## Bulletin of the

## Iranian Mathematical Society

Vol. 41 (2015), No. 5, pp. 1213-1233

## Title:

Approximation of an additive mapping in various normed spaces
Author(s):

M. S. Shiri and H. Azadi Kenary

# APPROXIMATION OF AN ADDITIVE MAPPING IN VARIOUS NORMED SPACES 

M. S. SHIRI AND H. AZADI KENARY*
(Communicated by Madjid Eshaghi Gordji)


#### Abstract

In this paper, using the fixed point and direct methods, we prove the generalized Hyers-Ulam-Rassias stability of the following Cauchy-Jensen additive functional equation:


$$
\begin{equation*}
f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y+z}{2}\right)=f(x)+f(z) \tag{0.1}
\end{equation*}
$$

in various normed spaces.
Keywords: Hyers-Ulam-Rassias stability, non-Archimedean normed spaces, random normed spaces.
MSC(2010): 39B22, 39B52, 39B82, 46S10, 47S10, 46S40.

## 1. Introduction

A classical question in the theory of functional equations is the following: When is it true that a function which approximately satisfies a functional equation must be close to an exact solution of the equation?. If the problem accepts a solution, we say that the equation is stable. The first stability problem concerning group homomorphisms was raised by Ulam [45] in 1940. In the next year, Hyers [23] gave a positive answer to the above question for additive groups under the assumption that the groups are Banach spaces. In 1978, Rassias [38] proved a generalization of Hyers's theorem for additive mappings.

Theorem 1.1. (Th.M. Rassias): Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space $E$ into a Banach space $E^{\prime}$ subject to the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E$, where $\epsilon$ and $p$ are constants with $\epsilon>0$ and $0 \leq p<1$. Then the limit $L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the

[^0]unique linear mapping which satisfies
$$
\|f(x)-L(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$
for all $x \in E$. Also, if for each $x \in E$ the function $f(t x)$ is continuous in $t \in \mathbb{R}$, then $L$ is linear.

This new concept is known as generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. Furthermore, in 1994, a generalization of Rassias's theorem was obtained by Gǎvruta [21] by replacing the bound $\epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ by a general control function $\varphi(x, y)$.
In 1983, a generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [44] for mapping $f: X \rightarrow Y$, where $X$ is a normed space and $Y$ is a Banach space. In 1984, Cholewa [11] noticed that the theorem of Skof is still true if the relevant domain $X$ is replaced by an Abelian group and, in 2002, Czerwik [12] proved the generalized Hyers-Ulam stability of the quadratic functional equation. The reader is referred to ( [1]- [42]) and references therein for detailed information on stability of functional equations.

In 1897, Hensel [22] has introduced a normed space which does not have the Archimedean property. It turned out that non-Archimedean spaces have many nice applications (see [13, 27, 30, 31, 36]).

Katsaras [26] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view (see [20, 29]). In particular, Bag and Samanta [5], following Cheng and Mordeson [10], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Karmosil and Michalek type [28]. They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [6].

Definition 1.2. By a non-Archimedean field we mean a field $\mathbb{K}$ equipped with a function (valuation) $|\cdot|: \mathbb{K} \rightarrow[0, \infty)$ such that, for all $r, s \in \mathbb{K}$, the following conditions hold:
(a) $|r|=0$ if and only if $r=0$;
(b) $|r s|=|r||s|$;
(c) $|r+s| \leq \max \{|r|,|s|\}$.

Clearly, by (b), $|1|=|-1|=1$ and so, by induction, it follows from (c) that $|n| \leq 1$ for all $n \geq 1$.

Definition 1.3. Let $X$ be a vector space over a scalar field $\mathbb{K}$ with a nonArchimedean non-trivial valuation $|\cdot|$.
(1) A function $\|\cdot\|: X \rightarrow \mathbb{R}$ is a non-Archimedean norm (valuation) if it satisfies the following conditions:
(a) $\|x\|=0$ if and only if $x=0$ for all $x \in X$;
(b) $\|r x\|=|r|\|x\|$ for all $r \in \mathbb{K}$ and $x \in X$;
(c) the strong triangle inequality (ultra-metric) holds, that is,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\}
$$

for all $x, y \in X$.
(2) The space $(X,\|\cdot\|)$ is called a non-Archimedean normed space.

Note that $\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: m \leq j \leq n-1\right\}$ for all $m, n \in \mathbb{N}$ with $n>m$.

Definition 1.4. Let $(X,\|\cdot\|)$ be a non-Archimedean normed space.
(a) A sequence $\left\{x_{n}\right\}$ is a Cauchy sequence in $X$ if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in $X$.
(b) The non-Archimedean normed space $(X,\|\cdot\|)$ is said to be complete if every Cauchy sequence in $X$ is convergent.

The most important examples of non-Archimedean spaces are $p$-adic numbers. A key property of $p$-adic numbers is that they do not satisfy the Archimedean axiom: for all $x, y>0$, there exists a positive integer $n$ such that $x<n y$.

Example 1.5. Fix a prime number $p$. For any nonzero rational number $x$, there exists a unique positive integer $n_{x}$ such that $x=\frac{a}{b} p^{n_{x}}$, where $a$ and $b$ are positive integers not divisible by $p$. Then $|x|_{p}:=p^{-n_{x}}$ defines a nonArchimedean norm on $\mathbb{Q}$. The completion of $\mathbb{Q}$ with respect to the metric $d(x, y)=|x-y|_{p}$ is denoted by $\mathbb{Q}_{p}$, which is called the $p$-adic number field. In fact, $\mathbb{Q}_{p}$ is the set of all formal series $x=\sum_{k \geq n_{x}}^{\infty} a_{k} p^{k}$, where $\left|a_{k}\right| \leq p-1$. The addition and multiplication between any two elements of $\mathbb{Q}_{p}$ are defined naturally. The norm $\left|\sum_{k \geq n_{x}}^{\infty} a_{k} p^{k}\right|_{p}=p^{-n_{x}}$ is a non-Archimedean norm on $\mathbb{Q}_{p}$ and $\mathbb{Q}_{p}$ is a locally compact filed.

In random stability, we adopt the usual terminology, notions and conventions of the theory of random normed spaces as in [43].
Throughout this paper, let $\Delta^{+}$denote the set of all probability distribution functions $F: \mathbb{R} \cup[-\infty,+\infty] \rightarrow[0,1]$ such that $F$ is left-continuous and nondecreasing on $\mathbb{R}$ and $F(0)=0, F(+\infty)=1$. It is clear that the set $D^{+}=\left\{F \in \Delta^{+}: l^{-} F(-\infty)=1\right\}$, where $l^{-} F(x)=\lim _{t \rightarrow x^{-}} F(t)$, is a subset of $\Delta^{+}$. The set $\Delta^{+}$is partially ordered by the usual point-wise ordering of functions, that is, $F \leq G$ if and only if $F(t) \leq G(t)$ for all $t \in \mathbb{R}$. For any $a \geq 0$, the element $H_{a}(t)$ of $D^{+}$is defined by

$$
H_{a}(t)= \begin{cases}0, & \text { if } t \leq a \\ 1, & \text { if } t>a\end{cases}
$$

We can easily show that the maximal element in $\Delta^{+}$is the distribution function $H_{0}(t)$.

Definition 1.6. A function $T:[0,1]^{2} \rightarrow[0,1]$ is a continuous triangular norm (briefly, a $t$-norm) if $T$ satisfies the following conditions:
(a) $T$ is commutative and associative;
(b) $T$ is continuous;
(c) $T(x, 1)=x$ for all $x \in[0,1]$;
(d) $T(x, y) \leq T(z, w)$ whenever $x \leq z$ and $y \leq w$ for all $x, y, z, w \in[0,1]$.

Three typical examples of continuous $t$-norms are as follows: $T(x, y)=$ $x y, T(x, y)=\max \{x+y-1,0\}, T(x, y)=\min (x, y)$.

Recall that, if $T$ is a $t$-norm and $\left\{x_{n}\right\}$ is a sequence in $[0,1]$, then $T_{i=1}^{n} x_{i}$ is defined recursively by $T_{i=1}^{1} x_{1}=x_{1}$ and $T_{i=1}^{n} x_{i}=T\left(T_{i=1}^{n-1} x_{i}, x_{n}\right)$ for all $n \geq 2$. $T_{i=n}^{\infty} x_{i}$ is defined by $T_{i=1}^{\infty} x_{n+i}$.

Definition 1.7. A random normed space (briefly, $R N$-space) is a triple ( $X, \mu, T$ ), where $X$ is a vector space, $T$ is a continuous $t$-norm and $\mu: X \rightarrow D^{+}$is a mapping such that the following conditions hold:
(a) $\mu_{x}(t)=H_{0}(t)$ for all $t>0$ if and only if $x=0$;
(b) $\mu_{\alpha x}(t)=\mu_{x}\left(\frac{t}{|\alpha|}\right)$ for all $\alpha \in \mathbb{R}$ with $\alpha \neq 0, x \in X$ and $t \geq 0$;
(c) $\mu_{x+y}(t+s) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$ for all $x, y \in X$ and $t, s \geq 0$.

Every normed space $(X,\|\cdot\|)$ defines a random normed space $\left(X, \mu, T_{M}\right)$, where $\mu_{u}(t)=\frac{t}{t+\|u\|}$ for all $t>0$ and $T_{M}$ is the minimum $t$-norm. This space $X$ is called the induced random normed space.
If the $t$-norm $T$ is such that $\sup _{0<a<1} T(a, a)=1$, then every $R N$-space $(X, \mu, T)$ is a metrizable linear topological space with the topology $\tau$ (called the $\mu$-topology or the $(\epsilon, \delta)$-topology, where $\epsilon>0$ and $\lambda \in(0,1))$ induced by the base $\{U(\epsilon, \lambda)\}$ of neighborhoods of $\theta$, where

$$
U(\epsilon, \lambda)=\left\{x \in X: \mu_{x}(\epsilon)>1-\lambda\right\} .
$$

Definition 1.8. Let $(X, \mu, T)$ be an RN-space.
(a) A sequence $\left\{x_{n}\right\}$ in $X$ is said to be convergent to a point $x \in X$ (write $x_{n} \rightarrow x$ as $\left.n \rightarrow \infty\right)$ if

$$
\lim _{n \rightarrow \infty} \mu_{x_{n}-x}(t)=1
$$

for all $t>0$.
(b) A sequence $\left\{x_{n}\right\}$ in $X$ is called a Cauchy sequence in $X$ if

$$
\lim _{n \rightarrow \infty} \mu_{x_{n}-x_{m}}(t)=1
$$

for all $t>0$.
(c) The $R N$-space $(X, \mu, T)$ is said to be complete if every Cauchy sequence in $X$ is convergent.
Theorem 1.9. If $(X, \mu, T)$ is an $R N$-space and $\left\{x_{n}\right\}$ is a sequence such that $x_{n} \rightarrow x$, then $\lim _{n \rightarrow \infty} \mu_{x_{n}}(t)=\mu_{x}(t)$.

Definition 1.10. Let $X$ be a set. A function $d: X \times X \rightarrow[0, \infty]$ is called a generalized metric on $X$ if $d$ satisfies the following conditions:
(a) $d(x, y)=0$ if and only if $x=y$ for all $x, y \in X$;
(b) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(c) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.

Theorem 1.11. Let $(X, d)$ be a complete generalized metric space and $J: X \rightarrow$ $X$ be a strictly contractive mapping with Lipschitz constant $L<1$. Then, for all $x \in X$, either $d\left(J^{n} x, J^{n+1} x\right)=\infty$ for all nonnegative integers $n$ or there exists a positive integer $n_{0}$ such that
(a) $d\left(J^{n} x, J^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
(b) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point $y^{*}$ of $J$;
(c) $y^{*}$ is the unique fixed point of $J$ in the set $Y=\left\{y \in X: d\left(J^{n_{0}} x, y\right)<\right.$ $\infty\}$;
(d) $d\left(y, y^{*}\right) \leq \frac{d(y, J y)}{1-L}$ for all $y \in Y$.

## 2. Non-Archimedean Stability of Functional Equation (0.1)

In this section, we deal with the stability problem for the Cauchy-Jensen additive functional equation (0.1) in non-Archimedean normed spaces.

### 2.1. A Fixed Point Approach.

Theorem 2.1. Let $X$ be a non-Archimedean normed space and that $Y$ be a complete non-Archimedean space. Let $\varphi: X^{3} \rightarrow[0, \infty)$ be a function such that there exists an $\alpha<1$ with

$$
\begin{equation*}
\varphi\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right) \leq \frac{\alpha \varphi(x, y, z)}{|2|} \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in X$. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ satisfying

$$
\begin{equation*}
\left\|f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y+z}{2}\right)-f(x)-f(z)\right\|_{Y} \leq \varphi(x, y, z) \tag{2.2}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\|_{Y} \leq \frac{\alpha \varphi(x, 2 x, x)}{|2|-|2| \alpha} \tag{2.3}
\end{equation*}
$$

for all $x \in X$.
Proof. Putting $y=2 x$ and $z=x$ in (2.2), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\|_{Y} \leq \varphi(x, 2 x, x) \tag{2.4}
\end{equation*}
$$

for all $x \in X$. So

$$
\begin{equation*}
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\|_{Y} \leq \varphi\left(\frac{x}{2}, x, \frac{x}{2}\right) \leq \frac{\alpha \varphi(x, 2 x, x)}{|2|} \tag{2.5}
\end{equation*}
$$

for all $x \in X$. Consider the set $S:=\{h: X \rightarrow Y\}$ and introduce the generalized metric on $S$ :

$$
d(g, h)=\inf \left\{\mu \in(0,+\infty):\|g(x)-h(x)\|_{Y} \leq \mu \varphi(x, 2 x, x), \forall x \in X\right\}
$$

where, as usual, $\inf \phi=+\infty$. It is easy to show that $(S, d)$ is complete (see [33]). Now we consider the linear mapping $J: S \rightarrow S$ such that

$$
J g(x):=2 g\left(\frac{x}{2}\right)
$$

for all $x \in X$. Let $g, h \in S$ be given such that $d(g, h)=\varepsilon$. Then

$$
\|g(x)-h(x)\|_{Y} \leq \epsilon \varphi(x, 2 x, x)
$$

for all $x \in X$. Hence

$$
\begin{aligned}
\|J g(x)-J h(x)\|_{Y} & =\left\|2 g\left(\frac{x}{2}\right)-2 h\left(\frac{x}{2}\right)\right\|_{Y}=|2|\left\|g\left(\frac{x}{2}\right)-h\left(\frac{x}{2}\right)\right\|_{Y} \\
& \leq|2| \epsilon \varphi\left(\frac{x}{2}, x, \frac{x}{2}\right) \leq \alpha \cdot \epsilon \varphi(x, 2 x, x)
\end{aligned}
$$

for all $x \in X$. So $d(g, h)=\varepsilon$ implies that $d(J g, J h) \leq \alpha \varepsilon$. This means that $d(J g, J h) \leq \alpha d(g, h)$ for all $g, h \in S$. It follows from (2.5) that $d(f, J f) \leq \frac{\alpha}{|2|}$.
By Theorem 1.11, there exists a mapping $L: X \rightarrow Y$ satisfying the following:
(1) $L$ is a fixed point of $J$, i.e.,

$$
\begin{equation*}
\frac{L(x)}{2}=L\left(\frac{x}{2}\right) \tag{2.6}
\end{equation*}
$$

for all $x \in X$. The mapping $L$ is a unique fixed point of $J$ in the set $M=\{g \in$ $S: d(h, g)<\infty\}$. This implies that $L$ is a unique mapping satisfying (2.6) such that there exists a $\mu \in(0, \infty)$ satisfying $\|f(x)-L(x)\|_{Y} \leq \mu \varphi(x, 2 x, x)$ for all $x \in X$;
(2) $d\left(J^{n} f, L\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\begin{equation*}
\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)=L(x) \tag{2.7}
\end{equation*}
$$

for all $x \in X$;
(3) $d(f, L) \leq \frac{1}{1-\alpha} d(f, J f)$, which implies the inequality $d(f, L) \leq \frac{\alpha}{|2|-|2| \alpha}$. This implies that the inequalities (2.3) holds.

It follows from (2.1) and (2.2) that

$$
\begin{aligned}
& \left\|L\left(\frac{x+y+z}{2}\right)+L\left(\frac{x-y+z}{2}\right)-L(x)-L(z)\right\|_{Y} \\
& =\lim _{n \rightarrow \infty}|2|^{n}\left\|f\left(\frac{x+y+z}{2^{n+1}}\right)+f\left(\frac{x-y+z}{2^{n+1}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{z}{2^{n}}\right)\right\|_{Y} \\
& \leq \lim _{n \rightarrow \infty}|2|^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right) \leq \lim _{n \rightarrow \infty}|2|^{n} \cdot \frac{\alpha^{n} \varphi(x, y, z)}{|2|^{n}}=0
\end{aligned}
$$

for all $x, y, z \in X$. So

$$
L\left(\frac{x+y+z}{2}\right)+L\left(\frac{x-y+z}{2}\right)=L(x)+L(z)
$$

for all $x, y, z \in X$.
Corollary 2.2. Let $\theta$ be a positive real number and $r$ is a real number with $0<r<1$. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ satisfying
$\left\|f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y+z}{2}\right)-f(x)-f(z)\right\|_{Y} \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)$
for all $x, y, z \in X$. Then there exists a unique additive mapping $L: X \rightarrow Y$ such that

$$
\|f(x)-L(x)\|_{Y} \leq \frac{|2| \theta\left(2+|2|^{r}\right)\|x\|^{r}}{|2|^{r+1}-|2|^{2}}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 2.1 by taking

$$
\varphi(x, y, z)=\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)
$$

for all $x, y, z \in X$. Then we can choose $\alpha=|2|^{1-r}$ and we get the desired result.

Theorem 2.3. Let $X$ be a non-Archimedean normed space and that $Y$ be a complete non-Archimedean space. Let $\varphi: X^{3} \rightarrow[0, \infty)$ be a function such that there exists an $\alpha<1$ with

$$
\varphi(x, y, z) \leq|2| \alpha \varphi\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right)
$$

for all $x, y, z \in X$. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ satisfying (2.2). Then there exists a unique additive mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\|_{Y} \leq \frac{\varphi(x, 2 x, x)}{|2|-|2| \alpha} \tag{2.8}
\end{equation*}
$$

for all $x \in X$.
Proof. Let $(S, d)$ be the generalized metric space defined in the proof of Theorem 2.1. Now we consider the linear mapping $J: S \rightarrow S$ such that

$$
J g(x):=\frac{g(2 x)}{2}
$$

for all $x \in X$. Let $g, h \in S$ be given such that $d(g, h)=\varepsilon$. Then

$$
\|g(x)-h(x)\|_{Y} \leq \epsilon \varphi(x, 2 x, x)
$$

for all $x \in X$. Hence

$$
\begin{aligned}
\|J g(x)-J h(x)\|_{Y} & =\left\|\frac{g(2 x)}{2}-\frac{h(2 x)}{2}\right\|_{Y}=\frac{\|g(2 x)-h(2 x)\|_{Y}}{|2|} \\
& \leq \frac{\epsilon \varphi(2 x, 4 x, 2 x)}{|2|} \leq \frac{|2| \alpha \cdot \epsilon \varphi(x, 2 x, x)}{|2|}
\end{aligned}
$$

for all $x \in X$. So $d(g, h)=\varepsilon$ implies that $d(J g, J h) \leq \alpha \varepsilon$. This means that $d(J g, J h) \leq \alpha d(g, h)$ for all $g, h \in S$. It follows from (2.4) that $d(f, J f) \leq \frac{1}{|2|}$. By Theorem 1.11, there exists a mapping $L: X \rightarrow Y$ satisfying the following:
(1) $L$ is a fixed point of $J$, i.e.,

$$
\begin{equation*}
L(2 x)=2 L(x) \tag{2.9}
\end{equation*}
$$

for all $x \in X$. The mapping $L$ is a unique fixed point of $J$ in the set $M=\{g \in$ $S: d(h, g)<\infty\}$. This implies that $L$ is a unique mapping satisfying (2.9) such that there exists a $\mu \in(0, \infty)$ satisfying $\|f(x)-L(x)\|_{Y} \leq \mu \varphi(x, 2 x, x)$ for all $x \in X$;
(2) $d\left(J^{n} f, L\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}=L(x) \tag{2.10}
\end{equation*}
$$

for all $x \in X$;
(3) $d(f, L) \leq \frac{1}{1-\alpha} d(f, J f)$, which implies the inequality $d(f, L) \leq \frac{1}{|2|-|2| \alpha}$. This implies that the inequalities $(2.8)$ holds. The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let $\theta$ be a positive real number and let $r$ be a real number with $r>1$. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ satisfying
$\left\|f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y+z}{2}\right)-f(x)-f(z)\right\|_{Y} \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)$
for all $x, y, z \in X$. Then there exists a unique additive mapping $L: X \rightarrow Y$ such that

$$
\|f(x)-L(x)\|_{Y} \leq \frac{\theta\left(2+|2|^{r}\right)\|x\|^{r}}{|2|-|2|^{r}}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 2.3 by taking

$$
\varphi(x, y, z)=\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)
$$

for all $x, y, z \in X$. Then we can choose $\alpha=|2|^{r-1}$ and we get the desired result.
2.2. A Direct Method. In this section, using a direct method, we prove the generalized Hyers-Ulam-Rassias stability of the Cauchy-Jensen additive functional equation (0.1) in non-Archimedean space.

Theorem 2.5. Let $G$ be an additive semigroup and that $X$ is a non-Archimedean Banach space. Assume that $\zeta: G^{3} \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|2|^{n} \zeta\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right)=0 \tag{2.11}
\end{equation*}
$$

for all $x, y, z \in G$. Suppose that, for any $x \in G$, the limit

$$
\begin{equation*}
£(x)=\lim _{n \rightarrow \infty} \max _{0 \leq k<n}|2|^{k} \zeta\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k}}, \frac{x}{2^{k+1}}\right) \tag{2.12}
\end{equation*}
$$

exists. Let $f: G \rightarrow X$ be a mapping with $f(0)=0$ satisfying (2.13)

$$
\left\|f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y+z}{2}\right)-f(x)-f(z)\right\|_{X} \leq \zeta(x, y, z),(\text { for all } x, y, z \in G)
$$

Then the limit $A(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ exists for all $x \in G$ and defines an additive mapping $A: G \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq £(x) \tag{2.14}
\end{equation*}
$$

Moreover, if

$$
\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max _{j \leq k<n+j}|2|^{k} \zeta\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k}}, \frac{x}{2^{k+1}}\right)=0
$$

then $A$ is the unique additive mapping satisfying (2.14).
Proof. Putting $y=2 x$ and $z=x$ in (2.13), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\|_{Y} \leq \zeta(x, 2 x, x) \tag{2.15}
\end{equation*}
$$

for all $x \in G$. Replacing $x$ by $\frac{x}{2^{n+1}}$ in (2.15), we obtain

$$
\begin{equation*}
\left\|2^{n+1} f\left(\frac{x}{2^{n+1}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)\right\| \leq|2|^{n} \zeta\left(\frac{x}{2^{n+1}}, \frac{x}{2^{n}}, \frac{x}{2^{n+1}}\right) \tag{2.16}
\end{equation*}
$$

Thus, it follows from (2.11) and (2.16) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}_{n \geq 1}$ is a Cauchy sequence. Since $X$ is complete, it follows that $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}_{n \geq 1}$ is convergent. Set

$$
\begin{equation*}
A(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right) \tag{2.17}
\end{equation*}
$$

By induction on $n$, one can show that

$$
\begin{equation*}
\left\|2^{n} f\left(\frac{x}{2^{n}}\right)-f(x)\right\| \leq \max \left\{|2|^{k} \zeta\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k}}, \frac{x}{2^{k+1}}\right) ; 0 \leq k<n\right\} \tag{2.18}
\end{equation*}
$$

for all $n \geq 1$ and $x \in G$. By taking $n \rightarrow \infty$ in (2.18) and using (2.12), one obtains (2.14). By (2.11), (2.13) and (2.17), we get

$$
\begin{aligned}
& \left\|A\left(\frac{x+y+z}{2}\right)+A\left(\frac{x-y+z}{2}\right)-A(x)-A(z)\right\| \\
& =\lim _{n \rightarrow \infty}|2|^{n}\left\|f\left(\frac{x+y+z}{2^{n+1}}\right)+f\left(\frac{x-y+z}{2^{n+1}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{z}{2^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty}|2|^{n} \zeta\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right)=0
\end{aligned}
$$

for all $x, y, z \in X$. So

$$
\begin{equation*}
A\left(\frac{x+y+z}{2}\right)+A\left(\frac{x-y+z}{2}\right)=A(x)+A(z) \tag{2.19}
\end{equation*}
$$

for all $x, y, z \in G$. Letting $y=0$ in (2.19), we get

$$
\begin{equation*}
2 A\left(\frac{x+z}{2}\right)=A(x)+A(z) \tag{2.20}
\end{equation*}
$$

for all $x, z \in G$. Since

$$
A(0)=\lim _{n \rightarrow+\infty} 2^{n} f\left(\frac{0}{2^{n}}\right)=\lim _{n \rightarrow+\infty} 2^{n} f(0)=0
$$

by letting $y=2 x$ and $z=x$ in (2.19), we get

$$
A(2 x)=2 A(x)
$$

for all $x \in G$. Replacing $x$ by $2 x$ and $z$ by $2 z$ in (2.20), we get

$$
A(x+z)=A(x)+A(z)
$$

for all $x, z \in G$. Hence $A: G \rightarrow X$ is additive.
To prove the uniqueness property of $A$, let $L$ be another mapping satisfying (2.14). Then we have

$$
\begin{aligned}
& \|A(x)-L(x)\|_{X} \\
& =\lim _{n \rightarrow \infty}|2|^{n}\left\|A\left(\frac{x}{2^{n}}\right)-L\left(\frac{x}{2^{n}}\right)\right\|_{X} \\
& \leq \lim _{k \rightarrow \infty}|2|^{n} \max \left\{\left\|A\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|_{X},\left\|f\left(\frac{x}{2^{n}}\right)-L\left(\frac{x}{2^{n}}\right)\right\|_{X}\right\} \\
& \leq \lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max _{j \leq k<n+j}|2|^{k} \zeta\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k}}, \frac{x}{2^{k+1}}\right)=0
\end{aligned}
$$

for all $x \in G$. Therefore, $A=L$. This completes the proof.
Corollary 2.6. Let $\xi:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying

$$
\xi\left(\frac{t}{|2|}\right) \leq \xi\left(\frac{1}{|2|}\right) \xi(t), \quad \xi\left(\frac{1}{|2|}\right)<\frac{1}{|2|}
$$

for all $t \geq 0$. Assume that $\kappa>0$ and $f: G \rightarrow X$ is a mapping with $f(0)=0$ such that
$\left\|f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y+z}{2}\right)-f(x)-f(z)\right\|_{Y} \leq \kappa(\xi(|x|)+\xi(|y|)+\xi(|z|))$
for all $x, y, z \in G$. Then there exists a unique additive mapping $A: G \rightarrow X$ such that

$$
\|f(x)-A(x)\| \leq \frac{(2+|2|) \xi(|x|)}{|2|}
$$

Proof. If we define $\zeta: G^{3} \rightarrow[0, \infty)$ by $\zeta(x, y, z):=\kappa(\xi(|x|)+\xi(|y|)+\xi(|z|))$, then we have

$$
\lim _{n \rightarrow \infty}|2|^{n} \zeta\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right)=0
$$

for all $x, y, z \in G$. On the other hand, it follows that

$$
£(x)=\zeta\left(\frac{x}{2}, x, \frac{x}{2}\right)=\frac{(2+|2|) \xi(|x|)}{|2|}
$$

exists for all $x \in G$. Also, we have

$$
\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max _{j \leq k<n+j}|2|^{k} \zeta\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k}}, \frac{x}{2^{k+1}}\right)=\lim _{j \rightarrow \infty}|2|^{j} \zeta\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j}}, \frac{x}{2^{j+1}}\right)=0
$$

Thus, applying Theorem 2.5, we have the conclusion. This completes the proof.

Theorem 2.7. Let $G$ be an additive semigroup and that $X$ is a non-Archimedean Banach space. Assume that $\zeta: G^{3} \rightarrow[0,+\infty)$ is a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\zeta\left(2^{n} x, 2^{n} y, 2^{n} z\right)}{|2|^{n}}=0 \tag{2.21}
\end{equation*}
$$

for all $x, y, z \in G$. Suppose that, for any $x \in G$, the limit

$$
\begin{equation*}
£(x)=\lim _{n \rightarrow \infty} \max _{0 \leq k<n} \frac{\zeta\left(2^{k} x, 2^{k+1} x, 2^{k} x\right)}{|2|^{k}} \tag{2.22}
\end{equation*}
$$

exists and $f: G \rightarrow X$ be a mapping with $f(0)=0$ and satisfying (2.13). Then the limit $A(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in G$ and

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{£(x)}{|2|} \tag{2.23}
\end{equation*}
$$

for all $x \in G$. Moreover, if

$$
\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max _{j \leq k<n+j} \frac{\zeta\left(2^{k} x, 2^{k+1} x, 2^{k} x\right)}{|2|^{k}}=0
$$

then $A$ is the unique mapping satisfying (2.23).

Proof. It follows from (2.15), we get

$$
\begin{equation*}
\left\|f(x)-\frac{f(2 x)}{2}\right\|_{X} \leq \frac{\zeta(x, 2 x, x)}{|2|} \tag{2.24}
\end{equation*}
$$

for all $x \in G$. Replacing $x$ by $2^{n} x$ in (2.24), we obtain

$$
\begin{equation*}
\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{n+1} x\right)}{2^{n+1}}\right\|_{X} \leq \frac{\zeta\left(2^{n} x, 2^{n+1} x, 2^{n} x\right)}{|2|^{n+1}} \tag{2.25}
\end{equation*}
$$

Thus it follows from (2.21) and (2.25) that the sequence $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}_{n \geq 1}$ is convergent. Set

$$
A(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

On the other hand, it follows from (2.25) that P

$$
\begin{aligned}
\left\|\frac{f\left(2^{p} x\right)}{2^{p}}-\frac{f\left(2^{q} x\right)}{2^{q}}\right\|=\left\|\sum_{k=p}^{q-1} \frac{f\left(2^{k+1} x\right)}{2^{k+1}}-\frac{f\left(2^{k} x\right)}{2^{k}}\right\| & \leq \max _{p \leq k<q}\left\{\left\|\frac{f\left(2^{k+1} x\right)}{2^{k+1}}-\frac{f\left(2^{k} x\right)}{2^{k}}\right\|\right\} \\
& \leq \frac{1}{|2|} \max _{p \leq k<q} \frac{\zeta\left(2^{k} x, 2^{k+1} x, 2^{k} x\right)}{|2|^{k}}
\end{aligned}
$$

for all $x \in G$ and $p, q \geq 0$ with $q>p \geq 0$. Letting $p=0$, taking $q \rightarrow \infty$ in the last inequality and using (2.22), we obtain (2.23).

The rest of the proof is similar to the proof of Theorem 2.5.
Corollary 2.8. Let $\xi:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying

$$
\xi(|2| t) \leq \xi(|2|) \xi(t), \quad \xi(|2|)<|2|
$$

for all $t \geq 0$. Assume that $\kappa>0$ and $f: G \rightarrow X$ is a mapping with $f(0)=0$ satisfying

$$
\left\|f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y+z}{2}\right)-f(x)-f(z)\right\| \leq \kappa(\xi(|x|) \cdot \xi(|y|) \cdot \xi(|z|))
$$

for all $x, y, z \in G$. Then there exists a unique additive mapping $A: G \rightarrow X$ such that

$$
\|f(x)-A(x)\| \leq \kappa \xi(|x|)^{3}
$$

Proof. If we define $\zeta: G^{3} \rightarrow[0, \infty)$ by

$$
\zeta(x, y, z):=\kappa(\xi(|x|) \cdot \xi(|y|) \cdot \xi(|z|))
$$

and apply Theorem 2.7, then we get the conclusion.

## 3. Random Stability of the Functional Equation (0.1)

In this section, using the fixed point and direct methods, we prove the generalized Hyers-Ulam-Rassias stability of the functional equation (0.1) in the random normed spaces.

### 3.1. Direct Method.

Theorem 3.1. Let $X$ be a real linear space, $\left(Z, \mu^{\prime}, \min \right)$ be an $R N$-space and $\varphi: X^{3} \rightarrow Z$ be a function such that there exists $0<\alpha<\frac{1}{2}$ such that

$$
\begin{equation*}
\mu_{\varphi\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right)}^{\prime}(t) \geq \mu_{\varphi(x, y, z)}^{\prime}\left(\frac{t}{\alpha}\right) \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in X$ and $t>0$ and $\lim _{n \rightarrow \infty} \mu_{\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right)}^{\prime}\left(\frac{t}{2^{n}}\right)=1$ for all $x, y, z \in$ $X$ and $t>0$. Let $(Y, \mu, \min )$ be a complete $R N$-space. If $f: X \rightarrow Y$ is a mapping with $f(0)=0$ such that

$$
\begin{equation*}
\mu_{f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y+z}{2}\right)-f(x)-f(z)}(t) \geq \mu_{\varphi(x, y, z)}^{\prime}(t) \tag{3.2}
\end{equation*}
$$

for all $x, y, z \in X$ and $t>0$. Then the limit $A(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$
exists for all $x \in X$ and defines a unique additive mapping $A: X \rightarrow Y$ such that and

$$
\begin{equation*}
\mu_{f(x)-A(x)}(t) \geq \mu_{\varphi(x, 2 x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{\alpha}\right) \tag{3.3}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Putting $y=2 x$ and $z=x$ in (3.2), we see that

$$
\begin{equation*}
\mu_{f(2 x)-2 f(x)}(t) \geq \mu_{\varphi(x, 2 x, x)}^{\prime}(t) \tag{3.4}
\end{equation*}
$$

Replacing $x$ by $\frac{x}{2}$ in (3.4), we obtain

$$
\begin{equation*}
\mu_{2 f\left(\frac{x}{2}\right)-f(x)}(t) \geq \mu_{\varphi\left(\frac{x}{2}, x, \frac{x}{2}\right)}^{\prime}(t) \geq \mu_{\varphi(x, 2 x, x)}^{\prime}\left(\frac{t}{\alpha}\right) \tag{3.5}
\end{equation*}
$$

for all $x \in X$. Replacing $x$ by $\frac{x}{2^{n}}$ in (3.5) and using (3.1), we obtain

$$
\mu_{2^{n+1} f\left(\frac{x}{2^{n+1}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)}(t) \geq \mu_{\varphi\left(\frac{x}{2^{n+1}}, \frac{x}{2^{n}}, \frac{x}{2^{n+1}}\right)}^{\prime}\left(\frac{t}{2^{n}}\right) \geq \mu_{\varphi(x, 2 x, x)}^{\prime}\left(\frac{t}{2^{n} \alpha^{n+1}}\right)
$$

and so

$$
\begin{aligned}
\mu_{2^{n} f\left(\frac{x}{2^{n}}\right)-f(x)}\left(\sum_{k=0}^{n-1} 2^{k} \alpha^{k+1} t\right) & =\mu_{\sum_{k=0}^{n-1} 2^{k+1} f\left(\frac{x}{2^{k+1}}\right)-2^{k} f\left(\frac{x}{2^{k}}\right)}\left(\sum_{k=0}^{n-1} 2^{k} \alpha^{k+1} t\right) \\
& \geq T_{k=0}^{n-1}\left(\mu_{2^{k+1} f\left(\frac{x}{2^{k+1}}\right)-2^{k} f\left(\frac{x}{2^{k}}\right)}\left(2^{k} \alpha^{k+1} t\right)\right) \\
& \geq T_{k=0}^{n-1}\left(\mu_{\varphi(x, 2 x, x)}^{\prime}(t)\right) \\
& =\mu_{\varphi(x, 2 x, x)}^{\prime}(t) .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\mu_{2^{n} f\left(\frac{x}{2^{n}}\right)-f(x)}(t) \geq \mu_{\varphi(x, 2 x, x)}^{\prime}\left(\frac{t}{\sum_{k=0}^{n-1} 2^{k} \alpha^{k+1}}\right) \tag{3.6}
\end{equation*}
$$

Replacing $x$ by $\frac{x}{2^{p}}$ in (3.6), we obtain

$$
\begin{equation*}
\mu_{2^{n+p} f\left(\frac{x}{2^{n+p}}\right)-2^{p} f\left(\frac{x}{2^{p}}\right)}(t) \geq \mu_{\varphi(x, 2 x, x)}^{\prime}\left(\frac{t}{\sum_{k=p}^{n+p-1} 2^{k} \alpha^{k+1}}\right) . \tag{3.7}
\end{equation*}
$$

Since $\lim _{p, n \rightarrow \infty} \mu_{\varphi(x, 2 x, x)}^{\prime}\left(\frac{t}{\sum_{k=p}^{n+p-1} 2^{k} \alpha^{k+1}}\right)=1$, it follows that $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence in a complete RN -space $(Y, \mu, \min )$ and so there exists a point $A(x) \in Y$ such that $\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)=A(x)$. Fix $x \in X$ and put $p=0$ in (3.7) and so, for any $\epsilon>0$,

$$
\begin{align*}
\mu_{A(x)-f(x)}(t+\epsilon) & \geq T\left(\mu_{A(x)-2^{n} f\left(\frac{x}{2^{n}}\right)}(\epsilon), \mu_{2^{n} f\left(\frac{x}{2^{n}}\right)-f(x)}(t)\right) \\
3.8) & \geq T\left(\mu_{A(x)-2^{n} f\left(\frac{x}{2^{n}}\right)}(\epsilon), \mu_{\varphi(x, 2 x, x)}^{\prime}\left(\frac{t}{\sum_{k=0}^{n-1} 2^{k} \alpha^{k+1}}\right)\right) . \tag{3.8}
\end{align*}
$$

Taking $n \rightarrow \infty$ in (3.8), we get

$$
\begin{equation*}
\mu_{A(x)-f(x)}(t+\epsilon) \geq \mu_{\varphi(x, 2 x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{\alpha}\right) \tag{3.9}
\end{equation*}
$$

Since $\epsilon$ is arbitrary, by taking $\epsilon \rightarrow 0$ in (3.9), we get

$$
\mu_{A(x)-f(x)}(t) \geq \mu_{\varphi(x, 2 x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{\alpha}\right)
$$

Replacing $x, y$ and $z$ by $\frac{x}{2^{n}}, \frac{y}{2^{n}}$ and $\frac{z}{2^{n}}$ in (3.2), respectively, we get

$$
\mu_{2^{n} f\left(\frac{x+y+z}{2^{n+1}}\right)+2^{n} f\left(\frac{x-y+z}{2^{n+1}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)-2^{n} f\left(\frac{z}{2^{n}}\right)}(t) \geq \mu_{\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right)}^{\prime}\left(\frac{t}{2^{n}}\right)
$$

for all $x, y, z \in X$ and $t>0$. Since $\lim _{n \rightarrow \infty} \mu_{\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right)}^{\prime}\left(\frac{t}{2^{n}}\right)=1$, we conclude that $A$ satisfies (0.1). On the other hand

$$
2 A\left(\frac{x}{2}\right)-A(x)=\lim _{n \rightarrow \infty} 2^{n+1} f\left(\frac{x}{2^{n+1}}\right)-\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)=0
$$

This implies that $A: X \rightarrow Y$ is an additive mapping. To prove the uniqueness of the additive mapping $A$, assume that there exists another additive mapping $L: X \rightarrow Y$ which satisfies (3.3). Then we have

$$
\begin{aligned}
\mu_{A(x)-L(x)}(t) & =\lim _{n \rightarrow \infty} \mu_{2^{n} A\left(\frac{x}{2^{n}}\right)-2^{n} L\left(\frac{x}{2^{n}}\right)}(t) \\
& \geq \lim _{n \rightarrow \infty} \min \left\{\mu_{2^{n} A\left(\frac{x}{2^{n}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)}\left(\frac{t}{2}\right), \mu_{\left.2^{n} f\left(\frac{x}{2^{n}}\right)-2^{n} L\left(\frac{x}{2^{n}}\right)\left(\frac{t}{2}\right)\right\}}\right. \\
& \geq \lim _{n \rightarrow \infty} \mu_{\varphi\left(\frac{x}{2^{n}}, \frac{2 x}{2^{n}}, \frac{x}{2^{n}}\right)}^{\prime}\left(\frac{(1-2 \alpha) t}{2^{n}}\right) \geq \lim _{n \rightarrow \infty} \mu_{\varphi(x, 2 x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{2^{n} \alpha^{n}}\right) .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \mu_{\varphi(x, 2 x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{2^{n} \alpha^{n}}\right)=1$. Therefore, it follows that $\mu_{A(x)-L(x)}(t)=$ 1 for all $t>0$ and so $A(x)=L(x)$. This completes the proof.

Corollary 3.2. Let $X$ be a real normed linear space, $\left(Z, \mu^{\prime}, \min \right)$ be an $R N$ space and $(Y, \mu, \min )$ be a complete $R N$-space. Let $r$ be a positive real number with $r>1, z_{0} \in Z$ and $f: X \rightarrow Y$ be a mapping with $f(0)=0$ satisfying

$$
\begin{equation*}
\mu_{f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y+z}{2}\right)-f(x)-f(z)}(t) \geq \mu_{\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) z_{0}}^{\prime}(t) \tag{3.10}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Then the limit $A(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ exists for all $x \in X$ and defines a unique additive mapping $A: X \rightarrow Y$ such that and

$$
\mu_{f(x)-A(x)}(t) \geq \mu_{\|x\|^{p} z_{0}}^{\prime}\left(\frac{\left(2^{r}-2\right) t}{2^{r}+2}\right)
$$

for all $x \in X$ and $t>0$.
Proof. Let $\alpha=2^{-r}$ and $\varphi: X^{3} \rightarrow Z$ be a mapping defined by $\varphi(x, y, z)=$ $\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) z_{0}$. Then, from Theorem 3.1, the conclusion follows.

Theorem 3.3. Let $X$ be a real linear space, $\left(Z, \mu^{\prime}, \min \right)$ be an $R N$-space and $\varphi: X^{3} \rightarrow Z$ be a function such that there exists $0<\alpha<2$ such that $\mu_{\varphi(2 x, 2 y, 2 z)}^{\prime}(t) \geq \mu_{\alpha \varphi(x, y, z)}^{\prime}(t)$ for all $x \in X$ and $t>0$ and

$$
\lim _{n \rightarrow \infty} \mu_{\varphi\left(2^{n} x, 2^{n} y, 2^{n} z\right)}^{\prime}\left(2^{n} x\right)=1
$$

for all $x, y, z \in X$ and $t>0$. Let $(Y, \mu, \min )$ be a complete $R N$-space. If $f: X \rightarrow Y$ be a mapping with $f(0)=0$ satisfying (3.2). Then the limit $A(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in X$ and defines a unique additive mapping $A: X \rightarrow Y$ such that and

$$
\begin{equation*}
\mu_{f(x)-A(x)}(t) \geq \mu_{\varphi(x, 2 x, x)}^{\prime}((2-\alpha) t) \tag{3.11}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. It follows from (3.4) that

$$
\begin{equation*}
\mu_{\frac{f(2 x)}{2}-f(x)}(t) \geq \mu_{\varphi(x, 2 x, x)}^{\prime}(2 t) \tag{3.12}
\end{equation*}
$$

Replacing $x$ by $2^{n} x$ in (3.12), we obtain that

$$
\mu_{\frac{f\left(2^{n+1} x\right)}{2^{n+1}}-\frac{f\left(2^{n} x\right)}{2^{n}}}(t) \geq \mu_{\varphi\left(2^{n} x, 2^{n+1} x, 2^{n} x\right)}^{\prime}\left(2^{n+1} t\right) \geq \mu_{\varphi(x, 2 x, x)}\left(\frac{2^{n+1} t}{\alpha^{n}}\right)
$$

The rest of the proof is similar to the proof of Theorem 3.1.
Corollary 3.4. Let $X$ be a real normed linear space, $\left(Z, \mu^{\prime}, \min \right)$ be an $R N$ space and $(Y, \mu, \min )$ be a complete $R N$-space. Let $r$ be a positive real number with $0<r<1, z_{0} \in Z$ and $f: X \rightarrow Y$ be a mapping with $f(0)=0$ satisfying (3.10). Then the limit $A(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in X$ and defines a unique additive mapping $A: X \rightarrow Y$ such that and

$$
\mu_{f(x)-A(x)}(t) \geq \mu_{\|x\|^{p} z_{0}}^{\prime}\left(\frac{\left(2-2^{r}\right) t}{2^{r}+2}\right)
$$

for all $x \in X$ and $t>0$.

Proof. Let $\alpha=2^{r}$ and $\varphi: X^{3} \rightarrow Z$ be a mapping defined by $\varphi(x, y, z)=$ $\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) z_{0}$. Then, from Theorem 3.3, the conclusion follows.

### 3.2. Fixed Point Method.

Theorem 3.5. Let $X$ be a linear space, $\left(Y, \mu, T_{M}\right)$ be a complete $R N$-space and $\Phi$ be a mapping from $X^{3}$ to $D^{+}\left(\Phi(x, y, z)\right.$ is denoted by $\left.\Phi_{x, y . z}\right)$ such that there exists $0<\alpha<\frac{1}{2}$ such that

$$
\begin{equation*}
\Phi_{2 x, 2 y, 2 z}(t) \leq \Phi_{x, y, z}(\alpha t) \tag{3.13}
\end{equation*}
$$

for all $x, y, z \in X$ and $t>0$. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ satisfying

$$
\begin{equation*}
\mu_{f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y+z}{2}\right)-f(x)-f(z)}(t) \geq \Phi_{x, y, z}(t) \tag{3.14}
\end{equation*}
$$

for all $x, y, z \in X$ and $t>0$. Then, for all $x \in X, A(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ exists and $A: X \rightarrow Y$ is a unique additive mapping such that

$$
\begin{equation*}
\mu_{f(x)-A(x)}(t) \geq \Phi_{x, 2 x, x}\left(\frac{(1-2 \alpha) t}{\alpha}\right) \tag{3.15}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Putting $y=2 x$ and $z=x$ in (3.14), we have

$$
\begin{equation*}
\mu_{2 f\left(\frac{x}{2}\right)-f(x)}(t) \geq \Phi_{\frac{x}{2}, x, \frac{x}{2}}(t) \geq \Phi_{x, 2 x, x}\left(\frac{t}{\alpha}\right) \tag{3.16}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Consider the set $S:=\{g: X \rightarrow Y\}$ and the generalized metric $d$ in $S$ defined by

$$
\begin{equation*}
d(f, g)=\inf _{u \in(0, \infty)}\left\{\mu_{g(x)-h(x)}(u t) \geq \Phi_{x, 2 x, x}(t), \forall x \in X, t>0\right\} \tag{3.17}
\end{equation*}
$$

where $\inf \emptyset=+\infty$. It is easy to show that $(S, d)$ is complete (see [33, Lemma 2.1]). Now, we consider a linear mapping $J:(S, d) \rightarrow(S, d)$ such that

$$
\begin{equation*}
J h(x):=2 h\left(\frac{x}{2}\right) \tag{3.18}
\end{equation*}
$$

for all $x \in X$. First, we prove that $J$ is a strictly contractive mapping with the Lipschitz constant $2 \alpha$. In fact, let $g, h \in S$ be such that $d(g, h)<\epsilon$. Then we have $\mu_{g(x)-h(x)}(\epsilon t) \geq \Phi_{x, 2 x, x}(t)$ for all $x \in X$ and $t>0$ and so

$$
\begin{aligned}
\mu_{J g(x)-J h(x)}(2 \alpha \epsilon t)=\mu_{2 g\left(\frac{x}{2}\right)-2 h\left(\frac{x}{2}\right)}(2 \alpha \epsilon t) & =\mu_{g\left(\frac{x}{2}\right)-h\left(\frac{x}{2}\right)}(\alpha \epsilon t) \\
& \geq \Phi_{\frac{x}{2}, x, \frac{x}{2}}(\alpha t) \\
& \geq \Phi_{x, 2 x, x}(t)
\end{aligned}
$$

for all $x \in X$ and $t>0$. Thus $d(g, h)<\epsilon$ implies that $d(J g, J h)<2 \alpha \epsilon$. This means that $d(J g, J h) \leq 2 \alpha d(g, h)$ for all $g, h \in S$. It follows from (3.16) that

$$
d(f, J f) \leq \alpha
$$

By Theorem 1.11, there exists a mapping $A: X \rightarrow Y$ satisfying the following:
(1) $A$ is a fixed point of $J$, that is,

$$
\begin{equation*}
A\left(\frac{x}{2}\right)=\frac{1}{2} A(x) \tag{3.19}
\end{equation*}
$$

for all $x \in X$. The mapping $A$ is a unique fixed point of $J$ in the set $\Omega=\{h \in$ $S: d(g, h)<\infty\}$. This implies that $A$ is a unique mapping satisfying (3.19) such that there exists $u \in(0, \infty)$ satisfying $\mu_{f(x)-A(x)}(u t) \geq \Phi_{x, 2 x, x}(t)$ for all $x \in X$ and $t>0$.
(2) $d\left(J^{n} f, A\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)=A(x)
$$

for all $x \in X$.
(3) $d(f, A) \leq \frac{d(f, J f)}{1-2 \alpha}$ with $f \in \Omega$, which implies the inequality $d(f, A) \leq$ $\frac{\alpha}{1-2 \alpha}$ and so

$$
\mu_{f(x)-A(x)}\left(\frac{\alpha t}{1-2 \alpha}\right) \geq \Phi_{x, 2 x, x}(t)
$$

for all $x \in X$ and $t>0$. This implies that the inequality (3.15) holds. On the other hand

$$
\mu_{2^{n} f\left(\frac{x+y+z}{2^{n+1}}\right)+2^{n} f\left(\frac{x-y+z}{2^{n+1}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)-2^{n} f\left(\frac{z}{2^{n}}\right)}(t) \geq \Phi_{\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}}\left(\frac{t}{2^{n}}\right)
$$

for all $x, y, z \in X, t>0$ and $n \geq 1$. By (3.13), we know that

$$
\Phi_{\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}}\left(\frac{t}{2^{n}}\right) \geq \Phi_{x, y, z}\left(\frac{t}{(2 \alpha)^{n}}\right)
$$

Since $\lim _{n \rightarrow \infty} \Phi_{x, y, z}\left(\frac{t}{(2 \alpha)^{n}}\right)=1$ for all $x, y, z \in X$ and $t>0$, we have

$$
\mu_{A\left(\frac{x+y+z}{2}\right)+A\left(\frac{x-y+z}{2}\right)-A(x)-A(z)}(t)=1
$$

for all $x, y, z \in X$ and $t>0$. Thus the mapping $A: X \rightarrow Y$ satisfying (0.1). Furthermore

$$
\begin{aligned}
A(2 x)-2 A(x) & =\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n-1}}\right)-2 \lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right) \\
& =2\left[\lim _{n \rightarrow \infty} 2^{n-1} f\left(\frac{x}{2^{n-1}}\right)-\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)\right] \\
& =0
\end{aligned}
$$

This completes the proof.
Corollary 3.6. Let $X$ be a real normed space, $\theta \geq 0$ and $r$ be a real number with $r>1$. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ satisfying

$$
\begin{equation*}
\mu_{f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y+z}{2}\right)-f(x)-f(z)}(t) \geq \frac{t}{t+\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)} \tag{3.20}
\end{equation*}
$$

for all $x, y, z \in X$ and $t>0$. Then $A(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ exists for all $x \in X$ and $A: X \rightarrow Y$ is a unique additive mapping such that

$$
\mu_{f(x)-A(x)}(t) \geq \frac{\left(2^{r}-2\right) t}{\left(2^{r}-2\right) t+\left(2^{r}+2\right) \theta\|x\|^{r}}
$$

for all $x \in X$ and $t>0$.
Proof. The proof follows from Theorem 3.5 if we take

$$
\Phi_{x, y, z}(t)=\frac{t}{t+\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)}
$$

for all $x, y, z \in X$ and $t>0$. In fact, if we choose $\alpha=2^{-r}$, then we get the desired result.

Theorem 3.7. Let $X$ be a linear space, $\left(Y, \mu, T_{M}\right)$ be a complete $R N$-space and $\Phi$ be a mapping from $X^{3}$ to $D^{+}\left(\Phi(x, y, z)\right.$ is denoted by $\left.\Phi_{x, y, z}\right)$ such that for some $0<\alpha<2$

$$
\Phi_{\frac{x}{2}, \frac{y}{2}, \frac{z}{2}}(t) \leq \Phi_{x, y, z}(\alpha t)
$$

for all $x, y, z \in X$ and $t>0$. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ satisfying (3.14). Then the limit $A(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in X$ and $A: X \rightarrow Y$ is a unique additive mapping such that

$$
\begin{equation*}
\mu_{f(x)-A(x)}(t) \geq \Phi_{x, 2 x, x}((2-\alpha) t) \tag{3.21}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Putting $y=2 x$ and $z=x$ in (3.14), we have

$$
\begin{equation*}
\mu_{\frac{f(2 x)}{2}-f(x)}(t) \geq \Phi_{x, 2 x, x}(2 t) \tag{3.22}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Let $(S, d)$ be the generalized metric space defined in the proof of Theorem 3.1. Now, we consider a linear mapping $J:(S, d) \rightarrow(S, d)$ such that

$$
\begin{equation*}
J h(x):=\frac{1}{2} h(2 x) \tag{3.23}
\end{equation*}
$$

for all $x \in X$. It follows from (3.22) that $d(f, J f) \leq \frac{1}{2}$. By Theorem 1.11, there exists a mapping $A: X \rightarrow Y$ satisfying the following:
(1) $A$ is a fixed point of $J$, that is,

$$
\begin{equation*}
A(2 x)=2 A(x) \tag{3.24}
\end{equation*}
$$

for all $x \in X$. The mapping $A$ is a unique fixed point of $J$ in the set $\Omega=\{h \in$ $S: d(g, h)<\infty\}$. This implies that $A$ is a unique mapping satisfying (3.24) such that there exists $u \in(0, \infty)$ satisfying $\mu_{f(x)-A(x)}(u t) \geq \Phi_{x, 2 x, x}(t)$ for all $x \in X$ and $t>0$.
(2) $d\left(J^{n} f, A\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}=A(x)
$$

for all $x \in X$.
(3) $d(f, A) \leq \frac{d(f, J f)}{1-\frac{\alpha}{2}}$ with $f \in \Omega$, which implies the inequality

$$
\mu_{f(x)-A(x)}\left(\frac{t}{2-\alpha}\right) \geq \Phi_{x, 2 x, x}(t)
$$

for all $x \in X$ and $t>0$. This implies that the inequality (3.21) holds. The rest of the proof is similar to the proof of Theorem 3.5.

Corollary 3.8. Let $X$ be a real normed space, $\theta \geq 0$ and $r$ be a real number with $0<r<1$. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ satisfying (3.20). Then the limit $A(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in X$ and $A: X \rightarrow Y$ is a unique additive mapping such that

$$
\mu_{f(x)-A(x)}(t) \geq \frac{\left(2-2^{r}\right) t}{\left(2-2^{r}\right) t+\left(2^{r}+2\right) \theta\|x\|^{r}}
$$

for all $x \in X$ and $t>0$.
Proof. The proof follows from Theorem 3.7 if we take

$$
\Phi_{x, y}(t)=\frac{t}{t+\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)}
$$

for all $x, y, z \in X$ and $t>0$. In fact, if we choose $\alpha=2^{r}$, then we get the desired result.

## References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950) 64-66.
[2] L. M. Arriola and W. A. Beyer, Stability of the Cauchy functional equation over $p$-adic fields, Real Anal. Exchange 31 (2005/06), no. 1, 125-132.
[3] H. Azadi Kenary, On the stability of a cubic functional equation in random normed spaces, J. Math. Extension 4 (2009), 1-11.
[4] H. Azadi Kenary, Stability of a Pexiderial functional equation in random normed spaces, Rend. Circ. Mat. Palermo (2) (2011) no. 1-2, 59-68.
[5] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (2003), no. 3, 687-705.
[6] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems 151 (2005), no. 3, 513-547.
[7] L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4, no. 1, (2003).
[8] L. Cǎdariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Iteration theory (ECIT '02), 43-52, Grazer Math. Ber., 346, Karl-Franzens-Univ, Graz, 2004.
[9] L. Cadariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory Appl. 2008 (2008), Article ID 749392, 15 pages.
[10] S.C. Cheng and J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86 (1994), no. 5, 429-436.
[11] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-86.
[12] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co., Inc., River Edge, 2002.
[13] D. Deses, On the representation of non-Archimedean objects, Topology Appl. 153 (2005), no. 5-6, 774-785.
[14] J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space Bull. Amer. Math. Soc. 74 (1968) 305-309.
[15] M. Eshaghi-Gordji, S. Abbaszadeh and C. Park, On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces, J. Inequal. Appl. 2009 (2009), Article ID 153084, 26 pages.
[16] M. Eshaghi Gordji and M. Bavand Savadkouhi, Stability of mixed type cubic and quartic functional equations in random normed spaces, J. Inequal. Appl. 2009 (2009), Article ID 527462, 9 pages.
[17] M. Eshaghi Gordji, M. Bavand Savadkouhi and Ch. Park, Quadratic-quartic functional equations in RN-spaces, J. Inequal. Appl.. 2009 (2009), Article ID 868423, 14 pages.
[18] M. Eshaghi Gordji and H. Khodaei, Stability of Functional Equations, Lap Lambert Academic Publishing, 2010.
[19] M. Eshaghi Gordji, S. Zolfaghari, J. M. Rassias and M. B. Savadkouhi, Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces, Abst. Appl. Anal. 2009 (2009), Article ID 417473, 14 pages.
[20] W. Fechner, Stability of a functional inequality associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), no. 1-2, 149-161.
[21] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.
[22] K. Hensel, Ubereine news Begrundung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein 6 (1897) 83-88.
[23] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941) 222-224.
[24] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser Boston, Inc., Boston, 1998.
[25] K. Jun, H. Kim and J. M. Rassias, Extended Hyers-Ulam stability for Cauchy-Jensen mappings, J. Difference Equ. Appl. 13 (2007), no. 12, 1139-1153.
[26] A. K. Katsaras, Fuzzy topological vector spaces. II. Fuzzy Sets and Systems 12 (1984), no. 2, 143-154.
[27] A. K. Katsaras and A. Beoyiannis, Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian Math. J. 6 (1999), no. 1, 33-44.
[28] I. Karmosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), no. 5, 326-334.
[29] S.V. Krishna and K .K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems 63 (1994), no. 2, 207-217.
[30] A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Mathematics and its Applications 427, Kluwer Academic Publishers, Dordrecht, 1997.
[31] Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math. 22 (1989), no. 2, 499-507.
[32] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser Boston, Inc., Boston, 1998.
[33] D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), no. 1, 567-572.
[34] M. Mohamadi, Y. J. Cho, C. Park, P. Vetro and R. Saadati, Random stability on an additive-quadratic-quartic functional equation, J. Inequal. Appl. 2010 (2010), Article ID 754210,18 pages.
[35] A. Najati and C. Park, The Pexiderized Apollonius-Jensen type additive mapping and isomorphisms between $C^{*}$-algebras, J. Difference Equ. Appl. 14 (2008), no. 5, 459-479.
[36] P. J. Nyikos, On some non-Archimedean spaces of Alexandrof and Urysohn, Topology Appl. 91 (1999), no. 1, 1-23.
[37] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), no. 1, 91-96.
[38] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
[39] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), no. 1-2, 191-200.
[40] R. Saadati and C. Park, Non-Archimedian $L$-fuzzy normed spaces and stability of functional equations, Comput. Math. Appl. 60 (2010), no. 8, 2488-2496.
[41] R. Saadati, M. Vaezpour and Y. J. Cho, A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces", J. Ineq. Appl. 2009, Article ID 214530, 9 pages.
[42] R. Saadati, M. M. Zohdi, and S. M. Vaezpour, Nonlinear L-Random Stability of an ACQ Functional Equation, J. Ineq. and Appl. 2011 (2011), Article ID 194394, 23 pages.
[43] B. Schewizer and A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland, New York, USA, 1983.
[44] F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983) 113-129.
[45] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, science ed., Wiley, New York, 1940.
(Mohammad Sadegh Shiri) Department of Mathematics, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran.

E-mail address: m.s.shiri@gmail.com
(Hassan Azadi Kenary) Department of Mathematics, College of Sciences, Yasouj University, Yasouj 75918-74831, Iran.

E-mail address: azadi@yu.ac.ir


[^0]:    Article electronically published on October 17, 2015.
    Received: 25 January 2014, Accepted: 22 July 2014.
    *Corresponding author.

