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Abstract. In this paper, using the fixed point and direct methods,
we prove the generalized Hyers-Ulam-Rassias stability of the following

Cauchy-Jensen additive functional equation:

(0.1) f

(
x+ y + z

2

)
+ f

(
x− y + z

2

)
= f(x) + f(z)

in various normed spaces.
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1. Introduction

A classical question in the theory of functional equations is the following:
When is it true that a function which approximately satisfies a functional equa-
tion must be close to an exact solution of the equation?. If the problem accepts
a solution, we say that the equation is stable. The first stability problem con-
cerning group homomorphisms was raised by Ulam [45] in 1940. In the next
year, Hyers [23] gave a positive answer to the above question for additive groups
under the assumption that the groups are Banach spaces. In 1978, Rassias [38]
proved a generalization of Hyers’s theorem for additive mappings.

Theorem 1.1. (Th.M. Rassias): Let f : E → E′ be a mapping from a normed
vector space E into a Banach space E′ subject to the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ(∥x∥p + ∥y∥p)

for all x, y ∈ E, where ϵ and p are constants with ϵ > 0 and 0 ≤ p < 1. Then

the limit L(x) = limn→∞
f(2nx)

2n exists for all x ∈ E and L : E → E′ is the
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Approximation of an additive mapping in various normed spaces 1214

unique linear mapping which satisfies

∥f(x)− L(x)∥ ≤ 2ϵ

2− 2p
∥x∥p

for all x ∈ E. Also, if for each x ∈ E the function f(tx) is continuous in t ∈ R,
then L is linear.

This new concept is known as generalized Hyers-Ulam stability or Hyers-
Ulam-Rassias stability of functional equations. Furthermore, in 1994, a gener-
alization of Rassias’s theorem was obtained by Gǎvruta [21] by replacing the
bound ϵ(∥x∥p + ∥y∥p) by a general control function φ(x, y).
In 1983, a generalized Hyers-Ulam stability problem for the quadratic func-
tional equation was proved by Skof [44] for mapping f : X → Y , where X is a
normed space and Y is a Banach space. In 1984, Cholewa [11] noticed that the
theorem of Skof is still true if the relevant domain X is replaced by an Abelian
group and, in 2002, Czerwik [12] proved the generalized Hyers-Ulam stability
of the quadratic functional equation. The reader is referred to ( [1]- [42]) and
references therein for detailed information on stability of functional equations.

In 1897, Hensel [22] has introduced a normed space which does not have the
Archimedean property. It turned out that non-Archimedean spaces have many
nice applications (see [13,27,30,31,36]).

Katsaras [26] defined a fuzzy norm on a vector space to construct a fuzzy
vector topological structure on the space. Some mathematicians have defined
fuzzy norms on a vector space from various points of view (see [20, 29]). In
particular, Bag and Samanta [5], following Cheng and Mordeson [10], gave an
idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of
Karmosil and Michalek type [28]. They established a decomposition theorem
of a fuzzy norm into a family of crisp norms and investigated some properties
of fuzzy normed spaces [6].

Definition 1.2. By a non-Archimedean field we mean a field K equipped with
a function (valuation) | · | : K → [0,∞) such that, for all r, s ∈ K, the following
conditions hold:

(a) |r| = 0 if and only if r = 0;
(b) |rs| = |r||s|;
(c) |r + s| ≤ max{|r|, |s|}.

Clearly, by (b), |1| = |− 1| = 1 and so, by induction, it follows from (c) that
|n| ≤ 1 for all n ≥ 1.

Definition 1.3. Let X be a vector space over a scalar field K with a non-
Archimedean non-trivial valuation | · |.

(1) A function ∥ · ∥ : X → R is a non-Archimedean norm (valuation) if it
satisfies the following conditions:

(a) ∥x∥ = 0 if and only if x = 0 for all x ∈ X;



1215 Shiri and Azadi Kenary

(b) ∥rx∥ = |r|∥x∥ for all r ∈ K and x ∈ X;
(c) the strong triangle inequality (ultra-metric) holds, that is,

∥x+ y∥ ≤ max{∥x∥, ∥y∥}

for all x, y ∈ X.
(2) The space (X, ∥ · ∥) is called a non-Archimedean normed space.

Note that ||xn − xm|| ≤ max{||xj+1 − xj || : m ≤ j ≤ n− 1} for all m,n ∈ N
with n > m.

Definition 1.4. Let (X, ∥ · ∥) be a non-Archimedean normed space.
(a) A sequence {xn} is a Cauchy sequence in X if {xn+1 − xn} converges to

zero in X.
(b) The non-Archimedean normed space (X, ∥ · ∥) is said to be complete if

every Cauchy sequence in X is convergent.

The most important examples of non-Archimedean spaces are p-adic num-
bers. A key property of p-adic numbers is that they do not satisfy the Archimed-
ean axiom: for all x, y > 0, there exists a positive integer n such that x < ny.

Example 1.5. Fix a prime number p. For any nonzero rational number x,
there exists a unique positive integer nx such that x = a

b p
nx , where a and

b are positive integers not divisible by p. Then |x|p := p−nx defines a non-
Archimedean norm on Q. The completion of Q with respect to the metric
d(x, y) = |x − y|p is denoted by Qp, which is called the p-adic number field.
In fact, Qp is the set of all formal series x =

∑∞
k≥nx

akp
k, where |ak| ≤ p− 1.

The addition and multiplication between any two elements of Qp are defined
naturally. The norm |

∑∞
k≥nx

akp
k|p = p−nx is a non-Archimedean norm on

Qp and Qp is a locally compact filed.

In random stability, we adopt the usual terminology, notions and conven-
tions of the theory of random normed spaces as in [43].
Throughout this paper, let △+ denote the set of all probability distribution
functions F : R ∪ [−∞,+∞] → [0, 1] such that F is left-continuous and
nondecreasing on R and F (0) = 0, F (+∞) = 1. It is clear that the set
D+ = {F ∈ △+ : l−F (−∞) = 1}, where l−F (x) = limt→x− F (t), is a subset
of △+. The set △+ is partially ordered by the usual point-wise ordering of
functions, that is, F ≤ G if and only if F (t) ≤ G(t) for all t ∈ R. For any
a ≥ 0, the element Ha(t) of D

+ is defined by

Ha(t) =

{
0, if t ≤ a,
1, if t > a.

We can easily show that the maximal element in △+ is the distribution
function H0(t).
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Definition 1.6. A function T : [0, 1]2 → [0, 1] is a continuous triangular norm
(briefly, a t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (x, 1) = x for all x ∈ [0, 1];
(d) T (x, y) ≤ T (z, w) whenever x ≤ z and y ≤ w for all x, y, z, w ∈ [0, 1].

Three typical examples of continuous t-norms are as follows: T (x, y) =
xy, T (x, y) = max{x+ y − 1, 0}, T (x, y) = min(x, y).

Recall that, if T is a t-norm and {xn} is a sequence in [0, 1], then Tn
i=1xi is

defined recursively by T 1
i=1x1 = x1 and Tn

i=1xi = T (Tn−1
i=1 xi, xn) for all n ≥ 2.

T∞
i=nxi is defined by T∞

i=1xn+i.

Definition 1.7. A random normed space (briefly, RN -space) is a triple (X,µ, T ),
where X is a vector space, T is a continuous t-norm and µ : X → D+ is a map-
ping such that the following conditions hold:
(a) µx(t) = H0(t) for all t > 0 if and only if x = 0;

(b) µαx(t) = µx

(
t
|α|

)
for all α ∈ R with α ̸= 0, x ∈ X and t ≥ 0;

(c) µx+y(t+ s) ≥ T (µx(t), µy(s)) for all x, y ∈ X and t, s ≥ 0.

Every normed space (X, ∥ · ∥) defines a random normed space (X,µ, TM ),
where µu(t) =

t
t+∥u∥ for all t > 0 and TM is the minimum t-norm. This space

X is called the induced random normed space.
If the t-norm T is such that sup0<a<1 T (a, a) = 1, then every RN -space
(X,µ, T ) is a metrizable linear topological space with the topology τ (called
the µ-topology or the (ϵ, δ)-topology, where ϵ > 0 and λ ∈ (0, 1)) induced by the
base {U(ϵ, λ)} of neighborhoods of θ, where

U(ϵ, λ) = {x ∈ X : µx(ϵ) > 1− λ}.

Definition 1.8. Let (X,µ, T ) be an RN-space.
(a) A sequence {xn} in X is said to be convergent to a point x ∈ X (write
xn → x as n → ∞) if

lim
n→∞

µxn−x(t) = 1

for all t > 0.
(b) A sequence {xn} in X is called a Cauchy sequence in X if

lim
n→∞

µxn−xm(t) = 1

for all t > 0.
(c) The RN -space (X,µ, T ) is said to be complete if every Cauchy sequence in
X is convergent.

Theorem 1.9. If (X,µ, T ) is an RN-space and {xn} is a sequence such that
xn → x, then limn→∞ µxn(t) = µx(t).
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Definition 1.10. Let X be a set. A function d : X ×X → [0,∞] is called a
generalized metric on X if d satisfies the following conditions:

(a) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(b) d(x, y) = d(y, x) for all x, y ∈ X;
(c) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.11. Let (X,d) be a complete generalized metric space and J : X →
X be a strictly contractive mapping with Lipschitz constant L < 1. Then, for
all x ∈ X, either d(Jnx, Jn+1x) = ∞ for all nonnegative integers n or there
exists a positive integer n0 such that

(a) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;
(b) the sequence {Jnx} converges to a fixed point y∗ of J ;
(c) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) <

∞};
(d) d(y, y∗) ≤ d(y,Jy)

1−L for all y ∈ Y .

2. Non-Archimedean Stability of Functional Equation (0.1)

In this section, we deal with the stability problem for the Cauchy-Jensen
additive functional equation (0.1) in non-Archimedean normed spaces.

2.1. A Fixed Point Approach.

Theorem 2.1. Let X be a non-Archimedean normed space and that Y be a
complete non-Archimedean space. Let φ : X3 → [0,∞) be a function such that
there exists an α < 1 with

φ
(x
2
,
y

2
,
z

2

)
≤ αφ (x, y, z)

|2|
(2.1)

for all x, y, z ∈ X. Let f : X → Y be a mapping with f(0) = 0 satisfying∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y + z

2

)
− f(x)− f(z)

∥∥∥∥
Y

≤ φ(x, y, z)(2.2)

for all x, y, z ∈ X. Then there exists a unique additive mapping L : X → Y
such that

∥f(x)− L(x)∥Y ≤ αφ(x, 2x, x)

|2| − |2|α
(2.3)

for all x ∈ X.

Proof. Putting y = 2x and z = x in (2.2), we get

∥f(2x)− 2f(x)∥Y ≤ φ(x, 2x, x)(2.4)

for all x ∈ X. So∥∥∥f(x)− 2f
(x
2

)∥∥∥
Y
≤ φ

(x
2
, x,

x

2

)
≤ αφ(x, 2x, x)

|2|
(2.5)



Approximation of an additive mapping in various normed spaces 1218

for all x ∈ X. Consider the set S := {h : X → Y } and introduce the generalized
metric on S:

d(g, h) = inf
{
µ ∈ (0,+∞) : ∥g(x)− h(x)∥Y ≤ µφ(x, 2x, x), ∀x ∈ X

}
,

where, as usual, inf ϕ = +∞. It is easy to show that (S, d) is complete (see [33]).
Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(x
2

)
for all x ∈ X. Let g, h ∈ S be given such that d(g, h) = ε. Then

∥g(x)− h(x)∥Y ≤ ϵφ(x, 2x, x)

for all x ∈ X. Hence

∥Jg(x)− Jh(x)∥Y =
∥∥∥2g (x

2

)
− 2h

(x
2

)∥∥∥
Y
= |2|

∥∥∥g (x
2

)
− h

(x
2

)∥∥∥
Y

≤ |2|ϵφ
(x
2
, x,

x

2

)
≤ α · ϵφ(x, 2x, x)

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ αε. This means that
d(Jg, Jh) ≤ αd(g, h) for all g, h ∈ S. It follows from (2.5) that d(f, Jf) ≤ α

|2| .

By Theorem 1.11, there exists a mapping L : X → Y satisfying the following:
(1) L is a fixed point of J , i.e.,

L(x)

2
= L

(x
2

)
(2.6)

for all x ∈ X. The mapping L is a unique fixed point of J in the set M = {g ∈
S : d(h, g) < ∞}. This implies that L is a unique mapping satisfying (2.6) such
that there exists a µ ∈ (0,∞) satisfying ∥f(x)− L(x)∥Y ≤ µφ(x, 2x, x) for all
x ∈ X;
(2) d(Jnf, L) → 0 as n → ∞. This implies the equality

lim
n→∞

2nf
( x

2n

)
= L(x)(2.7)

for all x ∈ X;
(3) d(f, L) ≤ 1

1−αd(f, Jf), which implies the inequality d(f, L) ≤ α
|2|−|2|α . This

implies that the inequalities (2.3) holds.
It follows from (2.1) and (2.2) that∥∥∥∥L(x+ y + z

2

)
+ L

(
x− y + z

2

)
− L(x)− L(z)

∥∥∥∥
Y

= lim
n→∞

|2|n
∥∥∥∥f (x+ y + z

2n+1

)
+ f

(
x− y + z

2n+1

)
− f

( x

2n

)
− f

( z

2n

)∥∥∥∥
Y

≤ lim
n→∞

|2|nφ
( x

2n
,
y

2n
,
z

2n

)
≤ lim

n→∞
|2|n.α

nφ(x, y, z)

|2|n
= 0
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for all x, y, z ∈ X . So

L

(
x+ y + z

2

)
+ L

(
x− y + z

2

)
= L(x) + L(z)

for all x, y, z ∈ X. □

Corollary 2.2. Let θ be a positive real number and r is a real number with
0 < r < 1. Let f : X → Y be a mapping with f(0) = 0 satisfying∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y + z

2

)
− f(x)− f(z)

∥∥∥∥
Y

≤ θ (∥x∥r + ∥y∥r + ∥z∥r)

for all x, y, z ∈ X . Then there exists a unique additive mapping L : X → Y
such that

∥f(x)− L(x)∥Y ≤ |2|θ(2 + |2|r)∥x∥r

|2|r+1 − |2|2

for all x ∈ X.

Proof. The proof follows from Theorem 2.1 by taking

φ(x, y, z) = θ (∥x∥r + ∥y∥r + ∥z∥r)

for all x, y, z ∈ X. Then we can choose α = |2|1−r and we get the desired
result. □

Theorem 2.3. Let X be a non-Archimedean normed space and that Y be a
complete non-Archimedean space. Let φ : X3 → [0,∞) be a function such that
there exists an α < 1 with

φ (x, y, z) ≤ |2|αφ
(x
2
,
y

2
,
z

2

)
for all x, y, z ∈ X. Let f : X → Y be a mapping with f(0) = 0 satisfying (2.2).
Then there exists a unique additive mapping L : X → Y such that

∥f(x)− L(x)∥Y ≤ φ(x, 2x, x)

|2| − |2|α
(2.8)

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theo-
rem 2.1. Now we consider the linear mapping J : S → S such that

Jg(x) :=
g(2x)

2

for all x ∈ X. Let g, h ∈ S be given such that d(g, h) = ε. Then

∥g(x)− h(x)∥Y ≤ ϵφ(x, 2x, x)
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for all x ∈ X. Hence

∥Jg(x)− Jh(x)∥Y =

∥∥∥∥g(2x)2
− h(2x)

2

∥∥∥∥
Y

=
∥g(2x)− h(2x)∥Y

|2|

≤ ϵφ (2x, 4x, 2x)

|2|
≤ |2|α · ϵφ(x, 2x, x)

|2|

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ αε. This means that
d(Jg, Jh) ≤ αd(g, h) for all g, h ∈ S. It follows from (2.4) that d(f, Jf) ≤ 1

|2| .

By Theorem 1.11, there exists a mapping L : X → Y satisfying the following:
(1) L is a fixed point of J , i.e.,

L(2x) = 2L (x)(2.9)

for all x ∈ X. The mapping L is a unique fixed point of J in the set M = {g ∈
S : d(h, g) < ∞}. This implies that L is a unique mapping satisfying (2.9) such
that there exists a µ ∈ (0,∞) satisfying ∥f(x)− L(x)∥Y ≤ µφ(x, 2x, x) for all
x ∈ X;
(2) d(Jnf, L) → 0 as n → ∞. This implies the equality

lim
n→∞

f(2nx)

2n
= L(x)(2.10)

for all x ∈ X;
(3) d(f, L) ≤ 1

1−αd(f, Jf), which implies the inequality d(f, L) ≤ 1
|2|−|2|α . This

implies that the inequalities (2.8) holds. The rest of the proof is similar to the
proof of Theorem 2.1. □

Corollary 2.4. Let θ be a positive real number and let r be a real number with
r > 1. Let f : X → Y be a mapping with f(0) = 0 satisfying∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y + z

2

)
− f(x)− f(z)

∥∥∥∥
Y

≤ θ (∥x∥r + ∥y∥r + ∥z∥r)

for all x, y, z ∈ X. Then there exists a unique additive mapping L : X → Y
such that

∥f(x)− L(x)∥Y ≤ θ(2 + |2|r)∥x∥r

|2| − |2|r

for all x ∈ X.

Proof. The proof follows from Theorem 2.3 by taking

φ(x, y, z) = θ (∥x∥r + ∥y∥r + ∥z∥r)

for all x, y, z ∈ X. Then we can choose α = |2|r−1 and we get the desired
result. □
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2.2. A Direct Method. In this section, using a direct method, we prove
the generalized Hyers-Ulam-Rassias stability of the Cauchy-Jensen additive
functional equation (0.1) in non-Archimedean space.

Theorem 2.5. Let G be an additive semigroup and that X is a non-Archimedean
Banach space. Assume that ζ : G3 → [0,+∞) be a function such that

(2.11) lim
n→∞

|2|nζ
( x

2n
,
y

2n
,
z

2n

)
= 0

for all x, y, z ∈ G. Suppose that, for any x ∈ G, the limit

(2.12) £(x) = lim
n→∞

max
0≤k<n

|2|k ζ
( x

2k+1
,
x

2k
,

x

2k+1

)
exists. Let f : G → X be a mapping with f(0) = 0 satisfying
(2.13)∥∥∥f (x+ y + z

2

)
+ f

(x− y + z

2

)
− f(x)− f(z)

∥∥∥
X

≤ ζ(x, y, z), (for all x, y, z ∈ G)

Then the limit A(x) := limn→∞ 2nf
(

x
2n

)
exists for all x ∈ G and defines an

additive mapping A : G → X such that

(2.14) ∥f(x)−A(x)∥ ≤ £(x).

Moreover, if

lim
j→∞

lim
n→∞

max
j≤k<n+j

|2|k ζ
( x

2k+1
,
x

2k
,

x

2k+1

)
= 0

then A is the unique additive mapping satisfying (2.14).

Proof. Putting y = 2x and z = x in (2.13), we get

(2.15) ∥f(2x)− 2f(x)∥Y ≤ ζ(x, 2x, x)

for all x ∈ G. Replacing x by x
2n+1 in (2.15), we obtain∥∥∥2n+1f

( x

2n+1

)
− 2nf

( x

2n

)∥∥∥ ≤ |2|n ζ
( x

2n+1
,
x

2n
,

x

2n+1

)
.(2.16)

Thus, it follows from (2.11) and (2.16) that the sequence
{
2nf

(
x
2n

)}
n≥1

is

a Cauchy sequence. Since X is complete, it follows that
{
2nf

(
x
2n

)}
n≥1

is

convergent. Set

(2.17) A(x) := lim
n→∞

2nf
( x

2n

)
.

By induction on n, one can show that∥∥∥2nf ( x

2n

)
− f(x)

∥∥∥ ≤ max
{
|2|k ζ

( x

2k+1
,
x

2k
,

x

2k+1

)
; 0 ≤ k < n

}
(2.18)
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for all n ≥ 1 and x ∈ G. By taking n → ∞ in (2.18) and using (2.12), one
obtains (2.14). By (2.11), (2.13) and (2.17), we get∥∥∥∥A(x+ y + z

2

)
+A

(
x− y + z

2

)
−A(x)−A(z)

∥∥∥∥
= lim

n→∞
|2|n

∥∥∥∥f (x+ y + z

2n+1

)
+ f

(
x− y + z

2n+1

)
− f

( x

2n

)
− f

( z

2n

)∥∥∥∥
≤ lim

n→∞
|2|nζ

( x

2n
,
y

2n
,
z

2n

)
= 0

for all x, y, z ∈ X . So

(2.19) A

(
x+ y + z

2

)
+A

(
x− y + z

2

)
= A(x) +A(z)

for all x, y, z ∈ G. Letting y = 0 in (2.19), we get

(2.20) 2A

(
x+ z

2

)
= A(x) +A(z)

for all x, z ∈ G. Since

A(0) = lim
n→+∞

2nf

(
0

2n

)
= lim

n→+∞
2nf(0) = 0,

by letting y = 2x and z = x in (2.19), we get

A(2x) = 2A(x)

for all x ∈ G. Replacing x by 2x and z by 2z in (2.20), we get

A(x+ z) = A(x) +A(z)

for all x, z ∈ G. Hence A : G → X is additive.
To prove the uniqueness property of A, let L be another mapping satisfying
(2.14). Then we have∥∥∥A(x)− L(x)

∥∥∥
X

= lim
n→∞

|2|n
∥∥∥A( x

2n

)
− L

( x

2n

)∥∥∥
X

≤ lim
k→∞

|2|n max
{∥∥∥A( x

2n

)
− f

( x

2n

)∥∥∥
X
,
∥∥∥f ( x

2n

)
− L

( x

2n

)∥∥∥
X

}
≤ lim

j→∞
lim

n→∞
max

j≤k<n+j
|2|k ζ

( x

2k+1
,
x

2k
,

x

2k+1

)
= 0

for all x ∈ G. Therefore, A = L. This completes the proof. □

Corollary 2.6. Let ξ : [0,∞) → [0,∞) be a function satisfying

ξ

(
t

|2|

)
≤ ξ

(
1

|2|

)
ξ(t), ξ

(
1

|2|

)
<

1

|2|
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for all t ≥ 0. Assume that κ > 0 and f : G → X is a mapping with f(0) = 0
such that∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y + z

2

)
− f(x)− f(z)

∥∥∥∥
Y

≤ κ (ξ(|x|) + ξ(|y|) + ξ(|z|))

for all x, y, z ∈ G. Then there exists a unique additive mapping A : G → X
such that

∥f(x)−A(x)∥ ≤ (2 + |2|)ξ(|x|)
|2|

Proof. If we define ζ : G3 → [0,∞) by ζ(x, y, z) := κ (ξ(|x|) + ξ(|y|) + ξ(|z|)),
then we have

lim
n→∞

|2|n ζ
( x

2n
,
y

2n
,
z

2n

)
= 0

for all x, y, z ∈ G. On the other hand, it follows that

£(x) = ζ
(x
2
, x,

x

2

)
=

(2 + |2|)ξ(|x|)
|2|

exists for all x ∈ G. Also, we have

lim
j→∞

lim
n→∞

max
j≤k<n+j

|2|k ζ
( x

2k+1
,
x

2k
,

x

2k+1

)
= lim

j→∞
|2|j ζ

( x

2j+1
,
x

2j
,

x

2j+1

)
= 0.

Thus, applying Theorem 2.5, we have the conclusion. This completes the
proof. □

Theorem 2.7. Let G be an additive semigroup and that X is a non-Archimedean
Banach space. Assume that ζ : G3 → [0,+∞) is a function such that

(2.21) lim
n→∞

ζ (2nx, 2ny, 2nz)

|2|n
= 0

for all x, y, z ∈ G. Suppose that, for any x ∈ G, the limit

(2.22) £(x) = lim
n→∞

max
0≤k<n

ζ
(
2kx, 2k+1x, 2kx

)
|2|k

exists and f : G → X be a mapping with f(0) = 0 and satisfying (2.13). Then

the limit A(x) := limn→∞
f(2nx)

2n exists for all x ∈ G and

(2.23) ∥f(x)−A(x)∥ ≤ £(x)

|2|
.

for all x ∈ G. Moreover, if

lim
j→∞

lim
n→∞

max
j≤k<n+j

ζ
(
2kx, 2k+1x, 2kx

)
|2|k

= 0,

then A is the unique mapping satisfying (2.23).
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Proof. It follows from (2.15), we get

(2.24)

∥∥∥∥f(x)− f(2x)

2

∥∥∥∥
X

≤ ζ(x, 2x, x)

|2|
for all x ∈ G. Replacing x by 2nx in (2.24), we obtain∥∥∥∥f(2nx)2n

− f(2n+1x)

2n+1

∥∥∥∥
X

≤
ζ
(
2nx, 2n+1x, 2nx

)
|2|n+1

.(2.25)

Thus it follows from (2.21) and (2.25) that the sequence
{

f(2nx)
2n

}
n≥1

is con-

vergent. Set

A(x) := lim
n→∞

f(2nx)

2n
.

On the other hand, it follows from (2.25) that P∥∥∥∥f(2px)2p
− f(2qx)

2q

∥∥∥∥ =

∥∥∥∥∥∥
q−1∑
k=p

f(2k+1x)

2k+1
− f(2kx)

2k

∥∥∥∥∥∥≤ max
p≤k<q

{∥∥∥∥f(2k+1x)

2k+1
− f(2kx)

2k

∥∥∥∥}

≤ 1

|2| max
p≤k<q

ζ
(
2kx, 2k+1x, 2kx

)
|2|k

for all x ∈ G and p, q ≥ 0 with q > p ≥ 0. Letting p = 0, taking q → ∞ in the last
inequality and using (2.22), we obtain (2.23).

The rest of the proof is similar to the proof of Theorem 2.5. □

Corollary 2.8. Let ξ : [0,∞) → [0,∞) be a function satisfying

ξ (|2| t) ≤ ξ (|2|) ξ(t), ξ (|2|) < |2|
for all t ≥ 0. Assume that κ > 0 and f : G → X is a mapping with f(0) = 0
satisfying∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y + z

2

)
− f(x)− f(z)

∥∥∥∥ ≤ κ (ξ(|x|) · ξ(|y|) · ξ(|z|))

for all x, y, z ∈ G. Then there exists a unique additive mapping A : G → X
such that

∥f(x)−A(x)∥ ≤ κξ(|x|)3.

Proof. If we define ζ : G3 → [0,∞) by

ζ(x, y, z) := κ (ξ(|x|) · ξ(|y|) · ξ(|z|))
and apply Theorem 2.7, then we get the conclusion. □

3. Random Stability of the Functional Equation (0.1)

In this section, using the fixed point and direct methods, we prove the gen-
eralized Hyers-Ulam-Rassias stability of the functional equation (0.1) in the
random normed spaces.
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3.1. Direct Method.

Theorem 3.1. Let X be a real linear space, (Z, µ′,min) be an RN-space and
φ : X3 → Z be a function such that there exists 0 < α < 1

2 such that

(3.1) µ′
φ( x

2 ,
y
2 ,

z
2 )
(t) ≥ µ′

φ(x,y,z)

(
t

α

)
for all x, y, z ∈ X and t > 0 and limn→∞ µ′

φ( x
2n , y

2n , z
2n )

(
t
2n

)
= 1 for all x, y, z ∈

X and t > 0. Let (Y, µ,min) be a complete RN-space. If f : X → Y is a
mapping with f(0) = 0 such that

(3.2) µf( x+y+z
2 )+f( x−y+z

2 )−f(x)−f(z)(t) ≥ µ′
φ(x,y,z)(t)

for all x, y, z ∈ X and t > 0. Then the limit A(x) = limn→∞ 2nf
(

x
2n

)
exists for all x ∈ X and defines a unique additive mapping A : X → Y such

that and

(3.3) µf(x)−A(x)(t) ≥ µ′
φ(x,2x,x)

(
(1− 2α)t

α

)
.

for all x ∈ X and t > 0.

Proof. Putting y = 2x and z = x in (3.2), we see that

(3.4) µf(2x)−2f(x)(t) ≥ µ′
φ(x,2x,x)(t).

Replacing x by x
2 in (3.4), we obtain

(3.5) µ2f( x
2 )−f(x)(t) ≥ µ′

φ( x
2 ,x,

x
2 )
(t) ≥ µ′

φ(x,2x,x)

(
t

α

)
for all x ∈ X. Replacing x by x

2n in (3.5) and using (3.1), we obtain

µ2n+1f( x

2n+1 )−2nf( x
2n )

(t) ≥ µ′
φ( x

2n+1 , x
2n , x

2n+1 )

(
t

2n

)
≥ µ′

φ(x,2x,x)

(
t

2nαn+1

)
and so

µ2nf( x
2n )−f(x)

(
n−1∑
k=0

2kαk+1t

)
= µ∑n−1

k=0 2k+1f( x

2k+1 )−2kf( x

2k
)

(
n−1∑
k=0

2kαk+1t

)
≥ Tn−1

k=0

(
µ2k+1f( x

2k+1 )−2kf( x

2k
)(2

kαk+1t)
)

≥ Tn−1
k=0

(
µ′
φ(x,2x,x)(t)

)
= µ′

φ(x,2x,x)(t).

This implies that

(3.6) µ2nf( x
2n )−f(x)(t) ≥ µ′

φ(x,2x,x)

(
t∑n−1

k=0 2
kαk+1

)
.
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Replacing x by x
2p in (3.6), we obtain

(3.7) µ2n+pf( x

2n+p )−2pf( x
2p )

(t) ≥ µ′
φ(x,2x,x)

(
t∑n+p−1

k=p 2kαk+1

)
.

Since limp,n→∞ µ′
φ(x,2x,x)

(
t∑n+p−1

k=p 2kαk+1

)
= 1, it follows that

{
2nf( x

2n )
}∞
n=1

is a Cauchy sequence in a complete RN-space (Y, µ,min) and so there exists a
point A(x) ∈ Y such that limn→∞ 2nf

(
x
2n

)
= A(x). Fix x ∈ X and put p = 0

in (3.7) and so, for any ϵ > 0,

µA(x)−f(x)(t+ ϵ) ≥ T
(
µA(x)−2nf( x

2n )
(ϵ), µ2nf( x

2n )−f(x)(t)
)

≥ T

(
µA(x)−2nf( x

2n )
(ϵ), µ′

φ(x,2x,x)

(
t∑n−1

k=0 2
kαk+1

))
.(3.8)

Taking n → ∞ in (3.8), we get

(3.9) µA(x)−f(x)(t+ ϵ) ≥ µ′
φ(x,2x,x)

(
(1− 2α)t

α

)
.

Since ϵ is arbitrary, by taking ϵ → 0 in (3.9), we get

µA(x)−f(x)(t) ≥ µ′
φ(x,2x,x)

(
(1− 2α)t

α

)
.

Replacing x, y and z by x
2n ,

y
2n and z

2n in (3.2), respectively, we get

µ2nf( x+y+z

2n+1 )+2nf( x−y+z

2n+1 )−2nf( x
2n )−2nf( z

2n )
(t) ≥ µ′

φ( x
2n , y

2n , z
2n )

(
t

2n

)
for all x, y, z ∈ X and t > 0. Since limn→∞ µ′

φ( x
2n , y

2n , z
2n )

(
t
2n

)
= 1, we conclude

that A satisfies (0.1). On the other hand

2A
(x
2

)
−A(x) = lim

n→∞
2n+1f

( x

2n+1

)
− lim

n→∞
2nf

( x

2n

)
= 0.

This implies that A : X → Y is an additive mapping. To prove the uniqueness
of the additive mapping A, assume that there exists another additive mapping
L : X → Y which satisfies (3.3). Then we have

µA(x)−L(x)(t) = lim
n→∞

µ2nA( x
2n )−2nL( x

2n )
(t)

≥ lim
n→∞

min

{
µ2nA( x

2n )−2nf( x
2n )

(
t

2

)
, µ2nf( x

2n )−2nL( x
2n )

(
t

2

)}
≥ lim

n→∞
µ′
φ( x

2n
, 2x
2n

, x
2n )

(
(1− 2α)t

2n

)
≥ lim

n→∞
µ′
φ(x,2x,x)

(
(1− 2α)t

2nαn

)
.

Since limn→∞ µ′
φ(x,2x,x)

(
(1−2α)t
2nαn

)
= 1. Therefore, it follows that µA(x)−L(x)(t) =

1 for all t > 0 and so A(x) = L(x). This completes the proof. □
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Corollary 3.2. Let X be a real normed linear space, (Z, µ′,min) be an RN-
space and (Y, µ,min) be a complete RN-space. Let r be a positive real number
with r > 1 , z0 ∈ Z and f : X → Y be a mapping with f(0) = 0 satisfying

(3.10) µf( x+y+z
2 )+f( x−y+z

2 )−f(x)−f(z)(t) ≥ µ′
(∥x∥r+∥y∥r+∥z∥r)z0

(t)

for all x, y ∈ X and t > 0. Then the limit A(x) = limn→∞ 2nf
(

x
2n

)
exists for

all x ∈ X and defines a unique additive mapping A : X → Y such that and

µf(x)−A(x)(t) ≥ µ′
∥x∥pz0

(
(2r − 2)t

2r + 2

)
for all x ∈ X and t > 0.

Proof. Let α = 2−r and φ : X3 → Z be a mapping defined by φ(x, y, z) =
(∥x∥r + ∥y∥r + ∥z∥r)z0. Then, from Theorem 3.1, the conclusion follows. □
Theorem 3.3. Let X be a real linear space, (Z, µ′,min) be an RN-space
and φ : X3 → Z be a function such that there exists 0 < α < 2 such that
µ′
φ(2x,2y,2z)(t) ≥ µ′

αφ(x,y,z)(t) for all x ∈ X and t > 0 and

lim
n→∞

µ′
φ(2nx,2ny,2nz)(2

nx) = 1

for all x, y, z ∈ X and t > 0. Let (Y, µ,min) be a complete RN-space. If
f : X → Y be a mapping with f(0) = 0 satisfying (3.2). Then the limit

A(x) = limn→∞
f(2nx)

2n exists for all x ∈ X and defines a unique additive
mapping A : X → Y such that and

(3.11) µf(x)−A(x)(t) ≥ µ′
φ(x,2x,x)((2− α)t).

for all x ∈ X and t > 0.

Proof. It follows from (3.4) that

(3.12) µ f(2x)
2 −f(x)

(t) ≥ µ′
φ(x,2x,x)(2t).

Replacing x by 2nx in (3.12), we obtain that

µ f(2n+1x)

2n+1 − f(2nx)
2n

(t) ≥ µ′
φ(2nx,2n+1x,2nx)(2

n+1t) ≥ µφ(x,2x,x)

(
2n+1t

αn

)
.

The rest of the proof is similar to the proof of Theorem 3.1. □
Corollary 3.4. Let X be a real normed linear space, (Z, µ′,min) be an RN-
space and (Y, µ,min) be a complete RN-space. Let r be a positive real number
with 0 < r < 1 , z0 ∈ Z and f : X → Y be a mapping with f(0) = 0 satisfying

(3.10). Then the limit A(x) = limn→∞
f(2nx)

2n exists for all x ∈ X and defines
a unique additive mapping A : X → Y such that and

µf(x)−A(x)(t) ≥ µ′
∥x∥pz0

(
(2− 2r)t

2r + 2

)
for all x ∈ X and t > 0.
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Proof. Let α = 2r and φ : X3 → Z be a mapping defined by φ(x, y, z) =
(∥x∥r + ∥y∥r + ∥z∥r)z0. Then, from Theorem 3.3, the conclusion follows. □

3.2. Fixed Point Method.

Theorem 3.5. Let X be a linear space, (Y, µ, TM ) be a complete RN-space
and Φ be a mapping from X3 to D+ (Φ(x, y, z) is denoted by Φx,y.z) such that
there exists 0 < α < 1

2 such that

(3.13) Φ2x,2y,2z(t) ≤ Φx,y,z(αt)

for all x, y, z ∈ X and t > 0. Let f : X → Y be a mapping with f(0) = 0
satisfying

(3.14) µf( x+y+z
2 )+f( x−y+z

2 )−f(x)−f(z)(t) ≥ Φx,y,z(t)

for all x, y, z ∈ X and t > 0. Then, for all x ∈ X, A(x) := limn→∞ 2nf
(

x
2n

)
exists and A : X → Y is a unique additive mapping such that

(3.15) µf(x)−A(x)(t) ≥ Φx,2x,x

(
(1− 2α)t

α

)
for all x ∈ X and t > 0.

Proof. Putting y = 2x and z = x in (3.14), we have

(3.16) µ2f( x
2 )−f(x)(t) ≥ Φ x

2 ,x,
x
2
(t) ≥ Φx,2x,x

(
t

α

)
for all x ∈ X and t > 0. Consider the set S := {g : X → Y } and the generalized
metric d in S defined by

(3.17) d(f, g) = inf
u∈(0,∞)

{
µg(x)−h(x)(ut) ≥ Φx,2x,x(t), ∀x ∈ X, t > 0

}
,

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [33, Lemma
2.1]). Now, we consider a linear mapping J : (S, d) → (S, d) such that

(3.18) Jh(x) := 2h
(x
2

)
for all x ∈ X. First, we prove that J is a strictly contractive mapping with the
Lipschitz constant 2α. In fact, let g, h ∈ S be such that d(g, h) < ϵ. Then we
have µg(x)−h(x)(ϵt) ≥ Φx,2x,x(t) for all x ∈ X and t > 0 and so

µJg(x)−Jh(x)(2αϵt) = µ2g( x
2 )−2h( x

2 )
(2αϵt) = µg( x

2 )−h( x
2 )
(αϵt)

≥ Φ x
2 ,x,

x
2
(αt)

≥ Φx,2x,x(t)

for all x ∈ X and t > 0. Thus d(g, h) < ϵ implies that d(Jg, Jh) < 2αϵ. This
means that d(Jg, Jh) ≤ 2αd(g, h) for all g, h ∈ S. It follows from (3.16) that

d(f, Jf) ≤ α.
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By Theorem 1.11, there exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , that is,

(3.19) A
(x
2

)
=

1

2
A(x)

for all x ∈ X. The mapping A is a unique fixed point of J in the set Ω = {h ∈
S : d(g, h) < ∞}. This implies that A is a unique mapping satisfying (3.19)
such that there exists u ∈ (0,∞) satisfying µf(x)−A(x)(ut) ≥ Φx,2x,x(t) for all
x ∈ X and t > 0.

(2) d(Jnf,A) → 0 as n → ∞. This implies the equality

lim
n→∞

2nf
( x

2n

)
= A(x)

for all x ∈ X.
(3) d(f,A) ≤ d(f,Jf)

1−2α with f ∈ Ω, which implies the inequality d(f,A) ≤
α

1−2α and so

µf(x)−A(x)

(
αt

1− 2α

)
≥ Φx,2x,x(t)

for all x ∈ X and t > 0. This implies that the inequality (3.15) holds. On the
other hand

µ2nf( x+y+z

2n+1 )+2nf( x−y+z

2n+1 )−2nf( x
2n )−2nf( z

2n )
(t) ≥ Φ x

2n , y
2n , z

2n

(
t

2n

)
for all x, y, z ∈ X, t > 0 and n ≥ 1. By (3.13), we know that

Φ x
2n , y

2n , z
2n

(
t

2n

)
≥ Φx,y,z

(
t

(2α)n

)
.

Since limn→∞ Φx,y,z

(
t

(2α)n

)
= 1 for all x, y, z ∈ X and t > 0, we have

µA( x+y+z
2 )+A( x−y+z

2 )−A(x)−A(z)(t) = 1

for all x, y, z ∈ X and t > 0. Thus the mapping A : X → Y satisfying (0.1).
Furthermore

A(2x)− 2A(x) = lim
n→∞

2nf
( x

2n−1

)
− 2 lim

n→∞
2nf

( x

2n

)
= 2

[
lim
n→∞

2n−1f
( x

2n−1

)
− lim

n→∞
2nf

( x

2n

)]
= 0.

This completes the proof. □

Corollary 3.6. Let X be a real normed space, θ ≥ 0 and r be a real number
with r > 1. Let f : X → Y be a mapping with f(0) = 0 satisfying

(3.20) µf( x+y+z
2 )+f( x−y+z

2 )−f(x)−f(z)(t) ≥
t

t+ θ
(
∥x∥r + ∥y∥r + ∥z∥r

)
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for all x, y, z ∈ X and t > 0. Then A(x) = limn→∞ 2nf
(

x
2n

)
exists for all

x ∈ X and A : X → Y is a unique additive mapping such that

µf(x)−A(x)(t) ≥
(2r − 2)t

(2r − 2)t+ (2r + 2)θ∥x∥r

for all x ∈ X and t > 0.

Proof. The proof follows from Theorem 3.5 if we take

Φx,y,z(t) =
t

t+ θ
(
∥x∥r + ∥y∥r + ∥z∥r

)
for all x, y, z ∈ X and t > 0. In fact, if we choose α = 2−r, then we get the
desired result. □
Theorem 3.7. Let X be a linear space, (Y, µ, TM ) be a complete RN-space
and Φ be a mapping from X3 to D+ (Φ(x, y, z) is denoted by Φx,y,z) such that
for some 0 < α < 2

Φ x
2 ,

y
2 ,

z
2
(t) ≤ Φx,y,z(αt)

for all x, y, z ∈ X and t > 0. Let f : X → Y be a mapping with f(0) = 0

satisfying (3.14). Then the limit A(x) := limn→∞
f(2nx)

2n exists for all x ∈ X
and A : X → Y is a unique additive mapping such that

(3.21) µf(x)−A(x)(t) ≥ Φx,2x,x((2− α)t)

for all x ∈ X and t > 0.

Proof. Putting y = 2x and z = x in (3.14), we have

(3.22) µ f(2x)
2 −f(x)

(t) ≥ Φx,2x,x(2t)

for all x ∈ X and t > 0. Let (S, d) be the generalized metric space defined in the
proof of Theorem 3.1. Now, we consider a linear mapping J : (S, d) → (S, d)
such that

(3.23) Jh(x) :=
1

2
h(2x)

for all x ∈ X. It follows from (3.22) that d(f, Jf) ≤ 1
2 . By Theorem 1.11, there

exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , that is,

(3.24) A(2x) = 2A(x)

for all x ∈ X. The mapping A is a unique fixed point of J in the set Ω = {h ∈
S : d(g, h) < ∞}. This implies that A is a unique mapping satisfying (3.24)
such that there exists u ∈ (0,∞) satisfying µf(x)−A(x)(ut) ≥ Φx,2x,x(t) for all
x ∈ X and t > 0.
(2) d(Jnf,A) → 0 as n → ∞. This implies the equality

lim
n→∞

f(2nx)

2n
= A(x)
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for all x ∈ X.
(3) d(f,A) ≤ d(f,Jf)

1−α
2

with f ∈ Ω, which implies the inequality

µf(x)−A(x)

(
t

2− α

)
≥ Φx,2x,x(t)

for all x ∈ X and t > 0. This implies that the inequality (3.21) holds. The rest
of the proof is similar to the proof of Theorem 3.5. □

Corollary 3.8. Let X be a real normed space, θ ≥ 0 and r be a real number
with 0 < r < 1. Let f : X → Y be a mapping with f(0) = 0 satisfying (3.20).

Then the limit A(x) = limn→∞
f(2nx)

2n exists for all x ∈ X and A : X → Y is a
unique additive mapping such that

µf(x)−A(x)(t) ≥
(2− 2r)t

(2− 2r)t+ (2r + 2)θ∥x∥r

for all x ∈ X and t > 0.

Proof. The proof follows from Theorem 3.7 if we take

Φx,y(t) =
t

t+ θ(∥x∥r + ∥y∥r + ∥z∥r)
for all x, y, z ∈ X and t > 0. In fact, if we choose α = 2r, then we get the
desired result. □
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