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Abstract. The aim of this paper is to present a numerical method for
singularly perturbed convection-diffusion problems with a delay. The
method is a combination of the asymptotic expansion technique and the

reproducing kernel method (RKM). First an asymptotic expansion for
the solution of the given singularly perturbed delayed boundary value
problem is constructed. Then the reduced regular delayed differential

equation is solved analytically using the RKM. An error estimate and
two numerical examples are provided to illustrate the effectiveness of the
present method. The results of numerical examples show that the present
method is accurate and efficient.
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1. Introduction

Singularly perturbed delay differential equations have attracted much at-
tention. The numerical treatment of such problems present some major com-
putational difficulties due to the presence of boundary and interior layers and
the delayed terms. Therefore, it is important to develop suitable numerical
methods to solve such problems.

Recently, there has been growing interest in numerical methods for solv-
ing singularly perturbed delay differential equations and a few special purpose
methods have been developed by some authors [3, 4, 7, 15–17, 26–29]. Ami-
raliyev, Erdogan and Amiraliyeva [3,4,7] proposed exponentially fitted methods
for singularly perturbed delay initial value problems. Kadalbajoo, Sharma and
Gupta [15–17] presented some methods for solving singularly perturbed delay
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boundary value problems. Rai and Sharma [27–29] developed numerical meth-
ods for singularly perturbed delay differential turning point problems. Patidar
and Sharma [26] developed a uniformly convergent non-standard finite differ-
ence methods for singularly perturbed differential-difference equations with de-
lay and advance. Mohapatra and Natesan [24] proposed a numerical method for
a class of singularly perturbed differential-difference equations with small delay
and shift terms, based on the upwind finite difference operator on an adaptive
grid. Subburayan and Ramanujam [31] presented an initial value technique for
singularly perturbed convection-diffusion problems with a negative shift.

Reproducing kernel theory has been applied to many fields [1–17,19–32]. Re-
cently, the RKM has been proposed for some differential and integral equations
based on reproducing kernel theory [1, 2, 8–14, 19–23, 25, 30, 32]. However, it is
very difficult to extend the application of the method to singularly perturbed
delay differential equations.

In this paper, based on the asymptotic expansion technique and the RKM,
an effective numerical method shall be presented for solving a class of singularly
perturbed delay boundary value problems.

Motivated by the work of [18, 31], we consider the following singularly per-
turbed problems:
(1.1){

−εu′′(x) + a(x)u′(x) + b(x)u(x) + c(x)u(x− 1) = f(x), x ∈ Ω∗ = (0, 1) ∪ (1, 2),
u(x) = Φ(x), x ∈ [−1, 0], u(2) = l,

where 0 < ε≪ 1, a(x) ≥ α1 > α > 0, b(x) ≥ β0 > 0, γ0 ≤ c(x) < 0, 2α+5β0+
5γ0 ≥ η > 0, η α(α1 −α) > −2γ0, a(x), b(x), Φ(x) and f(x) are assumed to be
sufficiently smooth on Ω = [0, 2], and such that (1.1) has a unique solution.

From [18], (1.1) exhibits a strong boundary layer at x = 2.
The rest of the paper is organized as follows. In the next section, an as-

ymptotic expansion for the solution of the problem (1.1) is constructed. The
RKM for reduced regular delayed differential equation is introduced in Section
3. The method for solving terminal value problem (2.2) is presented in Section
4. Error analysis is derived in Section 5. The numerical examples are given in
Section 6. Section 7 ends this paper with a brief conclusion.

2. An asymptotic expansion

In this section, an asymptotic expansion approximation to the solution of
problem (1.1) is constructed.

Let u0(x) be the solution of the reduced problem of given by{
a(x)u′0(x) + b(x)u0(x) + c(x)u0(x− 1) = f(x), x ∈ (0, 2],
u0(x) = Φ(x), x ∈ [−1, 0].

(2.1)
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Denote by vr(x) = e−
∫ 2
x

a(s)
ε ds the solution (1.1) of the terminal value problem

(TVP) {
εv′(x)− a(x)v(x) = 0, x ∈ [0, 2),
v(2) = 1.

(2.2)

In [12], an asymptotic expansion approximation was given by

uas(x) =

{
u0(x) + k1x, x ∈ [0, 1],
u0(x) + k2vr(x) + k3, x ∈ [1, 2],

(2.3)

where

k2 =
l − u0(2)

1 + (a(1)ε − 1)vr(1)
, k1 = k2vr(1)

a(1)

ε
, k3 = k2vr(1)(

a(1)

ε
− 1).

Theorem 2.1. Let u(x) be the solution of problem (1.1). The asymptotic
expansion approximation uas(x) satisfies

|u(x)− uas(x)| ≤ c ε, x ∈ [0, 2],

where c is a positive constant.

3. RKM for reduced problem (2.1)

Let

Lu0(x) =

{
a(x)u′0(x) + b(x)u0(x), x ∈ (0, 1],
a(x)u′0(x) + b(x)u0(x) + c(x)u0(x− 1), x ∈ (1, 2].

Problem (2.1) is equivalent to{
Lu0(x) = g(x),
u0(0) = Φ(0).

(3.1)

where

g(x) =

{
f(x)− c(x)Φ(x− 1), x ∈ (0, 1],
f(x), x ∈ (1, 2].

Introducing a new unknown function

w(x) = u0(x)− Φ(x),(3.2)

problem (3.1) with inhomogeneous boundary conditions can be equivalently
reduced to the problem of finding a function w(x) satisfying{

Lw(x) = F (x),
w(0) = 0.

(3.3)

where F (x) = g(x)− LΦ(x).
To solve (3.3), we first define a reproducing kernel space W 3[0, 2].
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Definition 3.1. W 3[0, 2] = {u(x) | u′′(x) is absolutely continuous, u(3)(x) ∈
L2[0, 2], u(0) = 0}. The inner product and norm in W 3[0, 2] are given, respec-
tively, by

(u(y), v(y))3 = u(0)v(0) + u′(0)v′(0) + u′′(0)v′′(0) +

∫ 2

0

u(3)v(3)dy

and
∥ u ∥3=

√
(u, u)3, u, v ∈W 3[0, 2].

Theorem 3.2. W 3[0, 2] is a reproducing kernel space and its reproducing kernel
is

k(x, y) =

{
k1(x, y), y ≤ x,
k1(y, x), y > x.

(3.4)

where k1(x, y) =
1

120y
(
10x2(y + 3)y − 5x

(
y3 − 24

)
+ y4

)
.

For the proof, one may refer to [6].

Definition 3.3. W 1[0, 2] = {u(x) | u(x) is an absolutely continuous real value
function, u′(x) ∈ L2[0, 2]}. The inner product and norm in W 1[0, 2] are given,
respectively, by

(u(y), v(y))1 = u(0)v(0) +

∫ 2

0

u′v′dy

and
∥ u ∥1=

√
(u, u)1, u, v ∈W 1[0, 2].

Theorem 3.4. W 1[0, 2] is a reproducing kernel space and its reproducing kernel
is

k(x, y) =

{
1 + y, y ≤ x,
1 + x, y > x,

(3.5)

For the proof, refer to [6].
In (3.3), obviously, L : W 3[0, 2] → W 1[0, 2] is a bounded linear operator.

Put φi(x) = k(x, xi) and ψi(x) = L∗φi(x) where L
∗ is the adjoint operator of

L . The orthonormal system {ψi(x)}∞i=1 of W 3[0, 2] can be derived from the
Gram-Schmidt orthogonalization process applied to {ψi(x)}∞i=1,

ψi(x) =
i∑

k=1

βikψk(x), (βii > 0, i = 1, 2, ...).

Theorem 3.5. If {xi}∞i=1 is dense in [0, 2], then {ψi(x)}∞i=1 is the complete
function system of W 3[0, 2].

Proof. Note here that

ψi(x) = (L∗φi)(x) = ((L∗φi)(y), k(x, y))
= (φi(y), Lyk(x, y)) = Lyk(x, y)|y=xi

.
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Hence, ψi(x) ∈W 3[0, 2].
For each fixed u(x) ∈W 3[0, 2], let (u(x), ψi(x)) = 0, (i = 1, 2, ...), which means
that

(u(x), (L∗φi)(x)) = (Lu(·), φi(·)) = (Lu)(xi) = 0.

Since {xi}∞i=1 is dense in [0, 2], (Lu)(x) = 0. It follows that u ≡ 0 from the
existence of L−1. □

Theorem 3.6. If {xi}∞i=1 is dense in [0, 2], then the solution of (3.3) is

w(x) =

∞∑
i=1

i∑
k=1

βikF (xk)ψi(x).(3.6)

Proof. From Theorem 3.4, it follows that {ψi(x)}∞i=1 is a complete orthonormal
basis in W 3[0, 2].
Note that (w(x), φi(x)) = w(xi) for each w(x) ∈W 1[0, 2]; hence we have

w(x) =
∞∑
i=1

(w(x), ψi(x))ψi(x)

=
∞∑
i=1

i∑
k=1

βik(w(x), L
∗φk(x))ψi(x)

=
∞∑
i=1

i∑
k=1

βik(Lw(x), φk(x))ψi(x)

=
∞∑
i=1

i∑
k=1

βik(F (x), φk(x))ψi(x)

=
∞∑
i=1

i∑
k=1

βikF (xk)ψi(x).

(3.7)

So, the proof is complete. □

The approximate solution wN (x) can be obtained by taking finitely many
terms in the series representation of w(x) and

wN (s) =
N∑
i=1

i∑
k=1

βikF (xk)ψi(x).(3.8)

Combining (3.8) and (3.2), leads to the approximate solution of (3.1)

u0,N (x) = wN (x) + Φ(x) =
N∑
i=1

i∑
k=1

βikF (xk)ψi(x) + Φ(x).(3.9)

Furthermore, the approximation to the asymptotic expansion uas(x) is imme-
diately obtained

UN
as(x) =

{
u0,N (x) + k1x, x ∈ [0, 1],
u0,N (x) + k2vr(x) + k3, x ∈ [1, 2],

(3.10)
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4. Method for solving TVP(2.2)

In (3.10), a closed form expression is given for the boundary layer compo-
nent. However, in many cases of variable coefficients, this closed form represen-
tation is not available. Also, it is difficult to obtain its numerical solution. Here
we develop a piecewise RKM for finding the approximate solution of TVP(2.2).

Putting s = 2− x and y(s) = v(x(s)), TVP(2.2) becomes{
εy′(s) + a(s)y(s) = 0, s ∈ (0, 2],
y(0) = 1,

(4.1)

where a(s) = a(2− s).
We will solve initial value problem (4.1) using the RKM in a piecewise fash-

ion.
Divide [0, 2] into M subintervals [sj , sj+1], j = 0, 1, . . . ,M − 1, with s0 = 0

and sM = 2. Denote by hi the length of the ith subinterval, i.e. hi = |si+1 −
si|. Then apply the RKM presented in the above section to (4.1) on every
subinterval [si, si+1].

Using the RKM(take N1 equidistant nodes) to solve (4.1) on interval [s0, s1],
one obtains the approximate solution y1,N1(s) of (4.1) on [s0, s1]. Then an
initial value condition of (4.1) on [s1, s2] is determined approximately by

y(s1) = y1,N1(s1).

So we can obtain the approximate solution y2,N1(s) of (4.1) on the second in-
terval [s1, s2] by the RKM. In the same way, the approximate solutions yi,N1(s)
of (4.1) on the intervals [si−1, si], i = 3, 4, . . . ,M .

After obtaining the approximate solutions on all subintervals, these solu-
tions are combined to obtain the approximate solution yMN1

(s) of (4.1) on the

entire interval [0, 2]. Obviously, yMN1
(s) is continuous on [0, 2]. Naturally, the

continuous approximate solution of (2.2) is obtained by vM,N1
r (x) = yMN1

(2−x).
Therefore, the approximate solution to (1.1) can be further obtained by

UN,M,N1
as (x) =

{
u0,N (x) + k1x, x ∈ [0, 1],
u0,N (x) + k2v

M,N1
r (x) + k3, x ∈ [1, 2].

(4.2)

5. Error analysis

From [3,4, 7, 15–17,24,26–29,31], we have the following Lemma.

Lemma 5.1. If w(x) is the solution of (3.3), then there exists a positive C
such that

∥w(x)∥∞ = max
x∈[0,2]

|w(x)| ≤ C ∥ Lw(x) ∥∞= C ∥ F (x) ∥∞ .
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Lemma 5.2. If 0 = x1 < x2 < · · · < xN = 2, and if a(x), b(x),Φ(x) and f(x)
are sufficiently smooth, then the approximate solution wN (x) of (3.3) satisfies

∥ LwN (x)− F (x) ∥∞= max
x∈[0,2]

|LwN − F | ≤ d1h
2,

where d1 is a positive constant and h = max
1≤i≤N−1

|xi+1 − xi|.

Proof. For the details of the proof, one may refer to [8]. □

Theorem 5.3. The approximate solution wN (s) of (3.3) satisfies

∥wN (x)− w(x)∥∞ ≤ d2 h
2,

where d2 is a positive constant.

Proof. Note that wN (x)− w(x) is the solution of{
LV = LwN − F, x ∈ (0, 2],
V (0) = 0.

From Lemma 5.1, it follows that

∥wN (x)− w(x)∥∞ ≤ C ∥ LwN (x)− Lw(x) ∥∞ .

By using Lemma 5.2, we get

∥wN (x)− w(x)∥∞ ≤ C ∥ LwN (x)− Lw(x) ∥∞≤ C d1 h
2 = d2 h

2,

where d2 is a positive constant. □

Theorem 5.4. The approximate solution u0,N (s) of (3.1) satisfies

∥u0,N (x)− u0(x)∥∞ ≤ d2 h
2.

Proof. In view of

u0,N (x) = wN (x) + Φ(x), u0(x) = w(x) + Φ(x),

by Lemma 5.1, one sees that

∥u0,N (x)− u0(x)∥∞ ≤ d2 h
2.

□

From Lemma 5.1 and 5.2, the following theorem can be obtained.

Theorem 5.5. The errors between the approximate solution UN
as(x) and the

exact solution u(x) of (1.1) satisfies

∥UN
as(x)− u(x)∥∞ ≤ d3 h

2 + c ε,

where d3 is a positive constant, c and ε are shown in Theorem 2.1.
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Proof. From (2.3) and (3.10), there exists a positive constant α such that

∥UN
as(x)− uas(x)∥∞ ≤ α ∥u0,N (x)− u0(x)∥∞.

An application of Lemma 5.2 then yields that

∥UN
as(x)− uas(x)∥∞ ≤ d3 h

2,(5.1)

where d3 is a positive constant. From Theorem 2.1, we have

∥uas(x)− u(x)∥∞ ≤ c ε.(5.2)

Note that

∥UN
as(x)− u(x)∥∞ = ∥UN

as(x)− uas(x) + uas(x)− u(x)∥∞
≤ ∥UN

as(x)− uas(x)∥∞ + ∥uas(x)− u(x)∥∞.
(5.3)

Combining (5.1), (5.2) and (5.3), leads to

∥UN
as(x)− u(x)∥∞ ≤ d3 h

2 + c ε.

□

6. Numerical examples

In this section, two examples are given to illustrate the numerical method
discussed in this paper. All computations are performed by using Mathemat-
ica 7.0. Since the exact solution for the second problem is not available, the
maximum absolute errors EN

ε are evaluated by

EN
ε = max

x∈[0,2]
|UN

as(x)− U2N
as (x)|.

Example 6.1. Consider the following singularly perturbed delay boundary
value problem used in [31]{

−εu′′(x) + 3u′(x)− u(x− 1) = 0, x ∈ Ω∗,
u(x) = 1, x ∈ [−1, 0], u(2) = 2.

Its solution is

u(x) =


c1

(
e

3x
ε − 1

)
+ x

3 + 1, x ∈ [0, 1],

e
3x−6

ε

(
2
3c1e

3/ε + 2c1
3 − c2 − 2ε

27 + 23
18

)
− 1

3c1xe
3x−3

ε − c1x
3 + c2 +

xε
27

+ 1
18 (x− 1)2 + x

3 , x ∈ [1, 2],

where

c1 =
e−6/ε

(
− ε2

27+
4ε
9 −3

)
2
3 (e−3/ε−e−6/ε)ε−4e−6/ε+3

c2 =
c1e

3/ε(−e−3/ε+ 4
ε+1)

1−e−3/ε +
2
27 e

−3/εε− ε
27−

23e−3/ε

18 +1

1−e−3/ε .

Take xi = 2(i−1)
N−1 , i = 1, 2, . . . , N and hi = 0.1ε, i = 1, 2, . . . , 60, hi =

2−6ε
M−60 , i = 61, 62, . . . ,M . The maximum absolute errors using the present

method (PM) are compared with [31] in Table 1 for ε = 2−6, 2−10, 2−13.
From the comparison, we can see that the present method can produce more
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accurate numerical results. Taking ε = 2−20, N = 100,M = 256, N1 = 30,
hi = 0.05ε, i = 1, 2, . . . , 200, hi = 2−10ε

56 , i = 201, 202, . . . , 256, the absolute

errors |UN
as − u(x)| and |UN,M,N1

as − u(x)| are shown in Figure 1.

Example 6.2. Consider the following singularly perturbed delay boundary
value problem used in [31]{

−εu′′(x) + (x+ 10)u′(x)− u(x− 1) = x, x ∈ Ω∗,
u(x) = x, x ∈ [−1, 0], u(2) = 2.

The exact solution of this problem is not available. Taking xi = (i− 1)h, h =
2

N−1 , i = 1, 2, . . . , N , the numerical results compared with [31] are given in

Table 2 for ε = 2−6, 2−10, 2−13. By such comparison, the present method can
provide more accurate approximate solutions than [31]. Taking ε = 2−20, N =
100, 200, the maximum absolute errors EN

ε are shown in Figure 2. Taking
N1 = 30 and M = 128, 256, the absolute errors |vM,N1

r (x) − vr(x)| are shown
in Figure 3.

Table 1. Comparison of the maximum absolute errors EN
ε

for Example 6.1

ε N = 64([12]) N = 128([12]) N = 128(PM(3.10)) N = M = 128, N1 = 30(PM(4.2))

2−6 7.85× 10−4 2.73× 10−4 1.24× 10−6 7.80× 10−5

2−10 7.85× 10−4 2.73× 10−4 1.24× 10−6 4.80× 10−5

2−13 7.85× 10−4 2.73× 10−4 1.24× 10−6 8.40× 10−6

Table 2. Comparison of the maximum absolute errors EN
ε

for Example 6.2

ε N = 64([12]) N = 64(PM) N = 128([12]) N = 128(PM)

2−6 2.64× 10−3 1.51× 10−4 8.39× 10−4 6.70× 10−5

2−10 2.64× 10−3 1.51× 10−4 8.39× 10−4 6.70× 10−5

2−13 2.64× 10−3 1.51× 10−4 8.39× 10−4 6.70× 10−5

7. Conclusion

This paper extends the applications of the reproducing kernel method
to singularly perturbed delay boundary value problems. An effective method
is developed for solving singularly perturbed delay boundary value problems
exhibiting a strong right boundary layer. The present method combines the
advantages of the asymptotic expansion technique and the reproducing kernel
method. The numerical results compared with the existing method show that
the present method is a valid technique for treating singularly perturbed delay
boundary value problems exhibiting a right boundary layer.
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[14] M. Inc, A. Akgül and A. Kiliçman, A novel method for solving KdV equation based
on reproducing kernel Hilbert space method, Abstr. Appl. Anal. 2013 (2013), Article ID

578942, 11 pages.



A hybrid method 1246

[15] M. K. Kadalbajoo and K. K. Sharma, Numerical treatment of boundary value problems

for second order singularly perturbed delay differential equations, Comput. Appl. Math.
24 (2005), no. 2, 151–172.

[16] M. K. Kadalbajoo and K. K. Sharma, A numerical method based on finite difference
for boundary value problems for singularly perturbed delay differential equations, Appl.

Math. Comput. 197 (2008), no. 2, 692–707.
[17] M. K. Kadalbajoo, V. Gupta, A parameter uniform B-spline collocation method for

solving singularly perturbed turning point problem having twin boundary layers, Int. J.
Comput. Math. 87 (2010), no. 14, 3218–3235.

[18] C. G. Lange and R. M. Miura, Singularly perturbation analysis of boundary-value prob-
lems for differential-difference equations, SIAM J. Appl. Math. 42 (1982) 502–530.

[19] X. Y. Li and B. Y. Wu, Error estimation for the reproducing kernel method to solve
linear boundary value problems, J. Comput. Appl. Math. 243 (2013) 10–15.

[20] X. Y. Li and B. Y. Wu, A continuous method for nonlocal functional differential equa-
tions with delayed or advanced arguments, J. Math. Anal. Appl. 409 (2014), no. 1,
485–493.

[21] Y. Lin and M. G. Cui, A numerical solution to nonlinear multi-point boundary value

problems in the reproducing kernel space, Math. Methods Appl. Sci. 34 (2011), no. 1,
44–47.

[22] M. Mohammadi and R. Mokhtari, Solving the generalized regularized long wave equation

on the basis of a reproducing kernel space, J. Comput. Appl. Math. 235 (2011), no. 14,
4003–4014.

[23] M. Mohammadi and R. Mokhtari, A reproducing kernel method for solving a class of
nonlinear systems of PDEs, Math. Model. Anal. 119 (2014), no. 2, 180–198.

[24] J. Mohapatra and S. Natesan, Uniformly convergent numerical method for singularly
perturbed differential-difference equation using grid equidistribution, Int. J. Numer.
Methods Biomed. Eng. 27 (2011), no. 9, 1427–1445.

[25] R. Mokhtari, F. T. Isfahani and M. Mohammadi, Reproducing kernel method for solving

nonlinear differential-difference equations, Abstr. Appl. Anal. 2012 (2012), Article ID
514103, 10 pages.

[26] K. C. Patidar and K. K. Sharma, Uniformly convergent non-standard finite difference
methods for singularly perturbed differential-difference equations with delay and advance,

Int. J. Numer. Methods Engrg. 66 (2006), no. 2, 272–296.
[27] P. Rai and K. K. Sharma, Numerical analysis of singularly perturbed delay differential

turning point problem, Appl. Math. Comput. 218 (2011), no. 7, 3483–3498.
[28] P. Rai and K. K. Sharma, Fitted mesh numerical method for singularly perturbed delay

differential turning point problems exhibiting boundary layers, Int. J. Comput. Math. 89
(2012), no. 7, 944–961.

[29] P. Rai and K. K. Sharma, Numerical study of singularly perturbed differential-difference

equation arising in the modeling of neuronal variability, Comput. Math. Appl. 63 (2012),
no. 1, 118–132.

[30] N. Shawagfeh, O. Abu Arqub and S. Momani, Analytical solution of nonlinear second-
order periodic boundary value problem using reproducing kernel method, J. Comput.

Anal. Appl. 16 (2014), no. 4, 750–762.
[31] V. Subburayan and N. Ramanujam, An initial value Technique for singularly perturbed

convection-diffusion problems with a negative shift, J. Optim. Theory Appl. 158 (2013),
no. 1, 234–250.

[32] W. Y. Wang and B. Han, M. Yamamoto, Inverse heat problem of determining time-
dependent source parameter in reproducing kernel space, Nonlinear Anal. Real World
Appl. 14 (2013), no. 1, 875–887.



1247 Geng and Qian

(F. Z. Geng) Department of Mathematics, Changshu Institute of Technology,

Changshu, Jiangsu 215500, China
E-mail address: gengfazhan@sina.com

(S. P. Qian) Department of Mathematics, Changshu Institute of Technology,

Changshu, Jiangsu 215500, China
E-mail address: qsp3@cslg.cn


	1. Introduction
	2. An asymptotic expansion
	3. RKM for reduced problem (2.1) 
	4. Method for solving TVP(2.2) 
	5. Error analysis
	6. Numerical examples
	7. Conclusion
	Acknowledgments
	References

