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Abstract. In this paper, we consider singular and degenerate parabolic

equations

ut = (xαux)x + um(x0, t)v
n(x0, t), vt = (xβvx)x + uq(x0, t)v

p(x0, t),

in (0, a) × (0, T ), subject to null Dirichlet boundary conditions, where
m,n, p, q ≥ 0, α, β ∈ [0, 2) and x0 ∈ (0, a). The optimal classification

of non-simultaneous and simultaneous blow-up solutions is determined.
Additionally, we obtain blow-up rates and sets for the solutions. The
singular rates for the derivation of the solutions are given.

Keywords: singular and degenerate parabolic equations, blow-up clas-
sification, simultaneous blow-up rates.
MSC(2010): Primary: 35K55; Secondary: 35K57; 35K65.

1. Introduction

In this note, we consider the singular and degenerate parabolic system
ut = (xαux)x + um(x0, t)v

n(x0, t), (x, t) ∈ (0, a)× (0, T ),
vt = (xβvx)x + uq(x0, t)v

p(x0, t), (x, t) ∈ (0, a)× (0, T ),
u(0, t) = v(0, t) = u(a, t) = v(a, t) = 0, t ∈ (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, a),

(1.1)

where α, β ∈ [0, 2) andm,n, p, q ≥ 0; x0 is any fixed point in (0, a); T represents
the maximal existence time of the solutions; u0(x), v0(x) ∈ C2+γ [0, a] for γ ∈
(0, 1). The system, like (1.1), describes some heat conduction corresponding to
the geometric shape of the body [4]. The coefficients of uxx, vxx and ux, vx may
tend to 0 or +∞ as x→ 0, which is called degenerate or singular, respectively.

For the system (1.1) with α = β = 0, Li and Wang [11], Zhao and Zheng [16]
discussed the existence of simultaneous blow-up solutions (that is, u and v
blow up at the same time in L∞ norm) and even the uniform blow-up profile,
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respectively. Moreover, the boundary layer sizes are given in some exponent
regions. The parabolic equations with power or exponential sources also can
be seen from [1,9, 12, 16] and the papers cited therein.

The singular and degenerate parabolic system
xγ1ut = (xαux)x + f, (x, t) ∈ (0, a)× (0, T ),
xγ2vt = (xβvx)x + g, (x, t) ∈ (0, a)× (0, T ),
u(0, t) = v(0, t) = u(a, t) = v(a, t) = 0, t ∈ (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, a),

(1.2)

has aroused much attention in recent years. For the scalar cases of (1.2),
the readers refer to [2, 5, 7, 14] for γ1 > 0, α ∈ [0, 2), f = up (p > 1) or

equ (q > 0), and to [3, 6, 10, 19] for γ1 > 0, α ∈ [0, 2), f =

∫ a

0

up(x, t)dx

(p > 1), respectively. For the coupled system (1.2), one refers to [8, 17] for
the existence and uniqueness of classical solutions and the blow-up criteria
of positive solutions. Especially, Zhou and Mu [18] considered the parabolic
equations (1.2) with

γ1 = γ2 = 0, α, β ∈ [0, 2),

f = um(x0(t), t)v
n(x0(t), t), g = uq(x0(t), t)v

p(x0(t), t),

where x0(t) : R
+ → (0, a) is Hölder continuous. They proved that, if m > 1 or

p > 1 or nq > (m−1)(p−1), the classical solutions blow up for large initial data
and remain global for small initial data (see Theorem 1.2 of [18]), respectively.
Conversely, for m < 1, p < 1, and nq < (m− 1)(p− 1), all solutions are global
(see Theorem 1.1 of [18]). Moreover, under the assumption

(H) α = β ∈ (0, 1), (xαu′0(x))
′ ≤M1, (x

αv′0(x))
′ ≤M2, x ∈ (0, a),

for some positive constants M1 and M2. Three results are obtained:

• Theorem 1.3: Suppose that u and v blow up simultaneously and (H)
holds. The blow-up set is any closed subset of (0, a).

• Theorem 1.4: Suppose (H) holds. If q ≥ m− 1 > 0 and n ≥ p− 1 > 0,
or q > m − 1, n > p − 1, and nq > (m − 1)(p − 1), u and v blow up
simultaneously for large initial data.

• Theorem 1.5: Suppose (H) and Theorem 1.4 hold. The uniform blow-
up profiles are obtained with precise coefficients for simultaneous blow-
up solutions. It is interesting that such results are same with the ones
of [11,16].

To our knowledge, the system (1.1) has not been discussed before. Consid-
ering the results of [18] with x0(t) ≡ x0, one may obtain parts of the results on
simultaneous blow-up for the special case α = β ∈ (0, 1). Since parabolic sys-
tem (1.1) is degenerate and singular, the traditional Green’s identity method
(see, for example, [9]) fails to discuss the classification of simultaneous versus



1197 Liu and Li

non-simultaneous blow-up of (1.1). Inspired by [9], we will use some new meth-
ods, which are also different from the ones used in [18], to study the optimal
classification for all of the blow-up solutions, and the blow-up rates and sets.

This paper is arranged as follows. In the next section, we obtain the critical
point for non-simultaneous versus simultaneous blow-up of (1.1) is

(q −m+ 1, n− p+ 1) = (0, 0).

At Section 3, the blow-up rates and sets are given. It is interesting that such
results for the singular and degenerate parabolic system (1.1) are the same with
the ones for the semilinear parabolic equations

ut = uxx + um(x0, t)v
n(x0, t),

vt = vxx + uq(x0, t)v
p(x0, t), (x, t) ∈ (0, a)× (0, T ),

subject to homogeneous Dirichlet boundary conditions.

2. Critical point

The local existence of classical solutions and the comparison principle for
system (1.1) can be obtained by the similar procedure of Theorem 2.6 and
Lemma 2.3 of [18], respectively. There exist blow-up solutions of (1.1) if m > 1
or p > 1 or nq > (m− 1)(p− 1).

Define the set of initial data of (1.1) as

V0 =
{
(xαu′0)

′ + (1− εφ1)u
m
0 (x0)v

n
0 (x0) ≥ 0,

(xβv′0)
′ + (1− εφ2)u

q
0(x0)v

p
0(x0) ≥ 0, ε ∈ (0, 1),

(xαu′0)
′ ≤M, (xβv′0)

′ ≤M, x ∈ (0, a)
}
,

where M is a positive constant; φ1(x) and φ2(x) are the first eigenfunctions of{
−(xαφ′

1(x))
′ = λ1φ1(x), x ∈ (0, a),

φ1(0) = φ1(a) = 0;
(2.1)

and

{
−(xβφ′

2(x))
′ = λ2φ2(x), x ∈ (0, a),

φ2(0) = φ2(a) = 0,
(2.2)

respectively, normalized by ∥φ1∥∞ = ∥φ2∥∞ = 1. The conditions in V0 are
natural for the localized parabolic equations. The similar conditions also can
be found in [9, 11], etc.

The main results of the present paper are given as follows.

Theorem 2.1. Assume (u0, v0) ∈ V0.

(i) There exist non-simultaneous blow-up solutions if and only if

m > q + 1 (for u blowing up alone) or p > n+ 1 (for v blowing up alone).
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(ii) Any blow-up is simultaneous if and only if

m ≤ q + 1 and p ≤ n+ 1.

(iii) Any blow-up is non-simultaneous if and only if

m > q + 1 and p ≤ n+ 1 (for u blowing up alone),

or m ≤ q + 1 and p > n+ 1 (for v blowing up alone).

(iv) Both simultaneous and non-simultaneous blow-up may occur if and only
if

m > q + 1 and p > n+ 1.

It can be checked that Theorem 2.1-(ii) holds by using case (i) directly.
The results complete the ones of Theorem 1.4 in [18] with x0(t) = x0, and
extend α, β ∈ (0, 1) to α, β ∈ [0, 2). Moreover, the theorem shows another
exponent region {m > q + 1, p > n + 1}, where simultaneous blow-up may
occur. The critical point for non-simultaneous and simultaneous blow-up is
(q −m+ 1, n− p+ 1) = (0, 0).

Now, we give the proof of Theorem 2.1. In [9], the relationship between
u and v plays an important role, built by using the method developed from
the Souplet’s method [15]. It can be found in [18] that such relationship holds
under the condition α = β ∈ (0, 1). In this paper, we will use new methods
(different from [9,18]) to establish such relationship for α, β ∈ [0, 2).

Using the methods in Lemma 4.1 of [18], we obtain the solution (u, v) satisfies
that

(xαux(x, t))x ≤M, (xβvx(x, t))x ≤M, (x, t) ∈ (0, a)× (0, T ),(2.3)

provided that (xαu′0)
′, (xβv′0)

′ ≤ M in (0, a). For the blow-up solutions, there
exists some constant C > 0 such that

ut = (xαux)x + um(x0, t)v
n(x0, t)

≤ Cum(x0, t)v
n(x0, t), (x, t) ∈ (0, a)× (0, T ),(2.4)

vt = (xβvx)x + uq(x0, t)v
p(x0, t)

≤ Cuq(x0, t)v
p(x0, t), (x, t) ∈ (0, a)× (0, T ).(2.5)

In the sequel, we use the notations C and c to denote positive constants which
can be different from line to line.

We introduce a lemma to show the converse inequalities of (2.4) and (2.5).
Define two function ϕ and ψ as the classical solutions of the following two
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problems, respectively, ϕt = (xαϕx)x, (x, t) ∈ (0, a)× (0, T ),
ϕ(0, t) = ϕ(a, t) = 0, t ∈ (0, T ),
ϕ(x, 0) = φ1(x), x ∈ (0, a),

(2.6)

 ψt = (xβψx)x, (x, t) ∈ (0, a)× (0, T ),
ψ(0, t) = ψ(a, t) = 0, t ∈ (0, T ),
ψ(x, 0) = φ2(x), x ∈ (0, a),

(2.7)

where φ1 and φ2 are defined in (2.1) and (2.2), respectively; α, β ∈ [0, 2). In
fact, the existence and uniqueness of the classical solutions can be obtained by
the similar method of [18].

Lemma 2.2. For small constant ε > 0, there are

ut(x, t) ≥ εϕ(x, t)um(x0, t)v
n(x0, t), (x, t) ∈ (0, a)× (0, T ),(2.8)

vt(x, t) ≥ εψ(x, t)uq(x0, t)v
p(x0, t), (x, t) ∈ (0, a)× (0, T ),(2.9)

where ϕ and ψ are defined in (2.6) and (2.7), respectively.

Proof. Define

J(x, t) = ut(x, t)− εϕ(x, t)um(x0, t)v
n(x0, t),

K(x, t) = vt(x, t)− εψ(x, t)uq(x0, t)v
p(x0, t).

By a series computation and for small ε > 0, we get

Jt − (xαJx)x = utt − (xαutx)x

− εϕmum−1(x0, t)v
n(x0, t)ut(x0, t)

− εϕnum(x0, t)v
n−1(x0, t)vt(x0, t)

− εϕtu
m(x0, t)v

n(x0, t) + ε(xαϕx)xu
m(x0, t)v

n(x0, t)

≥ 0, (x, t) ∈ (0, a)× (0, T ),

similarly,

Kt − (xβKx)x ≥ 0, (x, t) ∈ (0, a)× (0, T ).

It can be checked that

J(0, t) = K(0, t) = J(a, t) = K(a, t) = 0, t ∈ (0, T ),

J(x, 0) = (xαu′0)
′ + (1− εφ1)u

m
0 (x0)v

n
0 (x0) ≥ 0, x ∈ (0, a),

K(x, 0) = (xβv′0)
′ + (1− εφ2)u

q
0(x0)v

p
0(x0) ≥ 0, x ∈ (0, a).

By the comparison principle (see Lemma 2.3 of [18]), we obtain (2.8) and (2.9).
□

By the way, due to (xαu′0)
′+um0 (x0)v

n
0 (x0) ≥ 0 and (xβv′0)

′+uq0(x0)v
p
0(x0) ≥

0, the classical components u and v are nondecreasing in t by the comparison
principle.
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Since (2.8) holds and by integration, there exists some positive constant Cu

such that

u(x0, t) ≤ C
− 1

m−1
u (T − t)−

1
m−1 for m > 1.(2.10)

Even if u do not blow up, the upper bound estimate (2.10) still holds.
Proof of Theorem 2.1-(i). Without loss of generality, we consider the case for
u blowing up alone.

Assume m > q+ 1. Let (ũ0, ṽ0) be a pair of initial data in V0 such that the
solution of (1.1) blows up. Fix v0 = ṽ0 and M0 > ∥v0∥∞. Let u0 ≥ ũ0 be so
large such that the blow-up time T satisfies

M0 ≥ ∥v0∥∞ +MT +
m− 1

m− q − 1
C

− q
m−1

u Mp
0T

m−q−1
m−1 ,

with M defined in (2.3).
Introduce an auxiliary problem

v̄t = (xβ v̄x)x + C
− q

m−1
u Mp

0 (T − t)−
q

m−1 ,
(x, t) ∈ (0, a)× (0, T ),

v̄(0, t) = v̄(a, t) = 0, t ∈ (0, T ),
v̄(x, 0) = v0(x), x ∈ (0, a).

(2.11)

Integrating the equation of (2.11) from 0 to t and using (2.3), we have∫ t

0

v̄t(x, t)dt =

∫ t

0

(xβ v̄x)x(x, t)dt+ C
− q

m−1
u Mp

0

∫ t

0

(T − t)−
q

m−1 dt

≤MT +
m− 1

m− q − 1
C

− q
m−1

u Mp
0T

m−q−1
m−1 ,

hence,

v̄(x, t) ≤ ∥v0∥∞ +MT +
m− 1

m− q − 1
C

− q
m−1

u Mp
0T

m−q−1
m−1 ≤M0.

So v̄ satisfies that

v̄t ≥ (xβ v̄x)x + C
− q

m−1
u (T − t)−

q
m−1 v̄p(x0, t), (x, t) ∈ (0, a)× (0, T ).

Combining (1.1) with the estimate (2.10), we have

vt ≤ (xβvx)x + C
− q

m−1
u (T − t)−

q
m−1 vp(x0, t), (x, t) ∈ (0, a)× (0, T ),

and hence v ≤ v̄ ≤M0 by the comparison principle.
Next, assume that u blows up at time T and v still remains bounded. Using

(2.4), we obtain

ut(x0, t) ≤ Cum(x0, t), t ∈ (0, T ).

By integration, we have u(x0, t) ≥ c(T − t)−
1

m−1 . By (2.9), v satisfies that

vt(x, t) ≥ cvp0(x0)(T − t)−
q

m−1 , t ∈ [0, T ),
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and consequently,

v(x, t) ≥ cvp0(x0)

∫ t

0

(T − τ)−
q

m−1 dτ + v0(x0).

The boundedness of v requires that m > q + 1. □
Proof of Theorem 2.1-(iii). Without loss of generality, treat the case for v
blowing up alone. Theorem 2.1-(i) implies non-simultaneous blow-up for v
blowing up alone requires that p > n+1, and u remaining bounded yields that
m ≤ q + 1. Assume p > n + 1 and m ≤ q + 1. Due to (2.4), (2.5), (2.8), and
(2.9), there exists some small constant δ > 0 such that

δuq−m(x0, t)ut(x0, t) ≤ vn−p(x0, t)vt(x0, t) ≤
1

δ
uq−m(x0, t)ut(x0, t), t ∈ [0, T ).

(2.12)

We only need to prove that any simultaneous blow-up cannot occur. Otherwise,
if p > n + 1 with m < q + 1, then by integrating the first inequality of (2.12)
from 0 to t, one gets

cuq+1−m(x0, t) ≤ C − v−(p−n−1)(x0, t)/(p− n− 1),

a contradiction to simultaneous blow-up; if p > n+1 with m = q+1, a similar
contradiction also can be obtained. □

Proof of Theorem 2.1-(iv). By using the idea of Lemma 3 in [9] and combining
the methods in the proof of Theorem 2.1-(i), we obtain the set of (u0, v0) in
V0 such that u (v) blows up while v (u) remains bounded is open in L∞-
topology. Similarly to the discussion of Theorem 3 of [9], one can obtain both
simultaneous and non-simultaneous blow-up may occur if m > q + 1 and p >
n+ 1.

Now show the coexistence of simultaneous and non-simultaneous blow-up
of solutions does not holds without m > q + 1 and p > n + 1. Indeed, the
non-simultaneous blow-up with u (or v) blowing up alone requires m > q + 1
(or p > n + 1) by the item (i) of the theorem, while the only simultaneous
blow-up needs p ≤ n+ 1 and m ≤ q + 1 by (ii), and the sole non-simultaneous
blow-up requires p ≤ n+ 1 or m ≤ q + 1 by (iii). □

3. Blow-up rates and sets

Integrating the equations of (1.1) from 0 to t, we have, for example,

u(x, t) = u0(x) +

∫ t

0

(xαux)xdt+

∫ t

0

um(x0, t)v
n(x0, t)dt.

Due to the blow-up of u and (xαux)x ≤ M , blow-up occurs everywhere in
(0, a).
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It can be understood that the non-simultaneous blow-up rates are equivalent

to the related scalar cases, for example, u(x, t) = O((T − t)−
1

m−1 ) for u blowing
up alone.

The following theorem gives all possible simultaneous blow-up rates for (1.1).
Due to Theorem 2.1, there are two exponent regions, where simultaneous blow-
up may occur,

{m ≤ q + 1, p ≤ n+ 1}; {m > q + 1, p > n+ 1}.

We divide the blow-up rates of (u, v) into four subcases in the following theorem.

Theorem 3.1. Assume (u0, v0) ∈ V0.

(i) If m > q + 1 and p > n + 1 with simultaneous blow-up occurring, or
m < q + 1 and p < n+ 1, then{

u(x0, t) = O
(
(T − t)−

n+1−p
nq−(m−1)(p−1)

)
,

v(x0, t) = O
(
(T − t)−

q+1−m
nq−(m−1)(p−1)

)
.

(3.1)

(ii) If m < q + 1 and p = n+ 1, then{
uq+1−m(x0, t) = O

(
| log(T − t)|

)
,

vp−1(x0, t)(log v(x0, t))
q

q+1−m = O
(
(T − t)−1

)
.

(3.2)

(iii) If m = q + 1 and p < n+ 1, then

um−1(x0, t)(log u(x0, t))
n

n+1−p = O
(
(T − t)−1

)
,

vn+1−p(x0, t) = O
(
| log(T − t)|

)
.

(iv) If m = q + 1 and p = n+ 1, then

log u(x0, t) = O
(
| log(T − t)|

)
, log v(x0, t) = O

(
| log(T − t)|

)
.

Proof. Inspired by [20] and followed by the similar procedure of [13], we obtain
the simultaneous blow-up rates in Theorem 3.1. In fact, the key relationships
between u and v can be established at the point x = x0 by using the inequalities
(2.4), (2.5), (2.8) and (2.9). □

We also determine the blow-up rates for ut and vt. It is so interesting that,
as u and v blow up simultaneously, ut and vt also blow up simultaneously, and
the blow-up sets of ut and vt are the whole interval (0, a).

Theorem 3.2. Assume (u0, v0) ∈ V0.

(i) If m > q + 1 and p > n + 1 with simultaneous blow-up happening, or
m < q + 1 and p < n+ 1, then

ut(x, t) = O
(
(T − t)

−m(n+1−p)−n(q+1−m)
nq−(m−1)(p−1)

)
,

vt(x, t) = O
(
(T − t)

−q(n+1−p)−p(q+1−m)
nq−(m−1)(p−1)

)
.
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Consequently,

u(x, t) = O
(
(T − t)−

n+1−p
nq−(m−1)(p−1)

)
, v(x, t) = O

(
(T − t)−

q+1−m
nq−(m−1)(p−1)

)
.

(ii) If m < q + 1 and p = n+ 1, then

ut(x, t) = O
(
| log(T − t)|

m−q
q+1−m (T − t)−1

)
,

vt(x, t) = O
(
| log(T − t)|

−q
n(q+1−m) (T − t)−

p
n

)
.

(iii) If m = q + 1 and p < n+ 1, then

ut(x, t) = O
(
| log(T − t)|

−n
q(n+1−p) (T − t)−

m
q
)
,

vt(x, t) = O
(
| log(T − t)|

p−n
n+1−p (T − t)−1

)
.

(iv) If m = q + 1 and p = n+ 1, then

log ut(x, t) = O
(
| log(T − t)|

)
, log vt(x, t) = O

(
| log(T − t)|

)
.

Proof. (i) By using the inequalities (2.4), (2.5), (2.8) and (2.9), we get from
(3.1) that

ut(x, t) ∼ um(x0, t)v
n(x0, t) ∼ (T − t)

−m(n+1−p)−n(q+1−m)
nq−(m−1)(p−1) ,

vt(x, t) ∼ uq(x0, t)v
p(x0, t) ∼ (T − t)

−q(n+1−p)−p(q+1−m)
nq−(m−1)(p−1) .

The notation f ∼ g denote there exist positive constants c and C such that
cf ≤ g ≤ Cf .

(ii) If m < q + 1 and p = n + 1, then there exists some constant δ ∈ (0, 1)
such that

δ log v(x0, t) ≤ uq+1−m(x0, t) ≤
1

δ
log v(x0, t), t ∈ [0, T ).(3.3)

Due to (3.2) and (3.3), there are

ut(x, t) ∼ um(x0, t)v
n(x0, t) ∼ | log(T − t)|

m−q
q+1−m (T − t)−1,

vt(x, t) ∼ uq(x0, t)v
p(x0, t) ∼ | log(T − t)|

−q
n(q+1−m) (T − t)−

p
n .

Case (iii) can be proved similarly.
(iv) If m = q + 1 and p = n + 1, then there are some constants δ ∈ (0, 1)

and T0 ∈ (0, T ) such that

δ log v(x0, t) ≤ log u(x0, t) ≤
1

δ
log v(x0, t), t ∈ [T0, T ).(3.4)

Combining (2.4), (2.5), (2.8), and (2.9) with (3.4), we get

log ut(x, t) ∼ log[um(x0, t)v
n(x0, t)] ∼ | log(T − t)|,

log vt(x, t) ∼ log[uq(x0, t)v
p(x0, t)] ∼ | log(T − t)|.

The proof is completed. □
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