C}:|F|<1\}$ be the open unit disc and $A(\overline{\mathbb{D}})$ be the disc algebra. It follows from Corollary 2.5 above and page 35 of [3] that $A(\overline{\mathbb{D}})$ is a 2-ideally amenable Banach function algebra which is not ideally amenable.

3. C^* -algebras

It is well known that every C^* -algebra is ideally amenable [8, Corollary 2.2]. Also, a C^* -algebra is amenable if and only if it is nuclear ([16]).

As in [3, Theorem 2.1], we have the following theorem.

Theorem 3.1. Every C^* -algebra is permanently weakly amenable.

We can not show that every C^* -algebra is permanently ideally amenable, but we have the following theorem.

Theorem 3.2. Let n = 2k + 1 $(k \in \mathbb{N} \cup \{0\})$. Then every C^* -algebra is n-ideally amenable.

Proof. Let \mathcal{A} be a C^* -algebra and I be a closed ideal of \mathcal{A} . Since \mathcal{A} is ideally amenable, then $H^1(\mathcal{A}, I^*) = \{0\}$. Now, we will show that \mathcal{A} is n+2-I- weakly amenable if it is n-I- weakly amenable (n=2k+1). Let $D: \mathcal{A} \to I^{(n+2)}$ be a derivation. First, we show that D'' is a derivation. Let $a'', b'' \in \mathcal{A}^{**}$. Then, there are nets (a_{α}) and (b_{β}) in \mathcal{A} such that they converge respectively to a'' and b'' in the weak*-topology of \mathcal{A}^{**} . Then,

$$D''(a''b'') = weak^*lim_{\alpha}lim_{\beta}D(a_{\alpha}b_{\beta})$$

$$= weak^*lim_{\alpha}lim_{\beta}D(a_{\alpha})b_{\beta} + weak^*lim_{\alpha}lim_{\beta}a_{\alpha}D(b_{\beta})$$

$$= D''(a'').b'' + lim_{\alpha}a_{\alpha}.D''(b''). \tag{3.1}$$

Let $x'' \in I^{(n+3)}$, $\pi: I \to \mathcal{A}$ be the inclusion map and $i: \mathcal{A} \to \mathcal{A}^{**}$ be the natural embedding. The maps $i'', i^{(4)}, ..., i^{(n+3)}$ are $weak^* - weak^* - continuous$. Then, $weak^* - \lim_{\alpha} i^{(n+3)}(a_{\alpha}) = i^{(n+3)}(a'')$. On the other hand, $\mathcal{A}^{(n+3)}$ is a C^* -algebra, and thus is Arens regular. then,

$$\lim_{\alpha} x'' a_{\alpha} = \lim_{\alpha} \pi^{(n+3)}(x'') i^{(n+3)}(a_{\alpha}) = \pi^{(n+3)}(x'') i^{(n+3)}(a'') = x'' a''.$$

Since $I^{(n+1)}$ is a C^* -algebra, then by Corollary 3.2.43 of [D], D is weakly compact. Thus, $D''(b'') \in \widehat{I^{(n+2)}}$, and for each $x'' \in I^{(n+3)}$, we have

$$\lim_{\alpha} \langle a_{\alpha}.D''(b''), x'' \rangle = \lim_{\alpha} \langle x''a_{\alpha}, D''(b'') \rangle$$
$$= \langle x''a'', D''(b'') \rangle$$
$$= \langle a''.D''(b''), x'' \rangle.$$

Then,

$$a''.D''(b'') = \lim_{\alpha} a_{\alpha}.D''(b''),$$

and by (3.1), D'' is a derivation. Since D is weakly compact, then $D''(\mathcal{A}^{**}) \subseteq \widehat{I^{(n+2)}}$. We can suppose that D'' is a derivation from \mathcal{A}^{**} into $I^{(n+2)}$. Similarly, $D^4 := (D'')''$ is a derivation from $\mathcal{A}^{(4)}$ into $\widehat{I^{(n+2)}}$.

We can suppose that $D^{(2k+2)}$ (the 2k+2-th conjugate of D) is a derivation from $\mathcal{A}^{(2k+2)}$ into $\widehat{I^{(n+2)}}$. On the other hand, $I^{(n+1)}$ is a closed ideal of $\mathcal{A}^{(2k+2)}$ and $\mathcal{A}^{(2k+2)}$ is ideally amenable (since it is a C^* -algebra). Thus, $D^{(2k+2)}$ is inner. Since $D^{(2k+2)}$ is an extension of D, then it is easy to see that D is inner.

4. Codimension one ideals

Let \mathcal{A} be a Banach algebra and I be a closed ideal of \mathcal{A} , with codimension one. We find the relationship between n-weak amenability of I and I-weak amenability of \mathcal{A} . As [15, Theorem 2.3], we have the following result.

Theorem 4.1. Let A be a Banach algebra with bounded approximate identity and I be a codimension one closed two sided ideal of A. Then, $H^1(A, X^*) \cong H^1(\mathcal{I}, X^*)$ for every neo unital Banach A-module X.

Let G be a discrete group, and I_0 be a codimension 1 closed two sided ideal of $l^1(G)$. Then, $l^1(G)$ is $n-I_0$ —weakly amenable for every $n \in \mathbb{N}$.

Corollary 4.2. Let A be a C^* -algebra and I be a codimension one closed two sided ideal of A. Then, for every $n \in \mathbb{N}$, A is n - I-weakly amenable.

Proof. Let n=2k+1. Then, by Theorem 3.2, $H^1(\mathcal{A}, I^{(n)})=\{0\}$. Let n=2k. Then, we have $\mathcal{A}I^{(n-1)}=II^{(n-1)}=I^{(n-1)}$ and $I^{(n-1)}\mathcal{A}=I^{(n-1)}I=I^{(n-1)}$. Then, by Theorem 4.1, \mathcal{A} is n-I—weakly amenable.

- **Lemma 4.3.** Let A be a Banach algebra with bounded approximate identity and I be a closed two sided ideal of A. For every $n \geq 0$, the following assertions hold.
- (i) If $\pi_r: I^{(n)} \times \mathcal{A} \longrightarrow I^{(n)}$ is Arens regular, then $I^{(n+1)}$ factors on the right.
- (ii) If $\pi_l: \mathcal{A} \times I^{(n)} \longrightarrow I^{(n)}$ is Arens regular, then $I^{(n+1)}$ factors on the left.

Proof. Let (e_{α}) be a bounded approximate identity for \mathcal{A} with cluster point E. Suppose that π_r is Arens regular and let $i^{n+2} \in I^{(n+2)}$ be the

cluster point of (i_{β}^n) in the weak*- topology of $I^{(n+2)}$ $((i_{\beta}^n)$ is a net in $I^{(n)}$). Then, we have

$$i^{n+2} = weak^* - \lim_{\beta} i_{\beta}^n$$

$$= weak^* - \lim_{\beta} \lim_{\alpha} i_{\beta}^n e_{\alpha}$$

$$= weak^* - \lim_{\alpha} \lim_{\beta} i_{\beta}^n e_{\alpha}$$

$$= weak^* - \lim_{\alpha} i^{(n+2)} e_{\alpha} = i^{(n+2)} E.$$

Then, for $i^{n+1} \in I^{(n+1)}$, we have

$$\lim_{\alpha} \langle e_{\alpha} i^{n+1}, i^{n+2} \rangle = \lim_{\alpha} \langle i^{n+1}, i^{n+2} e_{\alpha} \rangle$$

$$= \langle i^{n+1}, i^{n+2} E \rangle$$

$$= \langle i^{n+1}, i^{n+2} \rangle.$$

Thus, $e_{\alpha}i^{n+1} \to i^{n+1}$ weakly in $I^{(n+1)}$. Since $e_{\alpha}i^{n+1} \in \mathcal{A}I^{(n+1)}$ for every α , then by Cohen-Hewit Factorization Theorem, we know that $\mathcal{A}I^{(n+1)}$ is closed in $I^{(n+1)}$, and thus $i^{n+1} \in \mathcal{A}I^{(n+1)}$. Thus, the proof of (i) is complete. For (ii), let $i^{n+2} \in I^{(n+2)}$ be the cluster point of (i^n_{β}) . For each β , we know that $Ei^n_{\beta} = i^n_{\beta}$. Since π_l is Arens regular, then $e_{\alpha}i^{n+2} \to Ei^{n+2} = i^{n+2}$ by $weak^*$ topology of $I^{(n+2)}$. Then, for every $i^{n+1} \in I^{(n+1)}$,

$$\lim_{\alpha} \langle i^{n+1} e_{\alpha}, i^{n+2} \rangle = \lim_{\alpha} \langle i^{n+1}, e_{\alpha} i^{n+2} \rangle$$

$$= \langle i^{n+1}, E i^{n+2} \rangle$$

$$= \langle i^{n+1}, i^{n+2} \rangle.$$

Therefore, $i^{n+1}e_{\alpha} \to i^{n+1}$ weakly. Again, by Cohen-Hewit Factorization Theorem, we conclude that $I^{(n+1)}$ factors on the left. By Theorem 4.1 and Lemma 4.3, we have the following result.

Proposition 4.4. Let A be a Banach algebra with bounded approximate identity and I be a codimension one closed two sided ideal of A. For every $n \geq 1$, if the module actions of A on $I^{(n-1)}$ are Arens regular, then I is n-weakly amenable if and only if A is n-I-weakly amenable.

5. Open Problems

- We do not know whether or not 2-ideal amenability implies 4-ideal amenability for an arbitrary Banach algebra.
- We do not know whether or not 1-ideal amenability implies 3ideal amenability for an arbitrary (non commutative) Banach algebra.
- We know that every C^* -algebra is 2k+1 ideally amenable for every $k \in \mathbb{N} \cup \{0\}$. But, we do not know whether or not every C^* -algebra is permanently ideally amenable.
- The group algebras $L^1(G)$ are *n*-weakly amenable for each odd n [3], but we do not know for which G and which $n \in \mathbb{N}$, the algebra $L^1(G)$ is *n*-ideally amenable. We know that $l^1(F_2)$, the group algebra of free group F_2 , is permanent weakly amenable [19], but we do not know whether or not $l^1(F_2)$ is permanent ideally amenable.
- It is known that in some cases, a Banach algebra A inherits weak amenability from A** (see [11], [9], [D-G-V] and [7]). But we do not know whether or not A inherits the ideal amenability from A**.

Acknowledgments

The authors express their sincere thanks to the referee for valuable comments. The first author would like to thank the Semnan University for its financial support.

References

- R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
- [2] W. G. Bade, P. G. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschits algebra, Proc. London Math. Soc. 3 (55) (1987), 359-377.
- [3] H. G. Dales, F. Ghahramani and N. Gronbaek, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), 19-54.
- [4] H. G. Dales, A. Rodriguez-Palacios and M. V. Velasco, The second transpose of a derivation, J. London Math. Soc. 2 (64) (2001), 707-721.
- [5] M. Despic and F. Ghahramani, Weak amenability of group algebras of locally compact groups, Canad. Math. Bull. 37 (1994), 165-167.
- [6] M. Eshaghi Gordji and M. Filali, Arens regularity of module actions, Studia Math. 181 (3) (2007), 237-254.

- [7] M. Eshaghi Gordji and M. Filali, Weak amenability of the second dual of a Banach algebra, *Studia Math.* **182** (3) (2007), 205-213.
- [8] M. E. Gordji and T. Yazdanpanah, Derivations into duals of ideals of Banach algebras, *Proc. Indian Acad. Sci.* **114** (4) (2004), 399-403.
- [9] F. Ghahramani and J. Laali, Amenability and topological centers of the second duals of Banach algebras, Bul. Austral. Math. soc. 65 (2002), 191-197.
- [10] F. Ghahramani and A. To-Ming Lau, Multipliers and ideals in second conjugate algebras related to locally compact groups, *Journal of functional analysis* 132 (1995), 170-191.
- [11] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc. 124 (5), 1996.
- [12] N. Gronbak, A characterization of weakly amenable Banach algebras, Studia Math. 94(1989), 150-162.
- [13] N. Gronbak, Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991), 231-284.
- [14] N. Gronbak, Weak and cyclic amenable for non-commutative Banach algebras, Proc. Edinburg Math. Soc. 35 (1992), 315-328.
- [15] N. Gronbaek and A. T. Lau, On hochschild cohomology of the augmentation ideal of a locally compact group, *Math. proc. Comb. Soc.* (1999), 126-139.
- [16] U. Haagerup, All nuclear C^* -algebras are amenable, Invent. Math. **74** (1983), 305-319.
- [17] A. Y. Helmeskii, The homology of Banach and topological algebras, Kluwer, 1989.
- [18] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- [19] B. E. Johnson, Permanent weak amenability of free groups, Bull. Lodon Math. Soc. 31 (1999), 569-573.
- [20] B. E. Johnson, Weak amenability of group algebras, Bull. Lodon Math. Soc. 23 (1991), 281-284.
- [21] B. E. Johnson and M. C. White, A non-weakly amenable augmentation ideal, To appear.
- [22] V. Runde, Lectures on Amenability, Springer-Verlage, Berlin, Hedinberg, New York, 2001.
- [23] Y. Zhang, Weak amenability of a class of Banach algebras, Canad. Math. Bull. 44 (4) (2001), 504–508.

Madjid Eshaghi Gordji

Department of Mathematics Semnan University Semnan, Iran email: maj_ess@Yahoo.com

R. Memarbashi

Department of Mathematics Semnan University Semnan, Iran

email: r_memarbashi@yahoo.com