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1. Introduction and preliminaries

Let H be the class of all functions analytic in the unit disc U = {z ∈ C :
|z| < 1} and for a ∈ C and n ∈ N, let H[a, n] = {f ∈ H : f(z) = a+anz

n+ ...}.
Let

An = {f ∈ H : f(z) = z + an+1z
n+1 + ...},

and set A := A1.We say that the function f ∈ H is subordinate to the function
g ∈ H in the unit disc U (written f ≺ g) if there exists an analytic function
w in U with w(0) = 0 and |w(z)| < 1 for all z ∈ U such that f(z) = g(w(z))
in U . If g is univalent in U, then the following equivalence relationship holds
true:

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

For f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n, the Hadamard product (or
convolution) of f and g is defined by

(f ∗ g)(z) =
∞∑

n=0

anbnz
n.

Recently, Komatu [5] introduced a certain integral operator Ia
λ defined by
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(1.1) Ia
λf(z) =

aλ

Γ(λ)

∫ 1

0

ta−2(log
1

t
)λ−1f(tz)dt (z ∈ U, a > 0, λ ≥ 0, f ∈ A).

If f ∈ An is of the form f(z) = z+
∑∞

k=n+1 akz
k, then it is easy to see from

(1.1) that

Ia
λf(z) = z +

∞∑
k=n+1

(
a

a+ k − 1
)λakz

k.

We now introduce the operator Lλ
a(b, c, z) : An → An by

(1.2) Lλ
a(b, c, z)f(z) =

[
z +

∞∑
k=n+1

(b)k−1

(c)k−1
(
a+ 1

a+ k
)λzk

]
∗ f(z)

where λ ≥ 0, b, a ∈ C, Re(a) > −1, c ∈ C− {0,−1,−2, ...}. In view of (1.2), for
f ∈ An and z ∈ U it follows that

(1.3) z(Lλ+1
a (b, c, z)f)′(z) = (1 + a)Lλ

a(b, c, z)f(z)− aLλ+1
a (b, c, z)f(z),

and

(1.4) z(Lλ
a(b, c, z)f)

′(z) = bLλ
a(b+ 1, c, z)f(z)− (b− 1)Lλ

a(b, c, z)f(z).

Furthermore let Q be the set of all analytic and univalent functions on the set
U/E(f), such that f ′(ζ) ̸= 0 for all ζ ∈ ∂U/E(f). where

E(f) := {ζ ∈ ∂U : lim
z→ζ

f(z) = ∞},

The subclass of Q for which f(0) = a is denoted by Q(a). We shall need the
following definition and lemmas to prove our results.

Definition 1.1. A function p(z, t) : U × [0,∞) → C is called a subordination
(or Loewner) chain if p(·, t) is analytic and univalent in U, for all t ≥ 0 and
p(·, t1) ≺ p(·, t2), for all 0 ≤ t1 ≤ t2.

The next lemma gives a sufficient condition so that the function p(·, t) to be
a subordination chain.

Lemma 1.2. (see [9, p.159]) Let

p(z, t) = a1(t)z + a2(t)z
2 + ... (a1(t) ̸= 0, t ≥ 0),

with a1(t) ̸= 0 for all t ≥ 0 and limt→∞ |a1(t)| = ∞.
Suppose that p(., t) is analytic in U for all t ≥ 0, and p(z, ·) is continuously
differentiable on [0,∞) for any z ∈ U . If p(z, t) satisfies

Re

(
z
∂p(z, t)/∂z

∂p(z, t)/∂t

)
> 0 (z ∈ U, t ≥ 0),

and
|p(z, t)| ≤ k0|a1(t)|, |z| < r0 < 1, t ≥ 0
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for some positive constants k0 and r0, then, p(z, t) is a subordination chain.

Lemma 1.3. (see [7]) Suppose that the function ψ : C2 × U → C satisfies the
condition

ψ(ix, y; z) ≤ δ,

for real x, y ≤ −n( 1+x2

2 ) and for all z ∈ U. If the function φ(z) = 1+anz
n+ ...

is analytic in U and
Re{ψ(φ(z), zφ′(z); z)} > δ,

then Re{φ(z)} > 0 in U.

Lemma 1.4. (see [8]) Let q ∈ H[a, 1] and ϕ : C2 → C. Also set

ϕ(q(z), zq′(z)) ≡ h(z) (z ∈ U).

If P (z, t) := ϕ(q(z), tzq′(z)) is subordination chain and p ∈ H[a, 1]∩Q(a), then

h(z) ≺ ϕ(p(z), zp′(z))

implies that
q(z) ≺ p(z).

Furthermore, if ϕ(q(z), zq′(z)) = h(z) has a univalent solution q ∈ Q(a), then
q is the best subordinate.

Making use of the principle of subordination between analytic functions,
many authors (see for example [4,6–8]) obtained some interesting subordination-
preserving properties for certain subclasses of the classA1. In the present paper
we aim to investigate the subordination and superordination-preserving prop-
erties of the integral operator Lλ

a(b, c, z)f in the class An. Our results extends
many results obtained by other authors (see for example [1–3]). Throughout the
following section we assume that b ∈ C, λ ≥ 0 and c ∈ C− {0,−1,−2,−3, ...}.

2. Main results

Our first result involve the integral operator Lλ
a(b, c, z).

Lemma 2.1. Let f be in the class An, (L
λ+1
a (b, c, z)f)′(z) ̸= 0 for all z ∈ U

and a ∈ C with Re(a) > 0. If

(2.1) Re

{
1 +

z(Lλ
a(b, c, z)f)

′′(z)

(Lλ
a(b, c, z)f)

′(z)

}
> −δ

then

(2.2) Re

{
1 +

z(Lλ+1
a (b, c, z)f)′′(z)

(Lλ+1
a (b, c, z)f)′(z)

}
> 0

where

(2.3) δ = n
1 + |a|2 − |1− a2|

4Re(a)
.
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Proof. Let f ∈ An and

(2.4) p(z) = 1 +
z(Lλ+1

a (b, c, z)f)′′(z)

(Lλ+1
a (b, c, z)f)′(z)

.

It is easy to see that p is analytic in U and p(z) = 1 + bnz
n + bn+1z

n+1 + ....
Taking the logarithmic differentiation in (2.4) and using identity (1.3) in the
resulting equation, we get that

(2.5) p(z) +
zp′(z)

a+ p(z)
= 1 +

z(Lλ
a(b, c, z)f)

′′(z)

(Lλ
a(b, c, z)f)

′(z)
.

To make use of Lemma 1.3 we consider the function

ψ(r, s) = r +
s

r + a
+ δ.

In view of (2.1) and (2.5) we have Re{ψ(p(z), zp′(z)} > 0. Furthermore for
x ∈ R and y < −n

2 (1 + x2) we have

Re{ψ(ix, y)} = Re{ix+
y

a+ ix
+ δ} =

yRe(a)

|a+ ix|2
+ δ ≤ − k

2|a+ ix|2
,

where

k = (nRe(a)− 2δ)x2 − 4δIm(a)x− 2δ|a|2 + nRe(a).

But in view of the value of δ given by (2.1), we know that k is a perfect square,
which implies that

Re{ψ(ix, y)} ≤ 0 (x ∈ R, y ≤ −n1 + x2

2
).

Now by Lemma 1.3, we deduce that

Re(p(z)) > 0 (z ∈ U),

this completes the proof. □

Lemma 2.2. Let f be in the class An, (L
λ+1
a (b, c, z)f)′(z) ̸= 0 for all z ∈ U

and a > −1. If

(2.6) Re

{
1 +

z(Lλ
a(b, c, z)f)

′′(z)

(Lλ
a(b, c, z)f)

′(z)

}
> −(n+ a) +

(1 + a)

4

then

(2.7) Re

{√
z(Lλ+1

a (b, c, z)f)′′(z)

(Lλ+1
a (b, c, z)f)′(z)

+ (1 + a)

}
>

√
1 + a

2
.

Proof. Let f ∈ An and set

(2.8) p(z) =
2√
1 + a

√
1 + a+

z(Lλ+1
a (b, c, z)f)′′(z)

(Lλ+1
a (b, c, z)f)′(z)

− 1.
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Then it is clear that p is analytic in U and p(z) = 1 + bnz
n + bn+1z

n+1 + ....
Taking the logarithmic differentiation in (2.8) and using identity (1.3) in the
resulting equation, we obtain

(2.9)
(1 + a)

4
(1 + p(z))2 + 2

zp′(z)

1 + p(z)
− a = 1 +

z(Lλ
a(b, c, z)f)

′′(z)

(Lλ
a(b, c, z)f)

′(z)
.

To make use of Lemma 1.3 we consider the function

ψ(r, s) =
(1 + a)

4
(1 + r)2 +

2s

1 + r
+ n− (1 + a)

4
,

then by (2.6), (2.9) we have Re{ψ(p(z), zp′(z)} > 0. Furthermore for x ∈ R
and y < −n

2 (1 + x2) we have

Re{ψ(ix, y)} =
(1 + a)

4
(1− x2) + 2Re

y

1 + ix
+ n− (1 + a)

4

<
(1 + a)

4
(1− x2)− 2

n(1 + x2)

2(1 + x2)
+ n− (1 + a)

4
≤ 0

Now in view of Lemma 1.3, we get that

Re(p(z)) > 0 (z ∈ U),

this completes the proof. □

By putting λ = 0, b = c = 1 and a = 0 in the Lemma 2.2 we obtain the
following corollary which is generalization of well known result in the literature.

Corollary 2.3. Let f be in the class An and f(z) ̸= 0 for all z ∈ U . If

Re

{
1 +

zf ′′(z)

f ′(z)

}
> −n+

1

4
,

then

Re

√
zf ′(z)

f(z)
>

1

2
.

Theorem 2.4. Let f, g ∈ An, a ∈ C, Re(a) > 0 and (Lλ+1
a (b, c, z)g)′(z) ̸= 0. If

Re{1 + z(Lλ
a(b, c, z)g)

′′(z)

(Lλ
a(b, c, z)g)

′(z)
} > −δ,

where δ is defined in (2.3). Then the relation

Lλ
a(b, c, z)f ≺ Lλ

a(b, c, z)g

implies

Lλ+1
a (b, c, z)f ≺ Lλ+1

a (b, c, z)g.
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Proof. Let F,G and p be defined by

(2.10) F (z) := Lλ+1
a (b, c, z)f, G(z) := Lλ+1

a (b, c, z)g, p(z) := 1 +
G′′(z)

G′(z)
.

In view of Lemma 2.1, we have Rep(z) > 0. From definition ofG and Lλ
a(b, c, z)g

and taking differentiation of G we conclude

(2.11) G(z)(z
G′(z)

G(z)
) + a = (1 + a)Lλ

a(b, c, z)g(z).

But Rep(z) > 0 implies that the function G is convex (univalent) in U. We
can assume, without loss of generality, that G is univalent on U and that
G′(ζ) ̸= 0(|ζ| = 1). To prove F ≺ G, we let function L(z, t) be defined by

(2.12) L(z, t) =
a

1 + a
G(z) +

1 + t

1 + a
zG′(z) = a1(t)z + ....

It is easy to see that L(z, t) is analytic in |z| < 1, for all t ≥ 0. It is also
continuously differentiable on [0,∞), for each |z| < 1. According to (2.11), we
have L(z, 0) = Lλ

a(b, c, z)g(z). From (2.12) we obtain

(2.13) a1(t) =
∂L

∂z
(0, t) = [

a

a+ 1
+

1 + t

a+ 1
]G′(0) = 1 +

t

a+ 1
̸= 0

and limt→∞ |a1(t)| = ∞. A simple calculation yields

Re
(
z
∂L(z, t)/∂z

∂L(z, t)/∂t

)
= Rea+ (1 + t)Re(1 +

G′′(z)

G′(z)
) = Rea+ (1 + t)Rep(z) > 0.

Since G is convex and normalized in the unit disk, therefore the following well-
known growth and distortion sharp inequalities (see [9, p.45,48]) are true:

(2.14)
r

1 + r
≤ |G(z)| ≤ r

1− r
, if |z| ≤ r

and

(2.15)
r

(1 + r)2
≤ |G′(z)| ≤ r

(1− r)2
, if |z| ≤ r.

Now by making use of (2.14) and (2.15) in the relations (2.12) and (2.13) we
obtain

|L(z, t)|
|a1(t)|

≤ |a||G(z)|+ (1 + t)|zG′(z)|
|a+ 1 + t|

≤ r

(1− r)2
|a|+ 1 + t

|a+ 1 + t|
≤ r

(1− r)2
|a|+ 1 + t

Re(a) + 1 + t
.

If we define h(t) = |a|+1+t
Re(a)+1+t it is easy to see that h is a decreasing function

for t ≥ 0, and so

h(t) ≤ |a|+ 1

Re(a) + 1
.
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Therefore from above inequality we conclude that

|L(z, t)|
|a1(t)|

≤ |a|+ 1

Re(a) + 1

r

(1− r)2
|z| ≤ r, t ≥ 0.

Hence both assumptions of Lemma 1.2 hold. Now by Lemma 1.2 we obtain
that L(z, t) is a subordination chain. From Definition 1.1, it follows that

Lλ
a(b, c, z)g(z) = L(z, 0) ≺ L(z, t) (t ≥ 0),

which implies

(2.16) L(ζ, t) ̸∈ L(U, 0) = Lλ
a(b, c, z)g(U) (ζ ∈ ∂U, t ≥ 0).

Suppose that F ̸≺ G. Then there exists z0 ∈ U, ζ0 ∈ ∂U such that F (z0) =
G(ζ0) and F (|z| < |z0|) ⊂ G(U). Hence by Jack’s Lemma we have z0F

′(z0) =
(1 + t)ζ0G

′(ζ0) with t ≥ 0. From (2.12), we obtain

L(ζ0, t) =
a

1 + a
G(ζ0) + ζ0

1 + t

1 + a
G′(ζ0)

=
a

1 + a
F (z0) + z0

1

1 + a
F ′(z0)

= Lλ
a(b, c, z)f(z0) ∈ Lλ

a(b, c, z)g(U).

But this is contradicts (2.16), and thus we deduce that F ≺ G. □

By setting b = c = 1 and λ = 0 in the Theorem 2.4 we obtain.

Corollary 2.5. Let a ∈ C, Re(a) > 0 and f, g ∈ An. If

Re(1 +
g′′(z)

g′(z)
) > −n1 + |a|2 − |1− a2|

4Re(a)
,

then

f ≺ g ⇒ 1 + a

za

∫ z

0

ta−1f(t)dt ≺ 1 + a

za

∫ z

0

ta−1g(t)dt.

Corollary 2.6. Let a > 0 and f, g ∈ An. If

Re(1 +
z(Lλ

a(b, c, z)g)
′′(z)

(Lλ
a(b, c, z)g)

′(z)
) > −δ1,

then

Lλ
a(b, c, z)f ≺ Lλ

a(b, c, z)g ⇒ Lλ+1
a (b, c, z)f ≺ Lλ+1

a (b, c, z)g,

where

δ1 =

 −an
2 0 < a < 1

− n
2a a ≥ 1.

By putting b = c = 1 and λ = 0 in the Corollary 2.6 we have



On sandwich theorems 1190

Corollary 2.7. Let a > 0 and f, g ∈ An. If

Re(1 +
zg′′(z)

g′(z)
) > −δ1,

then

f ≺ g ⇒ 1 + a

za

∫ z

0

ta−1f(t)dt ≺ 1 + a

za

∫ z

0

ta−1g(t)dt,

where

δ1 =

 −an
2 0 < a < 1

− n
2a a ≥ 1.

By using similar arguments as in the proofs of Lemma 2.1 and Theorem 2.4
we obtain the following results and we omit details.

Lemma 2.8. Let f be in the class An, (L
λ
a(b, c, z)f)

′(z) ̸= 0 for all z ∈ U and
b ∈ C, Re(b) > 1. If

(2.17) Re

{
1 +

z(Lλ
a(b+ 1, c, z)f)′′(z)

(Lλ
a(b+ 1, c, z)f)′(z)

}
> −δ2

then

(2.18) Re

{
1 +

z(Lλ
a(b, c, z)f)

′′(z)

(Lλ
a(b, c, z)f)

′(z)

}
> 0

where

(2.19) δ2 = n
1 + |b− 1|2 − |b(2− b)|

4Re(b− 1)
.

Theorem 2.9. Let f, g ∈ An, (L
λ
a(b, c, z)g)

′(z) ̸= 0 and b ∈ C, Re(b) > 1. If

Re{1 + z(Lλ
a(b+ 1, c, z)g)′′(z)

(Lλ
a(b+ 1, c, z)g)′(z)

} > −δ2,

where δ2 is defined in (2.16). Then

Lλ
a(b+ 1, c, z)f ≺ Lλ

a(b+ 1, c, z)g ⇒ Lλ
a(b, c, z)f ≺ Lλ

a(b, c, z)g.

By putting b = c = 2 and λ = a = 1 in the Lemma 2.8 we get the following
result.

Corollary 2.10. Let f(z) = z +
∑∞

k=n+1 akz
k ∈ An satisfies the condition

Re(1 +
zf ′′(z)

f ′(z)
) >

−n
2
,

then the function h(z) = 2
z

∫ z

0
f(t)dt = z +

∑∞
k=n+1

2
k+1akz

k is convex.
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Theorem 2.11. Let f, g ∈ An, (L
λ+1
a (b, c, z)g)′(z) ̸= 0 and a ∈ C with Re(a) >

0. If

Re{1 + z(Lλ
a(b, c, z)g)

′′(z)

(Lλ
a(b, c, z)g)

′(z)
} > −δ

where δ is defined in (2.3) and if Lλ
a(b, c, z)f is univalent and Lλ+1

a (b, c, z)f ∈
Q(0) then

Lλ
a(b, c, z)g ≺ Lλ

a(b, c, z)f ⇒ Lλ+1
a (b, c, z)g ≺ Lλ+1

a (b, c, z)f.

and Lλ+1
a (b, c, z)g is the best subordinate.

Proof. Let the functions F,G and p be defined by (2.10). From Lemma 2.1 we
get

Re(p(z)) > 0 (z ∈ U).

Next, to arrive at our desired result, we show that G ≺ F. For this, let the
functions L(z, t) and ϕ(r, s) are defined by

L(z, t) = ϕ(G(z), tzG′(z))(2.20)

=
a

1 + a
G(z) +

t

1 + a
zG′(z) = a1(t)z + ... (z ∈ U).

Then it is easy to see that L(z, t) is analytic in |z| < 1, for all t ≥ 0. It is also
continuously differentiable on [0,∞), for each |z| < 1. From (2.20) we obtain

(2.21) a1(t) =
∂L

∂z
(0, t) = [

a

a+ 1
+

t

a+ 1
]G′(0) =

a+ t

a+ 1
̸= 0

and limt→∞ |a1(t)| = ∞. A simple calculation yields

Re
(
z
∂L(z, t)/∂z

∂L(z, t)/∂t

)
= Rea+ tRe(1 +

G′′(z)

G′(z)
) = Rea+ tRep(z) > 0.

Since G is convex and normalized in the unit disk, therefore by using similar
argument of Theorem 2.4 we obtain

|L(z, t)|
|a1(t)|

≤ |a||G(z)|+ t|zG′(z)|
|a+ t|

≤ r

(1− r)2
|a|+ t

|a+ t|
≤ r

(1− r)2
|a|+ t

Re(a) + t
.

If we define k(t) = |a|+t
Re(a)+t it is easy to see that k is a decreasing function for

t ≥ 0, and so

k(t) ≤ |a|+ 1

Re(a) + 1
.

Therefore from above inequality we conclude that

|L(z, t)|
|a1(t)|

≤ |a|
Re(a)

r

(1− r)2
|z| ≤ r, t ≥ 0.



On sandwich theorems 1192

Hence both assumptions of Lemma 1.2 hold. Now by Lemma 1.2 we obtain that
L(z, t) is a subordination chain. Now following the same as proof of Theorem
2.4 we conclude G ≺ F and Moreover, G is best subordinate. □

By suitably combining Theorems 2.4 and 2.11 we obtain the following Sand-
wich type theorem.

Corollary 2.12. Let f, gk ∈ An(k = 1, 2) and a ∈ C with Re(a) > 0. If

Re(1 +
z(Lλ

a(b, c, z)gk)
′′(z)

(Lλ
a(b, c, z)gk)

′(z)
) > −δ

where δ is given by (2.3) and if the function (Lλ
a(b, c, z)f)(z) is univalent and

(Lλ+1
a (b, c, z)f)(z) ∈ Q(0), then

Lλ
a(b, c, z)g1 ≺ Lλ

a(b, c, z)f ≺ Lλ
a(b, c, z)g2

implies

Lλ+1
a (b, c, z)g1 ≺ Lλ+1

a (b, c, z)f ≺ Lλ+1
a (b, c, z)g2.

By setting b = c = 1 and λ = 0 in the Corollary 2.12 we obtain

Corollary 2.13. Let a ∈ C, Re(a) > 0 and f, gk ∈ An(k = 1, 2). If f is
univalent and L1

a(1, 1, z)f ∈ Q(0). Then

Re(1 +
zg′′k (z)

g′k(z)
) > −n1 + |a|2 − |1− a2|

4Re(a)

implies

g1 ≺ f ≺ g2 ⇒ 1 + a

za

∫ z

0

ta−1g1(t)dt ≺
1 + a

za

∫ z

0

ta−1f(t)dt ≺ 1 + a

za

∫ z

0

ta−1g2(t)dt.

Corollary 2.14. Let a > 0 and f, gk ∈ An, k = 1, 2. If f is univalent and
L1
a(1, 1, z)f ∈ Q(0). Then

Re(1 +
zg′′k (z)

g′k(z)
) >

 −an
2 0 < a < 1

− n
2a a ≥ 1,

implies

g1 ≺ f ≺ g2 ⇒ 1 + a

za

∫ z

0

ta−1g1(t)dt ≺
1 + a

za

∫ z

0

ta−1f(t)dt ≺ 1 + a

za

∫ z

0

ta−1g2(t)dt.
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