Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 5, pp. 1183-1193

Title:
On Sandwich theorems for certain classes of analytic functions
Author(s):
R. Aghalary, A. Ebadian and M. Mafakheri

Published by Iranian Mathematical Society
http://bims.ims.ir

ON SANDWICH THEOREMS FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS

R. AGHALARY*, A. EBADIAN AND M. MAFAKHERI

(Communicated by Ali Abkar)

Abstract

The purpose of this paper is to derive some subordination and superordination results for certain analytic functions in the open unit disk. Keywords: Subordination, superordination, integral operators, Hadamard product. MSC(2010): Primary 30C45; Secondary 30C80.

1. Introduction and preliminaries

Let H be the class of all functions analytic in the unit disc $U=\{z \in \mathbb{C}$: $|z|<1\}$ and for $a \in \mathbb{C}$ and $n \in \mathbb{N}$, let $H[a, n]=\left\{f \in H: f(z)=a+a_{n} z^{n}+\ldots\right\}$. Let

$$
\mathcal{A}_{n}=\left\{f \in H: f(z)=z+a_{n+1} z^{n+1}+\ldots\right\}
$$

and set $\mathcal{A}:=\mathcal{A}_{1}$. We say that the function $f \in H$ is subordinate to the function $g \in H$ in the unit disc U (written $f \prec g$) if there exists an analytic function w in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$ such that $f(z)=g(w(z))$ in U. If g is univalent in U, then the following equivalence relationship holds true:

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U)
$$

For $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, the Hadamard product (or convolution) of f and g is defined by

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}
$$

Recently, Komatu [5] introduced a certain integral operator $I_{a}{ }^{\lambda}$ defined by

[^0]1.1) $I_{a}{ }^{\lambda} f(z)=\frac{a^{\lambda}}{\Gamma(\lambda)} \int_{0}^{1} t^{a-2}\left(\log \frac{1}{t}\right)^{\lambda-1} f(t z) d t \quad(z \in U, a>0, \lambda \geq 0, f \in \mathcal{A})$.

If $f \in \mathcal{A}_{n}$ is of the form $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}$, then it is easy to see from (1.1) that

$$
I_{a}{ }^{\lambda} f(z)=z+\sum_{k=n+1}^{\infty}\left(\frac{a}{a+k-1}\right)^{\lambda} a_{k} z^{k}
$$

We now introduce the operator $L_{a}^{\lambda}(b, c, z): \mathcal{A}_{n} \rightarrow \mathcal{A}_{n}$ by

$$
\begin{equation*}
L_{a}^{\lambda}(b, c, z) f(z)=\left[z+\sum_{k=n+1}^{\infty} \frac{(b)_{k-1}}{(c)_{k-1}}\left(\frac{a+1}{a+k}\right)^{\lambda} z^{k}\right] * f(z) \tag{1.2}
\end{equation*}
$$

where $\lambda \geq 0, b, a \in \mathbb{C}, \operatorname{Re}(a)>-1, c \in \mathbb{C}-\{0,-1,-2, \ldots\}$. In view of (1.2), for $f \in \mathcal{A}_{n}$ and $z \in U$ it follows that

$$
\begin{equation*}
z\left(L_{a}^{\lambda+1}(b, c, z) f\right)^{\prime}(z)=(1+a) L_{a}^{\lambda}(b, c, z) f(z)-a L_{a}^{\lambda+1}(b, c, z) f(z) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
z\left(L_{a}^{\lambda}(b, c, z) f\right)^{\prime}(z)=b L_{a}^{\lambda}(b+1, c, z) f(z)-(b-1) L_{a}^{\lambda}(b, c, z) f(z) \tag{1.4}
\end{equation*}
$$

Furthermore let Q be the set of all analytic and univalent functions on the set $\bar{U} / E(f)$, such that $f^{\prime}(\zeta) \neq 0$ for all $\zeta \in \partial U / E(f)$. where

$$
E(f):=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} f(z)=\infty\right\}
$$

The subclass of Q for which $f(0)=a$ is denoted by $Q(a)$. We shall need the following definition and lemmas to prove our results.

Definition 1.1. A function $p(z, t): U \times[0, \infty) \rightarrow \mathbb{C}$ is called a subordination (or Loewner) chain if $p(\cdot, t)$ is analytic and univalent in U, for all $t \geq 0$ and $p\left(\cdot, t_{1}\right) \prec p\left(\cdot, t_{2}\right)$, for all $0 \leq t_{1} \leq t_{2}$.

The next lemma gives a sufficient condition so that the function $p(\cdot, t)$ to be a subordination chain.
Lemma 1.2. (see [9, p.159]) Let

$$
p(z, t)=a_{1}(t) z+a_{2}(t) z^{2}+\ldots \quad\left(a_{1}(t) \neq 0, t \geq 0\right)
$$

with $a_{1}(t) \neq 0$ for all $t \geq 0$ and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$.
Suppose that $p(., t)$ is analytic in U for all $t \geq 0$, and $p(z, \cdot)$ is continuously differentiable on $[0, \infty)$ for any $z \in U$. If $p(z, t)$ satisfies

$$
\operatorname{Re}\left(z \frac{\partial p(z, t) / \partial z}{\partial p(z, t) / \partial t}\right)>0 \quad(z \in U, t \geq 0)
$$

and

$$
|p(z, t)| \leq k_{0}\left|a_{1}(t)\right|, \quad|z|<r_{0}<1, t \geq 0
$$

for some positive constants k_{0} and r_{0}, then, $p(z, t)$ is a subordination chain.
Lemma 1.3. (see [7]) Suppose that the function $\psi: \mathbb{C}^{2} \times U \rightarrow \mathbb{C}$ satisfies the condition

$$
\psi(i x, y ; z) \leq \delta
$$

for real $x, y \leq-n\left(\frac{1+x^{2}}{2}\right)$ and for all $z \in U$. If the function $\varphi(z)=1+a_{n} z^{n}+\ldots$ is analytic in U and

$$
\operatorname{Re}\left\{\psi\left(\varphi(z), z \varphi^{\prime}(z) ; z\right)\right\}>\delta
$$

then $\operatorname{Re}\{\varphi(z)\}>0$ in U.
Lemma 1.4. (see [8]) Let $q \in H[a, 1]$ and $\phi: \mathbb{C}^{2} \rightarrow \mathbb{C}$. Also set

$$
\phi\left(q(z), z q^{\prime}(z)\right) \equiv h(z) \quad(z \in U)
$$

If $P(z, t):=\phi\left(q(z), t z q^{\prime}(z)\right)$ is subordination chain and $p \in H[a, 1] \cap Q(a)$, then

$$
h(z) \prec \phi\left(p(z), z p^{\prime}(z)\right)
$$

implies that

$$
q(z) \prec p(z) .
$$

Furthermore, if $\phi\left(q(z), z q^{\prime}(z)\right)=h(z)$ has a univalent solution $q \in Q(a)$, then q is the best subordinate.

Making use of the principle of subordination between analytic functions, many authors (see for example [4,6-8]) obtained some interesting subordinationpreserving properties for certain subclasses of the class \mathcal{A}_{1}. In the present paper we aim to investigate the subordination and superordination-preserving properties of the integral operator $L_{a}^{\lambda}(b, c, z) f$ in the class \mathcal{A}_{n}. Our results extends many results obtained by other authors (see for example [1-3]). Throughout the following section we assume that $b \in \mathbb{C}, \lambda \geq 0$ and $c \in \mathbb{C}-\{0,-1,-2,-3, \ldots\}$.

2. Main results

Our first result involve the integral operator $L_{a}^{\lambda}(b, c, z)$.
Lemma 2.1. Let f be in the class $\mathcal{A}_{n},\left(L_{a}^{\lambda+1}(b, c, z) f\right)^{\prime}(z) \neq 0$ for all $z \in U$ and $a \in \mathbb{C}$ with $\operatorname{Re}(a)>0$. If

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(L_{a}^{\lambda}(b, c, z) f\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda}(b, c, z) f\right)^{\prime}(z)}\right\}>-\delta \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(L_{a}^{\lambda+1}(b, c, z) f\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda+1}(b, c, z) f\right)^{\prime}(z)}\right\}>0 \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta=n \frac{1+|a|^{2}-\left|1-a^{2}\right|}{4 \operatorname{Re}(a)} \tag{2.3}
\end{equation*}
$$

Proof. Let $f \in \mathcal{A}_{n}$ and

$$
\begin{equation*}
p(z)=1+\frac{z\left(L_{a}^{\lambda+1}(b, c, z) f\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda+1}(b, c, z) f\right)^{\prime}(z)} \tag{2.4}
\end{equation*}
$$

It is easy to see that p is analytic in U and $p(z)=1+b_{n} z^{n}+b_{n+1} z^{n+1}+\ldots$. Taking the logarithmic differentiation in (2.4) and using identity (1.3) in the resulting equation, we get that

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{a+p(z)}=1+\frac{z\left(L_{a}^{\lambda}(b, c, z) f\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda}(b, c, z) f\right)^{\prime}(z)} \tag{2.5}
\end{equation*}
$$

To make use of Lemma 1.3 we consider the function

$$
\psi(r, s)=r+\frac{s}{r+a}+\delta
$$

In view of (2.1) and (2.5) we have $\operatorname{Re}\left\{\psi\left(p(z), z p^{\prime}(z)\right\}>0\right.$. Furthermore for $x \in \mathbb{R}$ and $y<\frac{-n}{2}\left(1+x^{2}\right)$ we have

$$
\operatorname{Re}\{\psi(i x, y)\}=\operatorname{Re}\left\{i x+\frac{y}{a+i x}+\delta\right\}=\frac{y \operatorname{Re}(a)}{|a+i x|^{2}}+\delta \leq-\frac{k}{2|a+i x|^{2}}
$$

where

$$
k=(n \operatorname{Re}(a)-2 \delta) x^{2}-4 \delta \operatorname{Im}(a) x-2 \delta|a|^{2}+n \operatorname{Re}(a) .
$$

But in view of the value of δ given by (2.1), we know that k is a perfect square, which implies that

$$
\operatorname{Re}\{\psi(i x, y)\} \leq 0 \quad\left(x \in \mathbb{R}, y \leq-n \frac{1+x^{2}}{2}\right)
$$

Now by Lemma 1.3, we deduce that

$$
\operatorname{Re}(p(z))>0 \quad(z \in U)
$$

this completes the proof.
Lemma 2.2. Let f be in the class $\mathcal{A}_{n},\left(L_{a}^{\lambda+1}(b, c, z) f\right)^{\prime}(z) \neq 0$ for all $z \in U$ and $a>-1$. If

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(L_{a}^{\lambda}(b, c, z) f\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda}(b, c, z) f\right)^{\prime}(z)}\right\}>-(n+a)+\frac{(1+a)}{4} \tag{2.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left\{\sqrt{\frac{z\left(L_{a}^{\lambda+1}(b, c, z) f\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda+1}(b, c, z) f\right)^{\prime}(z)}+(1+a)}\right\}>\frac{\sqrt{1+a}}{2} \tag{2.7}
\end{equation*}
$$

Proof. Let $f \in \mathcal{A}_{n}$ and set

$$
\begin{equation*}
p(z)=\frac{2}{\sqrt{1+a}} \sqrt{1+a+\frac{z\left(L_{a}^{\lambda+1}(b, c, z) f\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda+1}(b, c, z) f\right)^{\prime}(z)}}-1 \tag{2.8}
\end{equation*}
$$

Then it is clear that p is analytic in U and $p(z)=1+b_{n} z^{n}+b_{n+1} z^{n+1}+\ldots$. Taking the logarithmic differentiation in (2.8) and using identity (1.3) in the resulting equation, we obtain

$$
\begin{equation*}
\frac{(1+a)}{4}(1+p(z))^{2}+2 \frac{z p^{\prime}(z)}{1+p(z)}-a=1+\frac{z\left(L_{a}^{\lambda}(b, c, z) f\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda}(b, c, z) f\right)^{\prime}(z)} \tag{2.9}
\end{equation*}
$$

To make use of Lemma 1.3 we consider the function

$$
\psi(r, s)=\frac{(1+a)}{4}(1+r)^{2}+\frac{2 s}{1+r}+n-\frac{(1+a)}{4}
$$

then by (2.6), (2.9) we have $\operatorname{Re}\left\{\psi\left(p(z), z p^{\prime}(z)\right\}>0\right.$. Furthermore for $x \in \mathbb{R}$ and $y<\frac{-n}{2}\left(1+x^{2}\right)$ we have

$$
\begin{aligned}
\operatorname{Re}\{\psi(i x, y)\} & =\frac{(1+a)}{4}\left(1-x^{2}\right)+2 \operatorname{Re} \frac{y}{1+i x}+n-\frac{(1+a)}{4} \\
& <\frac{(1+a)}{4}\left(1-x^{2}\right)-2 \frac{n\left(1+x^{2}\right)}{2\left(1+x^{2}\right)}+n-\frac{(1+a)}{4} \leq 0
\end{aligned}
$$

Now in view of Lemma 1.3, we get that

$$
\operatorname{Re}(p(z))>0 \quad(z \in U)
$$

this completes the proof.
By putting $\lambda=0, b=c=1$ and $a=0$ in the Lemma 2.2 we obtain the following corollary which is generalization of well known result in the literature.

Corollary 2.3. Let f be in the class \mathcal{A}_{n} and $f(z) \neq 0$ for all $z \in U$. If

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>-n+\frac{1}{4}
$$

then

$$
R e \sqrt{\frac{z f^{\prime}(z)}{f(z)}}>\frac{1}{2}
$$

Theorem 2.4. Let $f, g \in \mathcal{A}_{n}, a \in \mathbb{C}, \operatorname{Re}(a)>0$ and $\left(L_{a}^{\lambda+1}(b, c, z) g\right)^{\prime}(z) \neq 0$. If

$$
\operatorname{Re}\left\{1+\frac{z\left(L_{a}^{\lambda}(b, c, z) g\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda}(b, c, z) g\right)^{\prime}(z)}\right\}>-\delta,
$$

where δ is defined in (2.3). Then the relation

$$
L_{a}^{\lambda}(b, c, z) f \prec L_{a}^{\lambda}(b, c, z) g
$$

implies

$$
L_{a}^{\lambda+1}(b, c, z) f \prec L_{a}^{\lambda+1}(b, c, z) g
$$

Proof. Let F, G and p be defined by

$$
\begin{equation*}
F(z):=L_{a}^{\lambda+1}(b, c, z) f, G(z):=L_{a}^{\lambda+1}(b, c, z) g, p(z):=1+\frac{G^{\prime \prime}(z)}{G^{\prime}(z)} \tag{2.10}
\end{equation*}
$$

In view of Lemma 2.1, we have $\operatorname{Rep}(z)>0$. From definition of G and $L_{a}^{\lambda}(b, c, z) g$ and taking differentiation of G we conclude

$$
\begin{equation*}
G(z)\left(z \frac{G^{\prime}(z)}{G(z)}\right)+a=(1+a) L_{a}^{\lambda}(b, c, z) g(z) \tag{2.11}
\end{equation*}
$$

But $\operatorname{Rep}(z)>0$ implies that the function G is convex (univalent) in U. We can assume, without loss of generality, that G is univalent on \bar{U} and that $G^{\prime}(\zeta) \neq 0(|\zeta|=1)$. To prove $F \prec G$, we let function $L(z, t)$ be defined by

$$
\begin{equation*}
L(z, t)=\frac{a}{1+a} G(z)+\frac{1+t}{1+a} z G^{\prime}(z)=a_{1}(t) z+\ldots \tag{2.12}
\end{equation*}
$$

It is easy to see that $L(z, t)$ is analytic in $|z|<1$, for all $t \geq 0$. It is also continuously differentiable on $[0, \infty)$, for each $|z|<1$. According to (2.11), we have $L(z, 0)=L_{a}^{\lambda}(b, c, z) g(z)$. From (2.12) we obtain

$$
\begin{equation*}
a_{1}(t)=\frac{\partial L}{\partial z}(0, t)=\left[\frac{a}{a+1}+\frac{1+t}{a+1}\right] G^{\prime}(0)=1+\frac{t}{a+1} \neq 0 \tag{2.13}
\end{equation*}
$$

and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$. A simple calculation yields

$$
\operatorname{Re}\left(z \frac{\partial L(z, t) / \partial z}{\partial L(z, t) / \partial t}\right)=\operatorname{Re} a+(1+t) \operatorname{Re}\left(1+\frac{G^{\prime \prime}(z)}{G^{\prime}(z)}\right)=\operatorname{Re} a+(1+t) \operatorname{Rep}(z)>0
$$

Since G is convex and normalized in the unit disk, therefore the following wellknown growth and distortion sharp inequalities (see [9, p.45,48]) are true:

$$
\begin{equation*}
\frac{r}{1+r} \leq|G(z)| \leq \frac{r}{1-r}, \quad \text { if } \quad|z| \leq r \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{r}{(1+r)^{2}} \leq\left|G^{\prime}(z)\right| \leq \frac{r}{(1-r)^{2}}, \quad \text { if } \quad|z| \leq r \tag{2.15}
\end{equation*}
$$

Now by making use of (2.14) and (2.15) in the relations (2.12) and (2.13) we obtain

$$
\begin{aligned}
\frac{|L(z, t)|}{\left|a_{1}(t)\right|} & \leq \frac{|a||G(z)|+(1+t)\left|z G^{\prime}(z)\right|}{|a+1+t|} \\
& \leq \frac{r}{(1-r)^{2}} \frac{|a|+1+t}{|a+1+t|} \leq \frac{r}{(1-r)^{2}} \frac{|a|+1+t}{\operatorname{Re}(a)+1+t}
\end{aligned}
$$

If we define $h(t)=\frac{|a|+1+t}{R e(a)+1+t}$ it is easy to see that h is a decreasing function for $t \geq 0$, and so

$$
h(t) \leq \frac{|a|+1}{\operatorname{Re}(a)+1}
$$

Therefore from above inequality we conclude that

$$
\frac{|L(z, t)|}{\left|a_{1}(t)\right|} \leq \frac{|a|+1}{\operatorname{Re}(a)+1} \frac{r}{(1-r)^{2}} \quad|z| \leq r, t \geq 0
$$

Hence both assumptions of Lemma 1.2 hold. Now by Lemma 1.2 we obtain that $L(z, t)$ is a subordination chain. From Definition 1.1, it follows that

$$
L_{a}^{\lambda}(b, c, z) g(z)=L(z, 0) \prec L(z, t)(t \geq 0)
$$

which implies

$$
\begin{equation*}
L(\zeta, t) \notin L(U, 0)=L_{a}^{\lambda}(b, c, z) g(U)(\zeta \in \partial U, t \geq 0) \tag{2.16}
\end{equation*}
$$

Suppose that $F \nprec G$. Then there exists $z_{0} \in U, \zeta_{0} \in \partial U$ such that $F\left(z_{0}\right)=$ $G\left(\zeta_{0}\right)$ and $F\left(|z|<\left|z_{0}\right|\right) \subset G(U)$. Hence by Jack's Lemma we have $z_{0} F^{\prime}\left(z_{0}\right)=$ $(1+t) \zeta_{0} G^{\prime}\left(\zeta_{0}\right)$ with $t \geq 0$. From (2.12), we obtain

$$
\begin{aligned}
L\left(\zeta_{0}, t\right) & =\frac{a}{1+a} G\left(\zeta_{0}\right)+\zeta_{0} \frac{1+t}{1+a} G^{\prime}\left(\zeta_{0}\right) \\
& =\frac{a}{1+a} F\left(z_{0}\right)+z_{0} \frac{1}{1+a} F^{\prime}\left(z_{0}\right) \\
& =L_{a}^{\lambda}(b, c, z) f\left(z_{0}\right) \in L_{a}^{\lambda}(b, c, z) g(U)
\end{aligned}
$$

But this is contradicts (2.16), and thus we deduce that $F \prec G$.
By setting $b=c=1$ and $\lambda=0$ in the Theorem 2.4 we obtain.
Corollary 2.5. Let $a \in \mathbb{C}, \operatorname{Re}(a)>0$ and $f, g \in \mathcal{A}_{n}$. If

$$
\operatorname{Re}\left(1+\frac{g^{\prime \prime}(z)}{g^{\prime}(z)}\right)>-n \frac{1+|a|^{2}-\left|1-a^{2}\right|}{4 \operatorname{Re}(a)}
$$

then

$$
f \prec g \Rightarrow \frac{1+a}{z^{a}} \int_{0}^{z} t^{a-1} f(t) d t \prec \frac{1+a}{z^{a}} \int_{0}^{z} t^{a-1} g(t) d t .
$$

Corollary 2.6. Let $a>0$ and $f, g \in \mathcal{A}_{n}$. If

$$
\operatorname{Re}\left(1+\frac{z\left(L_{a}^{\lambda}(b, c, z) g\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda}(b, c, z) g\right)^{\prime}(z)}\right)>-\delta_{1}
$$

then

$$
L_{a}^{\lambda}(b, c, z) f \prec L_{a}^{\lambda}(b, c, z) g \Rightarrow L_{a}^{\lambda+1}(b, c, z) f \prec L_{a}^{\lambda+1}(b, c, z) g
$$

where

$$
\delta_{1}=\left\{\begin{array}{cc}
-\frac{a n}{2} & 0<a<1 \\
-\frac{n}{2 a} & a \geq 1
\end{array}\right.
$$

By putting $b=c=1$ and $\lambda=0$ in the Corollary 2.6 we have

Corollary 2.7. Let $a>0$ and $f, g \in \mathcal{A}_{n}$. If

$$
\operatorname{Re}\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right)>-\delta_{1}
$$

then

$$
f \prec g \Rightarrow \frac{1+a}{z^{a}} \int_{0}^{z} t^{a-1} f(t) d t \prec \frac{1+a}{z^{a}} \int_{0}^{z} t^{a-1} g(t) d t
$$

where

$$
\delta_{1}=\left\{\begin{array}{cc}
-\frac{a n}{2} & 0<a<1 \\
-\frac{n}{2 a} & a \geq 1
\end{array}\right.
$$

By using similar arguments as in the proofs of Lemma 2.1 and Theorem 2.4 we obtain the following results and we omit details.

Lemma 2.8. Let f be in the class $\mathcal{A}_{n},\left(L_{a}^{\lambda}(b, c, z) f\right)^{\prime}(z) \neq 0$ for all $z \in U$ and $b \in \mathbb{C}, \operatorname{Re}(b)>1$. If

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(L_{a}^{\lambda}(b+1, c, z) f\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda}(b+1, c, z) f\right)^{\prime}(z)}\right\}>-\delta_{2} \tag{2.17}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z\left(L_{a}^{\lambda}(b, c, z) f\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda}(b, c, z) f\right)^{\prime}(z)}\right\}>0 \tag{2.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{2}=n \frac{1+|b-1|^{2}-|b(2-b)|}{4 \operatorname{Re}(b-1)} \tag{2.19}
\end{equation*}
$$

Theorem 2.9. Let $f, g \in \mathcal{A}_{n},\left(L_{a}^{\lambda}(b, c, z) g\right)^{\prime}(z) \neq 0$ and $b \in \mathbb{C}, \operatorname{Re}(b)>1$. If

$$
\operatorname{Re}\left\{1+\frac{z\left(L_{a}^{\lambda}(b+1, c, z) g\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda}(b+1, c, z) g\right)^{\prime}(z)}\right\}>-\delta_{2}
$$

where δ_{2} is defined in (2.16). Then

$$
L_{a}^{\lambda}(b+1, c, z) f \prec L_{a}^{\lambda}(b+1, c, z) g \Rightarrow L_{a}^{\lambda}(b, c, z) f \prec L_{a}^{\lambda}(b, c, z) g
$$

By putting $b=c=2$ and $\lambda=a=1$ in the Lemma 2.8 we get the following result.

Corollary 2.10. Let $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \in \mathcal{A}_{n}$ satisfies the condition

$$
R e\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\frac{-n}{2}
$$

then the function $h(z)=\frac{2}{z} \int_{0}^{z} f(t) d t=z+\sum_{k=n+1}^{\infty} \frac{2}{k+1} a_{k} z^{k}$ is convex.

Theorem 2.11. Let $f, g \in \mathcal{A}_{n},\left(L_{a}^{\lambda+1}(b, c, z) g\right)^{\prime}(z) \neq 0$ and $a \in \mathbb{C}$ with $\operatorname{Re}(a)>$ 0. If

$$
\operatorname{Re}\left\{1+\frac{z\left(L_{a}^{\lambda}(b, c, z) g\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda}(b, c, z) g\right)^{\prime}(z)}\right\}>-\delta
$$

where δ is defined in (2.3) and if $L_{a}^{\lambda}(b, c, z) f$ is univalent and $L_{a}^{\lambda+1}(b, c, z) f \in$ $Q(0)$ then

$$
L_{a}^{\lambda}(b, c, z) g \prec L_{a}^{\lambda}(b, c, z) f \Rightarrow L_{a}^{\lambda+1}(b, c, z) g \prec L_{a}^{\lambda+1}(b, c, z) f
$$

and $L_{a}^{\lambda+1}(b, c, z) g$ is the best subordinate.
Proof. Let the functions F, G and p be defined by (2.10). From Lemma 2.1 we get

$$
\operatorname{Re}(p(z))>0(z \in U)
$$

Next, to arrive at our desired result, we show that $G \prec F$. For this, let the functions $L(z, t)$ and $\phi(r, s)$ are defined by

$$
\begin{align*}
L(z, t) & =\phi\left(G(z), t z G^{\prime}(z)\right) \tag{2.20}\\
& =\frac{a}{1+a} G(z)+\frac{t}{1+a} z G^{\prime}(z)=a_{1}(t) z+\ldots(z \in U) .
\end{align*}
$$

Then it is easy to see that $L(z, t)$ is analytic in $|z|<1$, for all $t \geq 0$. It is also continuously differentiable on $[0, \infty)$, for each $|z|<1$. From (2.20) we obtain

$$
\begin{equation*}
a_{1}(t)=\frac{\partial L}{\partial z}(0, t)=\left[\frac{a}{a+1}+\frac{t}{a+1}\right] G^{\prime}(0)=\frac{a+t}{a+1} \neq 0 \tag{2.21}
\end{equation*}
$$

and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$. A simple calculation yields

$$
\operatorname{Re}\left(z \frac{\partial L(z, t) / \partial z}{\partial L(z, t) / \partial t}\right)=\operatorname{Re} a+t \operatorname{Re}\left(1+\frac{G^{\prime \prime}(z)}{G^{\prime}(z)}\right)=\operatorname{Re} a+t \operatorname{Rep}(z)>0
$$

Since G is convex and normalized in the unit disk, therefore by using similar argument of Theorem 2.4 we obtain

$$
\begin{aligned}
\frac{|L(z, t)|}{\left|a_{1}(t)\right|} & \leq \frac{|a||G(z)|+t\left|z G^{\prime}(z)\right|}{|a+t|} \\
& \leq \frac{r}{(1-r)^{2}} \frac{|a|+t}{|a+t|} \leq \frac{r}{(1-r)^{2}} \frac{|a|+t}{\operatorname{Re}(a)+t}
\end{aligned}
$$

If we define $k(t)=\frac{|a|+t}{\operatorname{Re}(a)+t}$ it is easy to see that k is a decreasing function for $t \geq 0$, and so

$$
k(t) \leq \frac{|a|+1}{\operatorname{Re}(a)+1}
$$

Therefore from above inequality we conclude that

$$
\frac{|L(z, t)|}{\left|a_{1}(t)\right|} \leq \frac{|a|}{\operatorname{Re}(a)} \frac{r}{(1-r)^{2}} \quad|z| \leq r, t \geq 0
$$

Hence both assumptions of Lemma 1.2 hold. Now by Lemma 1.2 we obtain that $L(z, t)$ is a subordination chain. Now following the same as proof of Theorem 2.4 we conclude $G \prec F$ and Moreover, G is best subordinate.

By suitably combining Theorems 2.4 and 2.11 we obtain the following Sandwich type theorem.

Corollary 2.12. Let $f, g_{k} \in \mathcal{A}_{n}(k=1,2)$ and $a \in \mathbb{C}$ with $\operatorname{Re}(a)>0$. If

$$
\operatorname{Re}\left(1+\frac{z\left(L_{a}^{\lambda}(b, c, z) g_{k}\right)^{\prime \prime}(z)}{\left(L_{a}^{\lambda}(b, c, z) g_{k}\right)^{\prime}(z)}\right)>-\delta
$$

where δ is given by (2.3) and if the function $\left(L_{a}^{\lambda}(b, c, z) f\right)(z)$ is univalent and $\left(L_{a}^{\lambda+1}(b, c, z) f\right)(z) \in Q(0)$, then

$$
L_{a}^{\lambda}(b, c, z) g_{1} \prec L_{a}^{\lambda}(b, c, z) f \prec L_{a}^{\lambda}(b, c, z) g_{2}
$$

implies

$$
L_{a}^{\lambda+1}(b, c, z) g_{1} \prec L_{a}^{\lambda+1}(b, c, z) f \prec L_{a}^{\lambda+1}(b, c, z) g_{2}
$$

By setting $b=c=1$ and $\lambda=0$ in the Corollary 2.12 we obtain
Corollary 2.13. Let $a \in \mathbb{C}, \operatorname{Re}(a)>0$ and $f, g_{k} \in \mathcal{A}_{n}(k=1,2)$. If f is univalent and $L_{a}^{1}(1,1, z) f \in Q(0)$. Then

$$
\operatorname{Re}\left(1+\frac{z g_{k}^{\prime \prime}(z)}{g_{k}^{\prime}(z)}\right)>-n \frac{1+|a|^{2}-\left|1-a^{2}\right|}{4 \operatorname{Re}(a)}
$$

implies
$g_{1} \prec f \prec g_{2} \Rightarrow \frac{1+a}{z^{a}} \int_{0}^{z} t^{a-1} g_{1}(t) d t \prec \frac{1+a}{z^{a}} \int_{0}^{z} t^{a-1} f(t) d t \prec \frac{1+a}{z^{a}} \int_{0}^{z} t^{a-1} g_{2}(t) d t$.
Corollary 2.14. Let $a>0$ and $f, g_{k} \in \mathcal{A}_{n}, k=1,2$. If f is univalent and $L_{a}^{1}(1,1, z) f \in Q(0)$. Then

$$
\operatorname{Re}\left(1+\frac{z g_{k}^{\prime \prime}(z)}{g_{k}^{\prime}(z)}\right)>\left\{\begin{array}{cc}
-\frac{a n}{2} & 0<a<1 \\
-\frac{n}{2 a} & a \geq 1
\end{array}\right.
$$

implies
$g_{1} \prec f \prec g_{2} \Rightarrow \frac{1+a}{z^{a}} \int_{0}^{z} t^{a-1} g_{1}(t) d t \prec \frac{1+a}{z^{a}} \int_{0}^{z} t^{a-1} f(t) d t \prec \frac{1+a}{z^{a}} \int_{0}^{z} t^{a-1} g_{2}(t) d t$.

Acknowledgments

The authors would like to thank the referee for their careful reading and making some valuable comments which have improved the presentation of this paper.

References

[1] R. Aghalary, A. Ebadian and Z- G. Wang, Subordination and superordination results involving certain convolution operators, Bull. Iranian Math. Soc. 36 (2010), no. 1, 137147.
[2] M. K. Aouf and T. Bulboaca, Subordination and superordination properties of multivalent functions defined by certain integral operator, J. Franklin Institute 347 (2010), no. 3, 641-653.
[3] N. E. Cho, O. S. Kwon, S. Owa and H. M. Srivastava, A class of integral operators preserving subordination and superordination for meromorphic functions, Appl. Math. comput. 193 (2007), no. 2, 463-474.
[4] T. Bulboaca, M. K. Aouf and R. M. Ashwah, Subordination properties of multivalent functions defined by certain integral operator, Banach J. Math. Anal. 6 (2012), no. 2. 69-85.
[5] Y. Komatu, Analytiycal prologation of a family of operators, Math.(Cluj) 32 (1990), 141-145.
[6] S. S. Miller and P. T. Mocanu, Differential subordination and univalent functions, Michigan Math. J. 28 (1981) 157-171.
[7] S. S. Miller and P. T. Mocanu, Differential subordinations Monographs and Textbooks in pure and Applied Mathematic, 225, Marcel Dekker, Inc., New York, 2000.
[8] S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl. 48 (2003), no. 10, 815-826.
[9] C. Pommerenke, Univalent functions, Vanderhoeck and Rupercht, Gottingen, 1975.
(Rasoul. Aghalary) Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran

E-mail address: raghalary@yahoo.com and r.aghalary@urmia.ac.ir
(Ali Ebadian) Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran

E-mail address: a.ebadian@urmai.ac.ir
(Mastore Mafakheri) Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran

E-mail address: M.Mafakheri85@yahoo.com

[^0]: Article electronically published on October 15, 2015.
 Received: 1 May 2014, Accepted: 18 July 2014.

 * Corresponding author.

