ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 5, pp. 1249-1257

Title:

A relative extending module and torsion precovers

Author(s):

M. Kemal Berktaş and S. Doğruöz

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 41 (2015), No. 5, pp. 1249–1257 Online ISSN: 1735-8515

A RELATIVE EXTENDING MODULE AND TORSION PRECOVERS

M. KEMAL BERKTAŞ * AND S. DOĞRUÖZ

(Communicated by Omid Ali S. Karamzadeh)

ABSTRACT. We first characterize τ -complemented modules with relative (pre)covers. We also introduce an extending module relative to τ -pure submodules on a hereditary torsion theory τ and give its relationship with τ -complemented modules.

Keywords: τ -pure submodule, extending module, torsion theory, (pre)covers, τ -cocompact module.

MSC(2010): Primary: 16S90; Secondary: 16D80, 13D30.

1. Introduction

In this note all rings are associative with identity and all modules are unitary right modules. For a ring R, let $\tau := (\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory on the right module category Mod-R. Modules in \mathcal{T} will be called τ -torsion and modules in \mathcal{F} will be called τ -torsionfree. Given an R-module M, $\tau(M)$ will denote the τ -torsion submodule of M. Then $\tau(M)$ is necessarily the unique largest τ -torsion submodule of M and $\tau(M/\tau(M)) = 0$. For the torsion theory $\tau := (\mathcal{T}, \mathcal{F}), \mathcal{T} \cap \mathcal{F} = 0$ and the torsion class \mathcal{T} is closed under homomorphic images, direct sums and extensions; and the torsionfree class \mathcal{F} is closed under submodules, direct products and extensions; extension means by short exact sequence. If a torsion class \mathcal{T} is closed under submodules, the torsion theory τ on Mod-R is called hereditary [2].

Let R be any ring and let τ be a torsion theory on Mod-R. For an R-module M, a submodule N of M is called τ -dense (respectively, τ -pure) in M if M/N is τ -torsion (respectively, τ -torsionfree). A submodule N of a module M is called τ -essential (in M) if N is an essential and τ -dense submodule of M (see [2]). A submodule N of a module M is called τ -closed in M if L is a submodule of M such that N is essential and τ -dense in L, one has N = L (i.e., type 1

O2015 Iranian Mathematical Society

Article electronically published on October 15, 2015.

Received: 18 March 2013, Accepted: 5 August 2014.

^{*}Corresponding author.

 τ -closed in the sense of [6]). Let N be a submodule of M, a submodule K of M containing N is called a τ -closure of N in M if N is τ -dense in K and K is τ -pure in M [5, Definition 2.1].

Clearly $\tau(M)$ and M itself are τ -pure submodules of M. The class of τ -pure submodules of M is closed under intersections and $\tau(M)$ coincides with the intersection of all τ -pure submodules of M. An R-module M is τ -injective if and only if $Ext_R^1(T, M) = 0$ for all τ -torsion R-module T (see [2] or [4]). Equivalently, M is τ -injective if and only if M is τ -pure submodule of E(M) (see [4, Theorem 2.1.1 (ii)]). For unexplained terminology see also [1], [2], [8], [11] and [13].

In this work, we proceed with the study of relative extending modules. In Section 2, we introduce a τ -torsion precover and some of its applications. In Section 3, we define τ -PES extending module and give some fundamental properties of them. This extending module is different from some other relative extending modules (see [7]). In Section 4, we give some characterization of τ -PES extending modules with τ -cocompact modules.

2. Monic τ -torsion precovers

Let R be a ring and \mathcal{X} be any class of R-modules that it contains zero module and it is closed up to isomorphisms. For an R-module M, $\varphi : X \to M$ with $X \in \mathcal{X}$ is called an \mathcal{X} -precover of M if there exists a homomorphism $f : X' \to X$ with $X' \in \mathcal{X}$ for every homomorphism $\varphi' : X' \to M$ such that $\varphi f = \varphi'$. Here a module X is also called a \mathcal{X} -precover of M. If moreover, an \mathcal{X} -precover $\varphi \in \text{Hom}(X, M)$ of M is called an \mathcal{X} -cover if every endomorphism $g : X \to X$ with $\varphi g = \varphi$ is an automorphism. We mean τ -torsion precover if class \mathcal{X} replaced with torsion class \mathcal{T} of a torsion theory $\tau = (\mathcal{T}, \mathcal{F})$ (see [10] or [15]).

The following torsion theoretic result is adapted from Garcia and Torrecillas' result in categorical terms (see [9, Proposition 4]).

Proposition 2.1. Let $\tau := (\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory on Mod-R and let M be an R-module. Then $\tau(M)$ is a τ -torsion precover of M.

Proof. Notice that $\tau(M)$ is the unique largest τ -torsion submodule of M. Now consider the following diagram

with any τ -torsion module X and arbitrary morphism $f: X \to M$. Since $f(X) \in \mathcal{T}, f(X)$ is a submodule of $\tau(M)$. This finishes the proof.

The existence of τ -pure submodules can be related to the existence of monic τ -torsion (pre)covers in the following way. The next result which is an analogue of Crivei's theorem has also a similar proof, hence its proof is not given (see [5, Lemma 2.2 and Theorem 2.4]).

Theorem 2.2. Let $\tau := (\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory on Mod-R, let M be a module and let N be a submodule of M. Then the following assertions are equivalent:

- M has a τ-pure submodule K containing N such that N is τ-dense in K (i.e., N has a τ-closure in M).
- (2) M/N has a monic τ -torsion precover.

Recall from [14] that a module M is called τ -complemented if every submodule of M is τ -dense in a direct summand of M. One of the basic characterization of τ -complemented modules is as follows:

Lemma 2.3. ([14, Proposition 1.6]) A module M is τ -complemented if and only if every τ -pure submodule of M is a direct summand of M.

Remark 2.4. Recall from [11] that the τ -closure of a module M in the injective hull E(M) of M is called a τ -injective hull of M and is denoted by $E_{\tau}(M)$. $E_{\tau}(M)$ is unique up to isomorphism. Clearly M is a τ -dense essential submodule of $E_{\tau}(M)$ and $E_{\tau}(M)/M = \tau(E(M)/M)$. Notice that by Proposition 2.1, $E_{\tau}(M)/M$ is a τ -torsion precover of E(M)/M.

Proposition 2.5. Let M be a τ -complemented module such that for every submodule N of M, M/N has a monic τ -torsion precover. Then M is an extending module.

Proof. Let N be a closed submodule of M. By hypothesis, Theorem 2.2 implies that M has a τ -pure submodule K containing N such that N is τ -dense in K. Since M is τ -complemented, by Lemma 2.3, K is a direct summand of M. By [4, Proposition 1.7.6] K is a τ -complemented module. Notice that, since N is a closed submodule of M, N is a closed submodule of K, so it is complemented in K. Therefore there exists a submodule X of K such that N is maximal with respect to the property $N \cap X = 0$. In this case $N \oplus X$ is an essential submodule of K. Since also K/N is τ -torsion, $K/(N \oplus X)$ is τ -torsion as an homomorphic image of K/N. Thus $N \oplus X$ is a τ -essential submodule of K. By using [4, Lemma 2.2.5], we have

$$E_{\tau}(K) = E_{\tau}(N \oplus X) = E_{\tau}(N) \oplus E_{\tau}(X).$$

Now

$$X \cong X/(N \cap X) \cong (N+X)/N \le K/N.$$

By a hereditary torsion theory τ , X is a τ -torsion module. Thus X and $E_{\tau}(X)$ are submodules of $\tau(M)$. Since N is essential in $E_{\tau}(N)$, N is essential in $K \cap E_{\tau}(N)$, so we have $N = K \cap E_{\tau}(N)$.

On the other hand, since K is τ -pure in M we have $\tau(M)$ is a submodule of K. Now by modularity law, $K = K \cap E_{\tau}(K) = K \cap (E_{\tau}(X) \oplus E_{\tau}(N)) =$ $E_{\tau}(X) \oplus (K \cap E_{\tau}(N)) = E_{\tau}(X) \oplus N$. Thus, N is a direct summand of M. \Box

3. τ -PES-extending modules

Recall that a nonzero submodule of a module M is *essential* in M if it has nonzero intersection with all nonzero submodules of M. A submodule K of a module M is *closed* if K has no proper essential extension in M i.e., if whenever there exists a submodule L of M containing K such that K is essential in L, one has K = L.

We say that a submodule N of a module M is τ -PES-submodule if N has nonzero intersection with every nonzero τ -pure submodule L of M, denoted by $N \leq_{\tau-PES} M$. Since $\tau(M)$ coincides with the intersection of all τ -pure submodules of M, clearly it is a τ -PES-submodule of M. In addition, a submodule K of M is called τ -PES-closed in M provided K has no proper τ -PES extension in M i.e., if whenever K is a τ -PES-submodule in a submodule L of M, one has K = L. It is also easy to see that $\tau(M)$ is not τ -PES-closed in M. Note that every module is a τ -PES-submodule of itself, a τ -PES-submodule of a module cannot be zero similarly, to essential submodules.

Definition 3.1. An *R*-module *M* is called τ -*PES-extending* if every τ -PES-closed submodule is a direct summand of *M*.

Proposition 3.2. Let R be a ring. We have the following statements for a hereditary torsion theory τ on Mod-R.

- (1) Every essential submodule of a module M is a τ -PES-submodule of M.
- (2) Every τ -PES-closed submodule is a closed submodule.
- (3) Every extending module is τ -PES-extending.
- (4) $N \leq_{\tau-PES} K \leq_{\tau-PES} M$ implies $N \leq_{\tau-PES} M$.
- (5) Every τ -dense, closed submodule of a τ -torsionfree module M is τ -PES-closed in M.

Proof. (1) Let N be an essential submodule of M. Let $0 \neq L \leq M$ and let $M/L \in \mathcal{F}$. By hypothesis $0 \neq L \cap N$. Therefore N is a τ -PES-submodule of M. (2) and (3) are clear by (1).

(4) Let L be a nonzero submodule of M with $M/L \in \mathcal{F}$. Since K is a τ -PES-submodule of M, $K \cap L \neq 0$. Thus $K/(K \cap L) \cong (K+L)/L \leq M/L$ and $M/L \in \mathcal{F}$ implies $K/(K \cap L) \in \mathcal{F}$. Since also N is a τ -PES-submodule of $K, N \cap (K \cap L) \neq 0$. Thus we have $0 \neq (N \cap K) \cap L \subseteq (N \cap L)$. Therefore $N \cap L \neq 0$.

(5) By the fact that every τ -dense submodule of a τ -torsionfree module M is essential in M.

Proposition 3.3. If N is a τ -PES-closed submodule of an R- module M, then there is a submodule K of M such that N is maximal in M with respect to the property $N \cap K = 0$. In particular, $N \oplus K$ is a τ -PES submodule of M.

Proof. If N is a τ -PES-closed submodule of M then N is closed in M by Proposition 3.2 (2). Thus N is a complement submodule of M. So there is a submodule K of M such that N is a maximal submodule of M and $N \cap K = 0$. By [8, p.6], $N \oplus K$ is essential in M. Thus by Proposition 3.2(1), $N \oplus K$ is a τ -PES-submodule of M.

The following corollary is an immediate consequence of Proposition 2.5 and Proposition 3.2.

Corollary 3.4. Let M be a τ -complemented module such that for every submodule N of M, M/N has a monic τ -torsion precover. Then M is τ -PESextending.

- **Example 3.5.** (1) Every semisimple module is τ -PES-extending because every submodule is a direct summand. Also, injective modules and uniform modules provide examples of modules that are τ -PES-extending by Proposition 3.2.
 - (2) Recall that a non zero module M is called τ-cocritical if M is τtorsionfree and every non zero submodule of M is τ-dense in M. Since every proper submodule of a τ-cocritical module is essential by [4, Proposition 1.4.2 (iii)], so it is uniform; thus, it is extending and, consequently, it is τ-PES-extending.

The converse of Proposition 3.2 (3) is not true in general. See the following example.

Example 3.6. ([6, Example 2.4]) Consider the ring $R = \begin{bmatrix} F & F & F \\ 0 & F & 0 \\ 0 & 0 & F \end{bmatrix}$,

where F is a field. If τ_I is the torsion theory on Mod-R corresponding to the $\begin{bmatrix} F & F & F \end{bmatrix}$

 $idempotent \ ideal \ I = \begin{bmatrix} F & F & F \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ that \ is$ $\mathcal{T} := \begin{bmatrix} N \in M \text{ ad } P : NL & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ then \ the \ following$

 $\mathcal{T}_I := \{N \in Mod - R : \overline{NI} = 0\}, \text{ then the followings hold for the right R-module } M := R_R.$

- (1) M is a τ_I -PES-extending module, but it is not extending.
- (2) M has direct summands that are not a τ_I -PES-closed submodule.
- (3) The τ_I -torsion submodule $\tau_I(M)$ of M is neither a direct summand nor τ_I -PES-closed in M.

Proof. (1) Since there is no τ_I -PES-closed submodule of M at all, we say that M is a τ_I -PES-extending module. We know that it is not extending by [12].

(2) Consider
$$M = I_1 \oplus I$$
 for $I_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & F & 0 \\ 0 & 0 & F \end{bmatrix}$ and $I = \begin{bmatrix} F & F & F \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
It is easy to see that the τ_I -torsion submodule of M is $\tau_I(M) =$

- $\left[\begin{array}{rrrr} 0 & F & F \\ 0 & F & 0 \\ 0 & 0 & F \end{array}\right].$

Neither I nor I_1 is a τ_I -PES-closed submodule of M since I is a τ_I -PES-submodule of M and I_1 is τ_I -PES-submodule in $\tau_I(M)$.

(3) It is also easy to see that $\tau_I(M)$ is not a direct summand of M. Since $\tau_I(M)$ is τ_I -PES-submodule in M, it is not τ_I -PES-closed in M either.

Lemma 3.7. For every submodule N of a module M, there exists a τ -PESclosed submodule K of M such that N is a τ -PES-submodule of K.

Proof. It is easy to see by Zorn's Lemma as follows.

Let $S = \{H \leq M : N \leq_{\tau - PES} H\}$. Since N is a τ -PES-submodule in N itself, N belongs to S, thus S is non empty. Let C be a chain in S and let $C = \bigcup_{C_i \in \mathcal{C}} C_i$. Claim: N is τ -PES-submodule in C. We know that $N \cap L_i \neq 0$ for every $C_i/L_i \in \mathcal{F}$. Let L be a non-zero submodule of C such that C/L is τ -torsion-free. On the other hand, $0 \neq L \cap C_i \leq C_i$ and $C_i/(L \cap C_i) \cong (C_i + \tau)$ $L)/L \leq C/L \in \mathcal{F}$ implies $C_i/(L \cap C_i)$ is τ -torsion-free. Thus $N \cap (L \cap C_i) \neq 0$ for every C_i in \mathcal{C} . Assume that $N \cap L = 0$. Then $0 = (N \cap L) \cap C_i \neq 0$ which is a contradiction. Therefore $N \cap L \neq 0$. By Zorn's Lemma there exists a maximal submodule K of M.

Definition 3.8. The τ -PES-closed submodule K of M, as it is constructed in Lemma 3.7, is called a τ -PES-closure of N in M.

As a result of Lemma 3.7, every submodule of a module M has a τ -PESclosure in M.

Proposition 3.9. A module M is τ -PES-extending if and only if every submodule of M is τ -PES-submodule in a direct summand of M.

Proof. Let K be any τ -PES-closed submodule of M. By hypothesis, there exists a direct summand L of M such that K is a τ -PES submodule of L. Since K is a τ -PES-closed submodule of M, we have K = L. Therefore M is τ -PES-extending. The converse is clear by Lemma 3.7.

Berktaş and Doğruöz

4. τ -cocompact modules

Recall from [3, Definition 2.3] that a module M is τ -compact if every nonzero submodule of M is τ -dense in M.

Corollary 4.1. If a module M is τ -compact and τ -PES-extending then it is τ -complemented.

Proof. Let N be any submodule of M. Since M is τ -PES-extending, by Proposition 3.9 there exists a direct summand D of M such that N is a τ -PES submodule of D. Because M is τ -compact, then N is τ -dense in M and consequently N is τ -dense in D. Thus, N is τ -dense in a direct summand D of M.

As a dual of τ -compact module, we give the following definition.

Definition 4.2. We say that a module M is called τ -cocompact if every nonzero submodule of M is τ -pure in M.

It is easy to check that if $B \leq B'$ and B is τ -pure in M, then B is τ -pure in B'. Thus, if M is a τ -cocompact module, then every submodule of M is a τ -cocompact module.

Now we have the following easy observation.

Corollary 4.3. If a module M is τ -cocompact, then every quotient module of M has a no non-zero τ -torsion precover.

Proof. Let N be an arbitrary submodule of M. Since M is a τ -cocompact, then we have N is τ -pure in M, hence $\tau(M/N) = 0$. Then apply Proposition 2.1.

Proposition 4.4. If a module M is τ -cocompact then every τ -PES-submodule of M is essential in M.

Proof. Let N be a τ -PES submodule of M. Then N has nonzero intersection with every nonzero τ -pure submodule L of M. Since M is τ -cocompact, every submodule of M is τ -pure, hence N has nonzero intersection with every submodule L of M. This completes the proof.

Corollary 4.5. Let M be a τ -cocompact module. Then M is extending if and only if M is τ -PES-extending.

Proof. If M is extending, it is τ -PES-extending by Proposition 3.2. Conversely, let K be a closed submodule of M. Claim: K is τ -PES-closed in M. Suppose not. Then there exists a submodule L of M such that K is a τ -PES-submodule in L. Since M is a τ -cocompact, every τ -PES-submodule of M is essential in M by Proposition 4.4. Therefore K is essential in L. This is a contradiction. Thus K is τ -PES-closed in M. By hypothesis K is a direct summand of M. Hence, M is an extending module.

Let U and M both be R-modules. Recall that U is M-injective if, for every submodule N of M, every homomorphism $\varphi : N \to U$ can be extended to a homomorphism $\psi : M \to U$ such that $\psi(x) = \varphi(x)$, for all x element of N. A class of R-modules $\{M_i : i \in I\}$, where I is an index set, is called *relatively injective* if M_i is M_j -injective for every pair of distinct $i, j \in I$ [12].

As a consequence of definition of τ -cocompact modules and by using Corollary 4.5 we have the following fact:

Theorem 4.6. Let M be a τ -cocompact module and let $M = M_1 \oplus M_2 \oplus ... \oplus M_n$ finite direct sum of relatively injective modules M_i for i = 1, ..., n. Then M is τ -PES-extending if and only if all M_i are τ -PES-extending.

Proposition 4.7. If a module M is τ -cocompact and τ -complemented then it is semisimple.

Proof. Let N be an arbitrary submodule of M. Since M is τ -cocompact, N is τ -pure in M. Also, since M is τ -complemented module by Lemma 2.3 N is a direct summand of M.

Acknowledgments

The authors express their gratitude to the referee and to the editor for some corrections, valuable suggestions and helpful comments.

References

- [1] F. Anderson and K. Fuller, Rings and Categories of Modules, Springer-Verlag, 1992.
- [2] P. E. Bland, Topics in torsion theory, Mathematical Research, 103, Wiley-VCH Verlag Berlin GmbH, Berlin, 1998.
- [3] S. Charalambides and J. Clark, CS modules relative to a torsion theory, Mediterr. J. Math 4 (2007), no. 3, 291–308.
- [4] S. Crivei, Injective modules relative to torsion theories, Editura fundatiei Pentru studii Europene, Efes Publishing House, Cluj-Napoca, 2004.
- [5] S. Crivei, Relatively Extending Modules, Algebr. Represent. Theor 12 (2009), no. 2-5, 319–332.
- [6] S. Doğruöz, Extending modules relative to a torsion theory, Czechoslovak Math. J 58 (133) (2008), no. 2, 381–393.
- [7] S. Doğruöz and Ö. Ürün, On extending modules: Survey, Surveys in Mathematics and Mathematical Sciences, 1, no. 2 (2012) 117–162.
- [8] N. V. Dung, D.V. Huynh, P. F. Smith, R. Wisbauer, Extending Modules, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1994.
- J. R. Garcia Rozas And B. Torrecillas, Relative injective covers, Comm. Algebra 22 (1994), no. 8, 2925–2940.
- [10] J. R. Garcia Rozas And B. Torrecillas, Torsion injective covers and resolvents, *Tsukuba J. Math.* 21 (1997), no. 3, 795–808.
- [11] J. S. Golan, Localization of Noncommutative Rings, Marcel Dekker, Inc., New York, 1975.
- [12] S. Mohamed and B.J Müller, Continuous and Discrete Modules, London Mathematical Soc. Lecture Note series 147, Cambridge University Press, Cambridge, 1990.

Berktaş and Doğruöz

- B. Stenström, Rings of Quotients, An Introduction to Methods of Ring Theory, Springer-Verlag, Berlin, 1975.
- [14] P. F. Smith, A. M. Viola-Prioli and J. E. Viola-Prioli, Modules complemented with respect to a torsion theory, *Comm. Algebra* 25 (1997), no. 4, 1307–1326.
- [15] J. Xu, Flat covers of modules, Lecture Notes in Math. 1634 1996.

(Mustafa Kemal Berktaş) Department of Mathematics, Uşak University, Uşak, Turkey

 $E\text{-}mail\ address:\ \texttt{mkb@usak.edu.tr}$

(Semta Doğruöz) Department of Mathematics, Adnan Menderes University, Aydın, Turkey

 $E\text{-}mail \ address: \verb"sdogruoz@adu.edu.tr"$