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DERIVATIONS INTO N-TH DUALS OF IDEALS OF
BANACH ALGEBRAS

M. ESHAGHI GORDJI* AND R. MEMARBASHI

Communicated by Fereidoun Ghahramani

ABSTRACT. We introduce two notions of amenability for a Banach
algebra A. Let n € N and I be a closed two-sided ideal in A. A
is n — I—weakly amenable if the first cohomology group of A with
coefficients in the n-th dual space ™ is zero; i.e., H' (A, I<”)) =
{0}. Further, A is n-ideally amenable if A is n— I —weakly amenable
for every closed two-sided ideal I in A. We find some relationships
of n — I— weak and m — J— weak amenabilities for some different
m and n or for different closed ideals I and J of A.

1. Introduction

Let A be a Banach algebra and X be a Banach A-module; that is,
X is a Banach space and an A-module such that the module operations
(a,z) — ax and (a,x) — za from Ax X into X are jointly continuous.
The dual space X* of X is also a Banach A-module by the follwing
module actions:

(x,ax*) = (xa,x™),
(x,z*a) = (az,z*), (ae A, ze€ X, z*e X¥).
In particular, for every n € N, the n-th dual X(™ of X is a Banach
A-module, and so for every closed ideal I of A, I is a Banach A-module
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and I is a dual A-module for every n € N.

Let X be a Banach A-module. Then a continuous linear map D : A —
X is called a derivation if

D(ab) =a-D(b) + D(a) - b (a,be A). (1.1)
For x € X, we define §, : A — X as follows:
dp(a)=a-z—x-a (a € A).

It is easy to show that ¢, is a derivation. Such derivations are called in-
ner derivations. We denote the set of continuous derivations from A4 into
X by Z'(A, X) and the set of inner derivations by B1(A, X). We de-
note space by H'(A, X) and the quotient space by Z1(A, X)/B>®(A, X).
The space H'(A, X) is called the first cohomology group of A with co-
efficients in X. A is called amenable if every derivation from A into
every dual A-module is inner; this definition was introduced by B. E.
Johnson in [18] (see [22] and [17]). A is called weakly amenable if,
H' (A, A*) = {0} (see [20], [5], [12], [13] and [14]). Bade, Curtis and
Dales [2] have introduced the concept of weak amenability for com-
mutative Banach algebras. Let n € N. A Banach algebra A is called
n-weakly amenable if, H'(A, A™) = {0}. Dales, Ghahramani and Gron-
baek started the concept of n-weak amenability of Banach algebras in
[3]. A Banach algebra A is called ideally amenable if H!(A, I*) = {0},
for every closed ideal I of A (see [8]). Here, we shall study H'(A, (™)
for a closed ideal I of A. The following definition describes the main
new property in our work.

Definition 1.1. Let A be a Banach algebra, n € N and I be a closed
two-sided ideal in A. Then A is n— I —weakly amenable if H'(A, I(") =
{0}, A is n-ideally amenable if A is n — I—weakly amenable for every
closed two-sided ideal I in A and A is permanently ideally amenable if
A is n — I —weakly amenable for every closed two-sided ideal I in A and
for each n € N.

Example 1.2. Let A = (1(N). We define the product on A by
f-9=fQ)g (f,g € A). Ais a Banach algebra with this product
and norm || - |];. Let I be a closed two-sided ideal of A. It is easy to
see that if I # A, then I C {f € A; f(1) = 0}. Then, the right module
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action of A on [ is trivial, and therefore the right module action of A on
I2k) is trivial for every k € N. On the other hand, A having left iden-
tity, by proposition 1.5 of [18], we have H'(A, I?**1) = {0}(k > 0). If
I = A then by Assertion 2 of [23], H'(A, I®***1) = {0}, (k > 0). Thus,
for every k > 0, A is 2k + 1 ideally amenable. It is well known that A
is not 2-weakly amenable (see [23]). Thus, A is not 2-ideally amenable.

The second dual space A** of a Banach algebra A admits a Banach
algebra product known as first (left) Arens product. We briefly recall
the definition of this product. For m,n € A**, their first (left) Arens
product indicated by mn is given by

(mn, f) = (m,nf) (f € A"),
where nf € A* is defined by
(nf,a) = (n,fa) (acA) [A]l

Let X be a Banach A—module. We can extend the actions of A on
X to actions of A™ on X** via
a".2" = w" —limlima; z;
i
and
z".a" = w* —limlimz; a;,
J (2
such that (a;) and (x;) are nets in A and X, respectively, and that

" =w* —lim; a;, " =w* —lim;x;.

Definition 1.3. Let A be a Banach algebra and X be a Banach
A—module. We define the topological center of the right module ac-
tion of A on X as follows:

ZA(X*) :={2" € X** : the mapping a” — 2”.a" :

A — X is weak™ — weak™ continuous }.

The right module action of A on X is Arens regular if and only if
ZA(X™) = X (see [1] and [6]). For a Banach algebra A, the set
Z A(A*) is the topological center of A** with the first Arens product.
Let A be a Banach algebra and let X be a Banach A—module. Set
P X** — X™** the adjoint of the inclusion map i : X* — X***. Then,
we have the following Theorem.
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Theorem 1.4. Let A be a Banach algebra and X be a Banach A—module.
Suppose that Zo(X**) = X**. Then the following assertions hold.

(i) P: X** — X** is an A**—module morphism.
(i) If D : A — X** is a derivation, then there exists a
derivation D : A*™ — X** with D an extension of D.

Proof. (i) conclude from Proposition 1.8 of [3]. For (ii), we know that
D" . A — X*** the second adjoint of D, is a derivation (see for
example Proposition 1.7 of [3]). By (i), P o D" is a derivation from A**
into X™**.

Corollary 1.5. Let A be an Arens reqular Banach algebra. If for every
ideal I of A**, HY(A**, I**) = {0}, then A is 2-ideally amenable.

For convenience, we will write z +— J(z) for the canonical embedding
of a Banach space into its second dual. We find some relations between
m and n-ideal amenabilities of a Banach algebra.

Theorem 1.6. Let A be a Banach algebra and I be a closed ideal of A.
For eachn € N, if A is n+2—I—weakly amenable then A is n—I—weakly
amenable.

Proof. Let D : A — I™ be a derivation. Since J : I(" — [("+2) g
an A-module homomorphism, then J o D : A — I"*2) ig a derivation.
Therefore, there exists F € I"*2) guch that JoD = §p. Let P : [("+2) —
I be the above projective. Then, for every a € A, we have D(a) =
PolJoD(a)=a-P(F)—P(F)-a. Thus, D= dpp.

Corollary 1.7. Let A be a Banach algebra, and n € N. If A is n +
2—ideally amenable then A is n—ideally amenable.

Theorem 1.8. Let A be a Banach algebra and I be a closed two
sided ideal of A with a bounded approximate identity. If A is n-ideally
amenable (or permanently ideally amenable) then I is n-ideally amenable
(or permanently ideally amenable).

Proof. Since I has bounded approximate identity, then by Cohen fac-
torization Theorem for every closed ideal J of I, we have JI = I1J = J.
Then, J is an ideal of A. Let D : I — J™ be a derivation. By [22,
Proposition 2.1.6], D can be extend to a derivation D:A— JM. So,
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there is a,m € J such that D = §,,. Then, D(i) = D(i) = 6,,(i) for
each ¢ € I. Thus, D is inner.

Theorem 1.9. Let A be a Banach algebra and n € N. Let I be a closed
ideal of A with Z (1) = I1C™. Suppose that H'(A**, 13")) = {0}.
Then A is 2n-2-I-weakly amenable.

Proof. Let D : A —>I(27j*2) be a derivation. Then, by Theorem 1.3,
there exists an extension D : A™ — [ (27) such that D is a (bounded)
derivation. Thus, D is inner, and so is D.

Theorem 1.10. Let A be a Banach algebra with a left bounded approzi-
mate identity. Let I be a closed ideal of A and A be an ideal of A™. If I
is left strongly irregular (i.e., Zy(I"*) = 1) and A is [—weakly amenable
then A is 3 — [—weakly amenable.

Proof. First, since we have the following .A—module direct sum decom-
position,

I — ﬁ ) fj_?
then we have,
HY(A,T7*) = H'(A,T*) + H' (A, TH).

We have to show that H'(A,Z1) = {0}. To this end, let a € A, i" € I**
and 7 : I — A be the inclusion map. Then, by Lemma 3.3 of [9],

i'a=n"(i")aen"(I")NA=T.

Then, the right module action of A on It is trivial. Now, let D :
A — 71 be a derivation. Suppose (eq) is a left bounded approximate
identity for A. Since Tt is a weak*—closed subspace of I***, then we
take weak® — lim, D(ey) = F € Tt Thus, for every a € A, we have

D(a) = lignD(eaa) =Fa=Fa—aF =ép(a).

Let A% be the unitization of A. We know that A is amenable if and
only if A% is amenable. If A is weakly amenable then A% is weakly
amenable [3 ], and the weak amenability of A% does not imply the weak
amenability of A [21]. Also, Gordji and Yazdanpanah have shown that
A is ideally amenable if and only if A# is ideally amenable [8]. In the
following, we will take the same result for n-ideal amenability.
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Proposition 1.11. Let A be a Banach algebra, and n € N. Then the
following assertions hold.

(i) If A* is n-ideally amenable, then A is n-ideally amenable.

(ii) If A is 2n—1—ideally amenable, then A7 is 2n—1—ideally amenable.
(iii) If A is commutative and n-ideally amenable, then A is n-ideally
amenable.

Proof. (i): Let A% be n-ideally amenable, and I be a closed ideal of A.
Let D : A — I™ be a derivation. It is easy to show that I is an ideal
of A#. We define D : A# — I(™ by D(a+0a) = D(a), (a € A, a € C).
Then D is a derivation. Since A# is n-ideally amenable, then Dis inner,
and hence D is inner. For (ii), let A be 2n—1—ideally amenable and I be
a closed ideal of A%, First, we know that A is 2n — 1—weakly amenable.
Then, by proposition 1.4 of [3], A# is 2n — 1—weakly amenable. Thus,
A# is 2n — 1 — I—weakly amenable whenever I = A#. Let I # A¥.
Then 1 ¢ I and I is an ideal of A. If D : A# — I is a derivation,
then D(1) = 0 and D drops to a derivation from A into I and hence
D is inner. The proof of (iii) is similar to the one given for (ii).

2. Commutative Banach algebras

We know that a commutative Banach algebra A is weakly amenable if
and only if every derivation from 4 into a symmetric Banach .A-module
is zero (Theorem 1.5 of [2]). Thus, we have the following Theorem.

Theorem 2.1. Let A be a commutative Banach algebra. Then the fol-
lowing assertions are equivalent.

(i) A is weakly amenable.

(ii) A is 2k+1-weakly amenable for some k € NU{0}.

(iii) A is ideally amenable.

(iv) A is 2k+1-ideally amenable for some k € NU {0}.

(v) A is permanently ideally amenable.

Theorem 2.2. Let A be a commutative Banach algebra and let n € N.
Then the following assertions are equivalent.

(i) A is 2n-weakly amenable.

(ii) A is 2n-ideally amenable.
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Proof. (ii) = (i): This is obvious. For (i) = (ii), let A be 2n-weakly
amenable and I be a closed two sided ideal of A. We let 7 : I —
A be the natural inclusion map. Then 72" : 1@ — A" the
2n-th adjoint of 7, is A—module morphism. Let D : A — I(?") be
a derivation. Then 70D : A — A2 is a derivation. Since A2
is symmetric A—module and H(A, A®") = {0}, then 70D = 0.
Therefore, D = 0.

Corollary 2.3. Let A be a commutative Banach algebra which is Arens
regular, and suppose that A** is semisimple. Then A is 2-ideally amenable.

Proof. By Corollary 1.11 of [3], A is 2-weakly amenable. Then, by
Theorem 2.2, A is 2-ideally amenable.

Corollary 2.4. Let A be a commutative Banach algebra such that A"
is Arens regular, and H' (A2 AC+2)y = L0} for eachn € N. Then,
A is 2n-ideally amenable for each n € N,

Proof. By Corollary 1.12 of [3], A is 2n-weakly amenable for each
n € N. Then, by Theorem 2.2, A is 2n-ideally amenable for each n € N.

Corollary 2.5. FEvery uniform Banach algebra is 2n-ideally amenable
for each n € N.

Proof. Applying Theorem 2.2 above and Theorem 3.1 of [3], the proof
is easily obtained.

Let D = {F € C : |F| <1} be the open unit disc and A(D) be
the disc algebra. It follows from Corollary 2.5 above and page 35 of [3]

that A(ID) is a 2-ideally amenable Banach function algebra which is not
ideally amenable.

3. C*—algebras

It is well known that every C*—algebra is ideally amenable [8, Corol-
lary 2.2]. Also, a C*—algebra is amenable if and only if it is nuclear

([16]).

As in [3, Theorem 2.1], we have the following theorem.
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Theorem 3.1. Every C*-algebra is permanently weakly amenable.

We can not show that every C*—algebra is permanently ideally
amenable, but we have the following theorem.

Theorem 3.2. Let n =2k + 1 (k € NUU{0}). Then every C*-algebra is
n-ideally amenable.

Proof. Let A be a C*-algebra and I be a closed ideal of A. Since
A is ideally amenable, then H'(A, I*) = {0}. Now, we will show that
A is n + 2 — I— weakly amenable if it is n — I— weakly amenable
(n=2k+1). Let D: A— I"*?) be a derivation. First, we show that
D" is a derivation. Let a”,b"” € A**. Then, there are nets (aq) and (bg)
in A such that they converge respectively to a” and b” in the weak*-
topology of A**. Then,
D"(a"v") = weak*limylimgD(aqnbp)
= weak™limylimgD(aq)bg + weak™limqylimga,D(bg)
D"(a").b" + limyae.D" (V). (3.1)

Let 2/ € I"3) 7 . T — A be the inclusion map and i : A — A**
be the natural embedding. The maps ’,i¥, ..., i3 are weak* —
weak* —continuous. Then, weak* — limg i3 (ay) = i3 (a”). On
the other hand, A™*3) is a C*—algebra, and thus is Arens regular. then,

; "o 1; (n4+3) (.1 (n+3) _ (nA3) (N (nAB) (Y M
hénm o = hénw ()i (aq) =7 (z")i (a")=2a"a".

Since I("+1) is a C* —algebra, then by Corollary 3.2.43 of [D], D is weakly
compact. Thus, D" (b") € @, and for each z” € I(™*3) we have
limg{ao. D" (b"), 2"y = lima{(2"as, D"(V"))
= W D)
(a".D" ("), 2").
Then,
" .D"(H") = limaaa.D"(8"),

and by (3.1), D" is a derivation. Since D is weakly compact, then
D" (A*) C 10+ We can suppose that D” is a derivation from A**
into I"*2). Similarly, D* := (D”)" is a derivation from A® into [(n+2),
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We can suppose that D(¥*2) (the 2k 4+ 2—th conjugate of D) is a deriva-

tion from A2 into I(m+2). On the other hand, It is a closed ideal
of A%*+2) and AZ¥+2) is ideally amenable (since it is a C*—algebra).
Thus, D?**2) is inner. Since DZ+2) is an extension of D, then it is
easy to see that D is inner.

4. Codimension one ideals

Let A be a Banach algebra and I be a closed ideal of A, with codi-
mension one. We find the relationship between n-weak amenability of
I and n — I-weak amenability of A. As [15, Theorem 2.3], we have the
following result.

Theorem 4.1. Let A be a Banach algebra with bounded approximate
identity and I be a codimension one closed two sided ideal of A. Then,
HY A, X*) = HY(Z, X*) for every neo unital Banach A-module X.

Let G be a discrete group, and Iy be a codimension 1 closed two sided
ideal of IY(G). Then, I}(G) is n — Ip—weakly amenable for every n € N.

Corollary 4.2. Let A be a C*—algebra and I be a codimension one
closed two sided ideal of A. Then, for everyn € N, A is n — [—weakly
amenable.

Proof. Let n = 2k + 1. Then, by Theorem 3.2, H*(A, 1) = {0}.
Let n = 2k. Then, we have AI("=1) = [7(n=1) — (n=1) apd [(0=D 4 =
I=D] = 1= Then, by Theorem 4.1, A is n — I—weakly amenable.

Lemma 4.3. Let A be a Banach algebra with bounded approximate
identity and I be a closed two sided ideal of A. For every n > 0, the
following assertions hold.

(i) If mp : 10 x A — I is Arens regular, then It factors on the
right.

(ii) If m : A x I — I s Arens regular, then I factors on the
left.

Proof. Let (e,) be a bounded approximate identity for A with cluster
point E. Suppose that 7, is Arens regular and let i"1t2 € 1("+2) be the
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cluster point of (i) in the weak”— topology of I1(+2) ((i3) is a net in
I(™)). Then, we have

7 = weak™ —lim zg
B

= weak® — lién lién iea

o e,
= weak hénhénlﬁea

= weak® — 1131 i — ()

Then, for i"*! € I+ we have

+1 n+2 _ -n+1 -n+2
AR T eq)

lim(
o
— <,l-n+17 in+2E>

<,L-n+1’ Z-n+2> )

lim(eqd"
o

Thus, eai" — "t weakly in 1Y, Since eni"tt € AI™TY for
every «, then by Cohen-Hewit Factorization Theorem, we know that
AI™H) s closed in I"tY) | and thus "t € ATt Thus, the proof
of (i) is complete. For (ii), let i"*2 € I("*2) be the cluster point of (i)
For each 3, we know that Ezg = zg Since m; is Arens regular, then

eqi™t? — Ei"t? = "2 by weak* topology of I("*2) . Then, for every
Tl ¢ I(n+1)’

in+1€a, Z-n+2> _ in—l—l ~n+2>

liéﬂ( héﬂ( ,€ql
_ <,L~n+1 Ein+2>

<Z-n+1,2-n+2>‘

Therefore, i"le, — i"t! weakly. Again, by Cohen-Hewit Factorization
Theorem, we conclude that I("*1) factors on the left.
By Theorem 4.1 and Lemma 4.3, we have the following result.

Proposition 4.4. Let A be a Banach algebra with bounded approximate
identity and I be a codimension one closed two sided ideal of A. For
every n > 1, if the module actions of A on I"™Y) are Arens regular,
then I is n—weakly amenable if and only if A is n — [—weakly amenable.
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5. Open Problems

e We do not know whether or not 2-ideal amenability implies 4-
ideal amenability for an arbitrary Banach algebra.

e We do not know whether or not 1-ideal amenability implies 3-
ideal amenability for an arbitrary (non commutative) Banach
algebra.

e We know that every C*-algebra is 2k+1 ideally amenable for
every k € N{J{0}. But, we do not know whether or not every
C*—algebra is permanently ideally amenable.

e The group algebras L!(G) are n-weakly amenable for each odd
n [3], but we do not know for which G and which n € N, the
algebra L'(G) is n-ideally amenable. We know that I'( F3), the
group algebra of free group Fs, is permanent weakly amenable
[19], but we do not know whether or not I*( F3) is permanent
ideally amenable.

e It is known that in some cases, a Banach algebra A inherits weak
amenability from A** (see [11], [9], [D-G-V] and [7]). But we do
not know whether or not A inherits the ideal amenability from

A,
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