Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 5, pp. 1207-1211

Title:
Automatic continuity of surjective n-homomorphisms on Banach algebras

Author(s):

M. Eshaghi Gordji, A. Jabbari and E. Karapınar

AUTOMATIC CONTINUITY OF SURJECTIVE n-HOMOMORPHISMS ON BANACH ALGEBRAS

M. ESHAGHI GORDJI, A. JABBARI* AND E. KARAPINAR
(Communicated by Antony To-Ming Lau)

Abstract

In this paper, we show that every surjective n-homomorphism (n-anti-homomorphism) from a Banach algebra A into a semisimple Banach algebra B is continuous. Keywords: Banach algebra, n-homomorphism, semisimple algebra. MSC(2010): Primary: 46H05.

1. Introduction

Let A and B be complex Banach algebras. The linear mapping $\theta: A \longrightarrow B$ is called an n-homomorphism, if $\theta\left(a_{1} a_{2} \cdots a_{n}\right)=\theta\left(a_{1}\right) \theta\left(a_{2}\right) \cdots \theta\left(a_{n}\right)$, for all $a_{1} a_{2} \cdots a_{n} \in A$. A linear mapping $\theta: A \longrightarrow B$ is called an n-antihomomorphism if $\theta\left(a_{1} a_{2} \cdots a_{n}\right)=\theta\left(a_{n}\right) \cdots \theta\left(a_{2}\right) \theta\left(a_{1}\right)$, for all $a_{1} a_{2} \cdots a_{n} \in A$. The algebra B is called factorizable if for every $a \in B$ there are $b, c \in B$ such that $a=b c$. The concept of n-homomorphisms was studied for complex algebras by Hejazian, Mirzavaziri, and Moslehian [6]. Bračič and Moslehian [1] investigated. 3-homomorphisms on Banach algebras with bounded approximate identities and established that every involution preserving 3-homomorphism between C^{*}-algebras is continuous and norm decreasing. It is due to Park and Trout that every $*$-preserving n-homomorphism between C^{*}-algebras is continuous [7]. Automatic continuity of n-homomorphisms considered for factorizable Banach algebras in [4]. A similar problem was studied for topological algebras in [5]. A linear mapping $\theta: A \longrightarrow B$ is called an n-Jordan homomorphism if $\theta\left(a^{n}\right)=[\theta(a)]^{n}$ for all $a \in A$. Some results about automatic continuity of n Jordan homomorphisms on Banach algebras and C^{*}-algebras are investigated in [3].

[^0]Let A be a Banach algebra. If A has a unit e_{A}, the spectrum of $a \in A$ is defined by

$$
s p_{A}(a)=\left\{\lambda \in \mathbb{C}: \lambda e_{A}-a \notin \operatorname{Inv} A\right\},
$$

and the spectral radius of a is defined as follows

$$
\rho_{A}(a)=\sup \left\{|\lambda|: \lambda \in s p_{A}(a)\right\},
$$

where $\operatorname{Inv} A$ is the set of all invertible elements of A.
If A is non-unital, we consider the quasi product " $>$ " on A as follows

$$
a \diamond b=a+b-a b \quad(a, b \in A)
$$

An element $a \in A$ is called left (right) quasi-invertible if there is $b \in A$ such that $b \diamond a=0(a \diamond b=0)$. Then an element $a \in A$ is quasi-invertible if it is both left and right quasi-invertible. The set of all quasi-invertible elements of A denoted by $q-I n v A$.

Let A be a non-unital (complex) Banach algebra. Then $A^{\#}=A \oplus \mathbb{C}$ is a unital Banach algebra with the product and norm given by

$$
\begin{gathered}
(a, \alpha)(b, \beta)=(a b+\beta a+\alpha b, \alpha \beta), \\
\|(a, \alpha)\|=\|a\|+|\alpha|
\end{gathered}
$$

for all $a, b \in A$ and $\alpha, \beta \in \mathbb{C}$. We denote the identity of $A^{\#}$ by $e_{A^{\#}}(=(0,1))$.
Let A be a non-unital (complex) Banach algebra. Then, obviously for every $x, y \in A, a \diamond b=0$ if and only if

$$
\left(e_{A^{\#}}-a\right)\left(e_{A^{\#}}-b\right)=e_{A^{\#}} .
$$

The definition of spectrum in the non-unital Banach algebras is different from the unital case, and we define it as follows

$$
s p_{A}(a)=\{0\} \cup\left\{\lambda \in \mathbb{C} \backslash\{0\}: \frac{1}{\lambda} a \notin q-\operatorname{Inv} A\right\},
$$

and it is easy to see that $s p_{A}(a)=s p_{A^{\#}}((a, 0))$ and $\rho_{A}(a)=\rho_{A \#}((a, 0))$. By $\partial s p(a)$, we mean the boundary set of $\operatorname{sp}(a)$. The radical of A, denoted by $\operatorname{Rad}(A)$, is the intersection of all maximal left ideals of A. The algebra A is called semisimple if $\operatorname{Rad}(A)=\{0\}$ (for more details see Section 1.5 of [2]). If A is a semisimple Banach algebra, given $a \in A$, if $a x y=0$ (or xay $=0$ or $x y a=0$) for all $x, y \in A$, then it is easy to show that $a=0$.

2. Automatic continuity

In this section we extend Johnson's techniques [8] for n-homomorphism on non-unital Banach algebras. Our results differ from those obtained in $[4,5,8]$ and $[7]$.

We state [8, Lemma 1], which is valid for non-unital Banach algebras.
Lemma 2.1. ([8, Lemma 1]) Let A be a Banach algebra, $a \in A$, and suppose that $\rho_{A}\left(a_{1} a\right)=0$ for all $a_{1} \in A$. Then $a \in \operatorname{Rad}(A)$.

We can generalize this result for non-unital Banach algebras as follows:
Lemma 2.2. Let A be a Banach algebra. Then
(1) given $a \in A$ satisfies $\rho_{A}\left(a_{1} a_{2} \cdots a_{n-1} a\right)=0$ for all $a_{1}, a_{2}, \ldots, a_{n-1} \in$ A, then $a \in \operatorname{Rad}(A)$.
(2) given $a \in A$ satisfies $\rho_{A}\left(a a_{1} a_{2} \cdots a_{n-1}\right)=0$ for all $a_{1}, a_{2}, \ldots, a_{n-1} \in$ A, then $a \in \operatorname{Rad}(A)$.

Proof. (1) Suppose that $\rho_{A}\left(a_{1} a_{2} \cdots a_{n-1} a\right)=0$ for all $a_{1}, a_{2}, \ldots, a_{n-1} \in A$. By Lemma 2.1, $a_{2} \cdots a_{n-1} a \in \operatorname{Rad}(A)$. Since the radical of any normed algebra is a topologically nil ideal $\left(\left[9\right.\right.$, Theorem 2.3.4]), $\rho_{A}\left(a_{2} \cdots a_{n-1}\right)=0$ for all $a_{2}, \ldots, a_{n-1} \in A$. Repeating the argument we get $\rho_{A}\left(a_{n-1} a\right)=0$ for all $a_{n-1} \in A$, which, by Lemma 2.1, assures that $a \in \operatorname{Rad}(A)$. Part (2) needs a similar argument.

Let $T: A \longrightarrow B$ be a linear mapping between Banach algebras. The separating space of T is defined by

$$
\mathfrak{G}(T)=\left\{b \in B: \text { there exists }\left(a_{n}\right) \subseteq A \text { such that } a_{n} \rightarrow 0 \text { and } T\left(a_{n}\right) \longrightarrow b\right\}
$$

We know that $\mathfrak{G}(T)$ is a closed linear subspace of B. By the closed graph theorem, T is continuous if and only if $\mathfrak{G}(T)=\{0\}$ ([10, Lemma 1.2]). The proof of the following lemma is clear and lefts to the reader.

Lemma 2.3. Let $\theta: A \longrightarrow B$ be an n-homomorphism between Banach algebras. The following statements hold:
(1) Given b_{1}, \ldots, b_{n-1} in $\theta(A)$ and $b \in \mathfrak{G}(\theta)$, the product

$$
b_{1} \ldots b_{i-1} b b_{i+1} \ldots b_{n-1}
$$

lies in $\mathfrak{G}(\theta)$.
(2) When θ has dense range and $b \in \mathfrak{G}(\theta)$, then

$$
b_{1} \ldots b_{i-1} b b_{i+1} \ldots b_{n-1} \in \mathfrak{G}(\theta)
$$

for b_{1}, \ldots, b_{n-1} in B.
(3) When θ has dense range, then

$$
\begin{aligned}
& b_{1} \ldots b_{n-1} b, b b_{1} \ldots b_{n-1} \in \mathfrak{G}(\theta) \\
& \text { for } b_{1}, \ldots, b_{n-1} \in \mathfrak{G}(\theta) \text { and } b \in B
\end{aligned}
$$

Now, we consider our main result. Note that the first part of the proof is taken from [4, Theorem 2.7] see also [8], and for completeness we include the proof.

Theorem 2.4. Let A and B be Banach algebras (non-unital) which B is semisimple. Then every surjective n-homomorphism $\theta: A \longrightarrow B$ is automatically continuous.

Proof. Suppose that $\left(a_{m}\right) \subseteq A$ such that $a_{m} \rightarrow 0$ and $\theta\left(a_{m}\right) \longrightarrow b$ in B. Our aim is showing that $b=0$. Since θ is surjective, there exists $a \in A$ such that $\theta(a)=b$. For $m \geq 1$, we define

$$
P_{m}(z)=z \theta\left(a_{m}\right)+\left(\theta(a)-\theta\left(a_{m}\right)\right) \quad(z \in \mathbb{C})
$$

Then for every $z \in \mathbb{C}$, we have

$$
\rho_{B}\left(P_{m}(z)\right) \leq\left\|P_{m}(z)\right\| \leq|z|\left\|\theta\left(a_{m}\right)\right\|+\left\|\theta(a)-\theta\left(a_{m}\right)\right\| .
$$

In light of [4, Lemma 2.6], we have

$$
\begin{align*}
\rho_{B}\left(P_{m}(z)^{n-1}\right) & \leq \rho_{A}\left(\left(z a_{m}+\left(a-a_{m}\right)\right)^{n-1}\right) \leq\left\|\left(z a_{m}+\left(a-a_{m}\right)\right)^{n-1}\right\| \\
& \leq\left(|z|\left\|a_{m}\right\|+\left\|a-a_{m}\right\|\right)^{n-1} \tag{2.1}
\end{align*}
$$

By [8, Lemma 2], we have

$$
\begin{equation*}
\rho_{B}(b)^{2} \leq\left(R\left\|a_{m}\right\|+\left\|a-a_{m}\right\|\right)\left(R^{-1}\left\|\theta\left(a_{m}\right)\right\|+\left\|\theta(a)-\theta\left(a_{m}\right)\right\|\right) \longrightarrow 0 \tag{2.2}
\end{equation*}
$$

as $m \longrightarrow \infty$ and $R \longrightarrow \infty$. This implies that $\rho_{B}(b)=0$. Choose nonzero elements $b_{1}, b_{2}, \ldots, b_{n-1}$ in B. There are $a_{1}, a_{2}, \ldots, a_{n-1} \in A$ such that $\theta\left(a_{1}\right)=$ $b_{1}, \theta\left(a_{2}\right)=b_{2}, \ldots, \theta\left(a_{n-1}\right)=b_{n-1}$. By Lemma $2.3(3), b_{1} \ldots b_{n-1} b \in \mathfrak{G}(\theta)$ and by the first part of the proof, $\rho_{B}\left(b_{1} b_{2} \cdots b_{n-1} b\right)=0$, and Lemma 2.2 implies that $b \in \operatorname{Rad}(B)$. Since B is semisimple, we get $b=0$.

The next result is devoted to the automatic continuity of n-Jordan homomorphisms.

Corollary 2.5. Let A be a Banach algebra and B be a semisimple Banach algebra. Then every surjective n-Jordan homomorphism $\theta: A \longrightarrow B$ that satisfies $\partial\left(s p_{B}\left(\theta(a)^{n-1}\right)\right) \subseteq \operatorname{sp}_{A}\left(a^{n-1}\right) \cup\{0\}$, for all $a \in A$, is automatically continuous.

Proof. Similar to the proof of Theorem 2.4, suppose that $\left(a_{m}\right) \subseteq A$ such that $a_{m} \rightarrow 0$ and $\theta\left(a_{m}\right) \longrightarrow b$ in B. As well as, there exists $a \in A$ such that $\theta(a)=b$. Since $\partial\left(s p_{B}\left(\theta(a)^{n-1}\right)\right) \subseteq s p_{A}\left(a^{n-1}\right) \cup\{0\}$, for $a \in A$, the relations (2.1) and (2.2) hold. Therefore $\rho_{B}(b)=0$. Clearly, $\underbrace{a_{m} a_{m} \ldots a_{m}}_{n \text { times }} \longrightarrow 0$ and $\theta\left(a_{m} a_{m} \ldots a_{m}\right)=\theta\left(a_{m}\right)^{n}=b^{n}$. This follows that $b^{n} \in \mathfrak{G}(\theta)$ and $\rho_{B}(\underbrace{b b \ldots b}_{\mathrm{n} \text { times }})=$ 0. By Lemma $2.2, b \in \operatorname{Rad}(B)$. Then $b=0$ and this completes the proof.

By a similar argument as Theorem 2.4, we have the following result for n-anti-homomorphisms.

Theorem 2.6. Let A and B be Banach algebras (non-unital) which B is semisimple. Then every surjective n-anti-homomorphism $\theta: A \longrightarrow B$ is automatically continuous.

Acknowledgments

The authors wish to thank the referee for his/her invaluable comments and pointing out a correction in Corollary 2.5.

References

[1] J. Bračič and M. S. Moslehian, On automatic continuity of 3-Homomorphisms on Banach algebras, Bull. Malays. Math. Sci. Soc. (2) 30 (2007), no. 2, 195-200.
[2] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Society Monographs, 24, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000.
[3] M. Eshaghi Gordji, n-Jordan homomorphism, Bull. Aust. Math. Soc. 80 (2009), no. 1, 159-164.
[4] T. G. Honari and H. Shayanpour, Automatic continuity of n-homomorphisms between Banach algebras, Q. Math. 33 (2010), no. 2, 189-196.
[5] T. G. Honari and H. Shayanpour, Automatic continuity of n-homomorphisms between topological algebras, Bull. Aust. Math. Soc. 83 (2011), no. 3, 389-400.
[6] Sh. Hejazian, M. Mirzavaziri and M. S. Moslehian, n-homomorphisms, Bull. Iranian Math. Soc. 31 (2005), no. 1, 13-23.
[7] E. Park and J. Trout, On the nonexistence of nontrivial involutive n-homomorphisms of C^{*}-algebras, Trans. Amer. Math. Soc. 361 (2009), no. 4, 1949-1961.
[8] T. J. Ransford, A short proof of Johnson's uniqueness of norm theorem, Bull. London Math. Soc. 21 (1989), no. 5, 487-488.
[9] C. E. Rickart, General Theory of Banach Algebras, van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York 1960.
[10] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Nots Series, 21, Cambridge University Press, Cambridge-New York-Melbourne, 1976.
(Madjid Eshaghi Gordji) Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
Center of Excellence in Nonlinear Analysis and Applications (CENAA), Semnan University, Iran

E-mail address: madjid.eshaghi@gmail.com, meshaghi@semnan.ac.ir
(Ali Jabbari) Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran

E-mail address: jabbari_al@yahoo.com, ali.jabbari@iauardabil.ac.ir
(Erdal Karapinar) Department of Mathematics, Atilim University, 06836, Incek, Ankara, Turkey

E-mail address: erdalkarapinar@yahoo.com, ekarapinar@atilim.edu.tr

[^0]: Article electronically published on October 17, 2015.
 Received: 2 March 2013, Accepted: 21 July 2014.

 * Corresponding author.

