ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 5, pp. 1207-1211

Title:

Automatic continuity of surjective *n*-homomorphisms on Banach algebras

Author(s):

M. Eshaghi Gordji, A. Jabbari and E. Karapınar

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 41 (2015), No. 5, pp. 1207–1211 Online ISSN: 1735-8515

AUTOMATIC CONTINUITY OF SURJECTIVE *n*-HOMOMORPHISMS ON BANACH ALGEBRAS

M. ESHAGHI GORDJI, A. JABBARI* AND E. KARAPINAR

(Communicated by Antony To-Ming Lau)

ABSTRACT. In this paper, we show that every surjective *n*-homomorphism (*n*-anti-homomorphism) from a Banach algebra A into a semisimple Banach algebra B is continuous.

Keywords: Banach algebra, *n*-homomorphism, semisimple algebra. MSC(2010): Primary: 46H05.

1. Introduction

Let A and B be complex Banach algebras. The linear mapping $\theta: A \longrightarrow B$ is called an *n*-homomorphism, if $\theta(a_1a_2\cdots a_n) = \theta(a_1)\theta(a_2)\cdots \theta(a_n)$, for all $a_1a_2\cdots a_n \in A$. A linear mapping $\theta : A \longrightarrow B$ is called an *n*-antihomomorphism if $\theta(a_1a_2\cdots a_n) = \theta(a_n)\cdots \theta(a_2)\theta(a_1)$, for all $a_1a_2\cdots a_n \in A$. The algebra B is called factorizable if for every $a \in B$ there are $b, c \in B$ such that a = bc. The concept of *n*-homomorphisms was studied for complex algebras by Hejazian, Mirzavaziri, and Moslehian [6]. Bračič and Moslehian [1] investigated. 3-homomorphisms on Banach algebras with bounded approximate identities and established that every involution preserving 3-homomorphism between C^* -algebras is continuous and norm decreasing. It is due to Park and Trout that every *-preserving *n*-homomorphism between C^* -algebras is continuous [7]. Automatic continuity of *n*-homomorphisms considered for factorizable Banach algebras in [4]. A similar problem was studied for topological algebras in [5]. A linear mapping $\theta: A \longrightarrow B$ is called an *n*-Jordan homomorphism if $\theta(a^n) = [\theta(a)]^n$ for all $a \in A$. Some results about automatic continuity of n-Jordan homomorphisms on Banach algebras and C^* -algebras are investigated in [3].

O2015 Iranian Mathematical Society

Article electronically published on October 17, 2015.

Received: 2 March 2013, Accepted: 21 July 2014.

^{*}Corresponding author.

¹²⁰⁷

Let A be a Banach algebra. If A has a unit e_A , the spectrum of $a \in A$ is defined by

$$sp_A(a) = \{\lambda \in \mathbb{C} : \lambda e_A - a \notin Inv A\},\$$

and the spectral radius of a is defined as follows

$$\rho_A(a) = \sup\{|\lambda| : \lambda \in sp_A(a)\},\$$

where InvA is the set of all invertible elements of A.

If A is non-unital, we consider the quasi product " \diamond " on A as follows

$$a \diamond b = a + b - ab \qquad (a, b \in A).$$

An element $a \in A$ is called left (right) quasi-invertible if there is $b \in A$ such that $b \diamond a = 0$ ($a \diamond b = 0$). Then an element $a \in A$ is quasi-invertible if it is both left and right quasi-invertible. The set of all quasi-invertible elements of A denoted by q - InvA.

Let A be a non-unital (complex) Banach algebra. Then $A^{\#} = A \oplus \mathbb{C}$ is a unital Banach algebra with the product and norm given by

$$(a, \alpha)(b, \beta) = (ab + \beta a + \alpha b, \alpha \beta),$$
$$\|(a, \alpha)\| = \|a\| + |\alpha|$$

for all $a, b \in A$ and $\alpha, \beta \in \mathbb{C}$. We denote the identity of $A^{\#}$ by $e_{A^{\#}}(=(0,1))$.

Let A be a non-unital (complex) Banach algebra. Then, obviously for every $x, y \in A, a \diamond b = 0$ if and only if

$$(e_{A^{\#}} - a)(e_{A^{\#}} - b) = e_{A^{\#}}.$$

The definition of spectrum in the non-unital Banach algebras is different from the unital case, and we define it as follows

$$sp_A(a) = \{0\} \cup \{\lambda \in \mathbb{C} \setminus \{0\} : \frac{1}{\lambda}a \notin q - InvA\},\$$

and it is easy to see that $sp_A(a) = sp_{A^{\#}}((a, 0))$ and $\rho_A(a) = \rho_{A^{\#}}((a, 0))$. By $\partial sp(a)$, we mean the boundary set of sp(a). The radical of A, denoted by Rad(A), is the intersection of all maximal left ideals of A. The algebra A is called semisimple if $Rad(A) = \{0\}$ (for more details see Section 1.5 of [2]). If A is a semisimple Banach algebra, given $a \in A$, if axy = 0 (or xay = 0 or xya = 0) for all $x, y \in A$, then it is easy to show that a = 0.

2. Automatic continuity

In this section we extend Johnson's techniques [8] for n-homomorphism on non-unital Banach algebras. Our results differ from those obtained in [4, 5, 8] and [7].

We state [8, Lemma 1], which is valid for non-unital Banach algebras.

Lemma 2.1. ([8, Lemma 1]) Let A be a Banach algebra, $a \in A$, and suppose that $\rho_A(a_1a) = 0$ for all $a_1 \in A$. Then $a \in Rad(A)$.

We can generalize this result for non-unital Banach algebras as follows:

Lemma 2.2. Let A be a Banach algebra. Then

- (1) given $a \in A$ satisfies $\rho_A(a_1a_2\cdots a_{n-1}a) = 0$ for all $a_1, a_2, \ldots, a_{n-1} \in A$, then $a \in Rad(A)$.
- (2) given $a \in A$ satisfies $\rho_A(aa_1a_2\cdots a_{n-1}) = 0$ for all $a_1, a_2, \ldots, a_{n-1} \in A$, then $a \in Rad(A)$.

Proof. (1) Suppose that $\rho_A(a_1a_2\cdots a_{n-1}a) = 0$ for all $a_1, a_2, \ldots, a_{n-1} \in A$. By Lemma 2.1, $a_2\cdots a_{n-1}a \in Rad(A)$. Since the radical of any normed algebra is a topologically nil ideal ([9, Theorem 2.3.4]), $\rho_A(a_2\cdots a_{n-1}) = 0$ for all $a_2, \ldots, a_{n-1} \in A$. Repeating the argument we get $\rho_A(a_{n-1}a) = 0$ for all $a_{n-1} \in A$, which, by Lemma 2.1, assures that $a \in Rad(A)$. Part (2) needs a similar argument.

Let $T: A \longrightarrow B$ be a linear mapping between Banach algebras. The separating space of T is defined by

 $\mathfrak{G}(T) = \{ b \in B : \text{there exists } (a_n) \subseteq A \text{ such that } a_n \to 0 \text{ and } T(a_n) \longrightarrow b \}.$

We know that $\mathfrak{G}(T)$ is a closed linear subspace of B. By the closed graph theorem, T is continuous if and only if $\mathfrak{G}(T) = \{0\}$ ([10, Lemma 1.2]). The proof of the following lemma is clear and lefts to the reader.

Lemma 2.3. Let $\theta : A \longrightarrow B$ be an n-homomorphism between Banach algebras. The following statements hold:

(1) Given b_1, \ldots, b_{n-1} in $\theta(A)$ and $b \in \mathfrak{G}(\theta)$, the product

$$b_1 \ldots b_{i-1} b b_{i+1} \ldots b_{n-1}$$

lies in $\mathfrak{G}(\theta)$.

(2) When θ has dense range and $b \in \mathfrak{G}(\theta)$, then

 $b_1 \dots b_{i-1} b b_{i+1} \dots b_{n-1} \in \mathfrak{G}(\theta),$

for b_1, \ldots, b_{n-1} in B.

(3) When θ has dense range, then

$$b_1 \ldots b_{n-1}b, \ bb_1 \ldots b_{n-1} \in \mathfrak{G}(\theta),$$

for $b_1, \ldots, b_{n-1} \in \mathfrak{G}(\theta)$ and $b \in B$.

Now, we consider our main result. Note that the first part of the proof is taken from [4, Theorem 2.7] see also [8], and for completeness we include the proof.

Theorem 2.4. Let A and B be Banach algebras (non-unital) which B is semisimple. Then every surjective n-homomorphism $\theta : A \longrightarrow B$ is automatically continuous.

1209

Proof. Suppose that $(a_m) \subseteq A$ such that $a_m \to 0$ and $\theta(a_m) \longrightarrow b$ in B. Our aim is showing that b = 0. Since θ is surjective, there exists $a \in A$ such that $\theta(a) = b$. For $m \ge 1$, we define

$$P_m(z) = z\theta(a_m) + (\theta(a) - \theta(a_m)) \qquad (z \in \mathbb{C}).$$

Then for every $z \in \mathbb{C}$, we have

$$\rho_B(P_m(z)) \le \|P_m(z)\| \le |z| \|\theta(a_m)\| + \|\theta(a) - \theta(a_m)\|.$$

In light of [4, Lemma 2.6], we have

$$\rho_B(P_m(z)^{n-1}) \leq \rho_A((za_m + (a - a_m))^{n-1}) \leq ||(za_m + (a - a_m))^{n-1}||$$

(2.1)
$$\leq (|z|||a_m|| + ||a - a_m||)^{n-1}.$$

By [8, Lemma 2], we have

(2.2)
$$\rho_B(b)^2 \le (R \|a_m\| + \|a - a_m\|)(R^{-1} \|\theta(a_m)\| + \|\theta(a) - \theta(a_m)\|) \longrightarrow 0,$$

as $m \to \infty$ and $R \to \infty$. This implies that $\rho_B(b) = 0$. Choose nonzero elements $b_1, b_2, \ldots, b_{n-1}$ in B. There are $a_1, a_2, \ldots, a_{n-1} \in A$ such that $\theta(a_1) = b_1, \theta(a_2) = b_2, \ldots, \theta(a_{n-1}) = b_{n-1}$. By Lemma 2.3 (3), $b_1 \ldots b_{n-1} b \in \mathfrak{G}(\theta)$ and by the first part of the proof, $\rho_B(b_1b_2\cdots b_{n-1}b) = 0$, and Lemma 2.2 implies that $b \in Rad(B)$. Since B is semisimple, we get b = 0.

The next result is devoted to the automatic continuity of n-Jordan homomorphisms.

Corollary 2.5. Let A be a Banach algebra and B be a semisimple Banach algebra. Then every surjective n-Jordan homomorphism $\theta : A \longrightarrow B$ that satisfies $\partial(sp_B(\theta(a)^{n-1})) \subseteq sp_A(a^{n-1}) \cup \{0\}$, for all $a \in A$, is automatically continuous.

Proof. Similar to the proof of Theorem 2.4, suppose that $(a_m) \subseteq A$ such that $a_m \to 0$ and $\theta(a_m) \longrightarrow b$ in B. As well as, there exists $a \in A$ such that $\theta(a) = b$. Since $\partial(sp_B(\theta(a)^{n-1})) \subseteq sp_A(a^{n-1}) \cup \{0\}$, for $a \in A$, the relations (2.1) and (2.2) hold. Therefore $\rho_B(b) = 0$. Clearly, $a_m a_m \dots a_m \longrightarrow 0$ and $\theta(a_m a_m \dots a_m) = \theta(a_m)^n = b^n$. This follows that $b^n \in \mathfrak{G}(\theta)$ and $\rho_B(\underline{bb \dots b}) =$

0. By Lemma 2.2, $b \in Rad(B)$. Then b = 0 and this completes the proof.

By a similar argument as Theorem 2.4, we have the following result for n-anti-homomorphisms.

Theorem 2.6. Let A and B be Banach algebras (non-unital) which B is semisimple. Then every surjective n-anti-homomorphism $\theta : A \longrightarrow B$ is automatically continuous.

Acknowledgments

The authors wish to thank the referee for his/her invaluable comments and pointing out a correction in Corollary 2.5.

References

- J. Bračič and M. S. Moslehian, On automatic continuity of 3-Homomorphisms on Banach algebras, Bull. Malays. Math. Sci. Soc. (2) 30 (2007), no. 2, 195–200.
- [2] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Society Monographs, 24, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000.
- [3] M. Eshaghi Gordji, n-Jordan homomorphism, Bull. Aust. Math. Soc. 80 (2009), no. 1, 159–164.
- [4] T. G. Honari and H. Shayanpour, Automatic continuity of n-homomorphisms between Banach algebras, Q. Math. 33 (2010), no. 2, 189–196.
- [5] T. G. Honari and H. Shayanpour, Automatic continuity of n-homomorphisms between topological algebras, Bull. Aust. Math. Soc. 83 (2011), no. 3, 389–400.
- [6] Sh. Hejazian, M. Mirzavaziri and M. S. Moslehian, n-homomorphisms, Bull. Iranian Math. Soc. 31 (2005), no. 1, 13–23.
- [7] E. Park and J. Trout, On the nonexistence of nontrivial involutive n-homomorphisms of C*-algebras, Trans. Amer. Math. Soc. 361 (2009), no. 4, 1949–1961.
- [8] T. J. Ransford, A short proof of Johnson's uniqueness of norm theorem, Bull. London Math. Soc. 21 (1989), no. 5, 487–488.
- [9] C. E. Rickart, General Theory of Banach Algebras, van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York 1960.
- [10] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Nots Series, 21, Cambridge University Press, Cambridge-New York-Melbourne, 1976.

(Madjid Eshaghi Gordji) DEPARTMENT OF MATHEMATICS, SEMNAN UNIVERSITY, P. O. Box 35195-363, SEMNAN, IRAN

CENTER OF EXCELLENCE IN NONLINEAR ANALYSIS AND APPLICATIONS (CENAA), SEMNAN UNIVERSITY, IRAN

E-mail address: madjid.eshaghi@gmail.com, meshaghi@semnan.ac.ir

(Ali Jabbari) Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran

E-mail address: jabbari_al@yahoo.com, ali.jabbari@iauardabil.ac.ir

(Erdal Karapinar) Department of Mathematics, Atilim University, 06836, Incek, Ankara, Turkey

E-mail address: erdalkarapinar@yahoo.com, ekarapinar@atilim.edu.tr