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TRIANGULARIZABILITY OF ALGEBRAS OVER
DIVISION RINGS

H. MOMENAEE KERMANI

Communicated by Heydar Radjavi

Abstract. Let V be a finite-dimensional right vector space over
a division ring D and let C be a collection of linear transforma-
tions on V. In case of vector spaces over fields some authors have
derived conditions on C which imply its triangularizability. Here,
we will generalize some of these results to the case of vector spaces
over division rings. We let C be a left artinian ring of linear trans-
formations and prove a block triangularization theorem for C. The
theorem is then used to extend two well-known results in the theory
of triangularization.

1. Introduction

Simultaneous triangularization of a collection C of operators on a
finite-dimensional vector space over a field has been studied extensively
by several mathematicians. One approach in this area is to derive var-
ious conditions on C implying its triangularizability. The well-known
theorems of Kaplansky, Levitzki, Kolchin, Guralnick, and Radjavi are
of this type. A survey of such results can be found in [5]. In case of
finite-dimensional vector spaces over a division ring D the problem is
much harder and, in most cases, extra conditions are required to obtain
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the corresponding results [7, 9, 10, 11]. For instance, in [10] C is fur-
ther assumed to be an algebra of triangularizable operators with inner
eigenvalues in the center of D and in [7] triangularization over any ex-
tension of D is allowed. In contrast to the algebraic methods of [7], the
methods employed in [9, 10, 11] have a linear algebraic nature.

In the present article our aim is to generalize some of the triangulariz-
ability results mentioned in [5] to the case of vector spaces over division
rings. In spite of the validity of few theorems such as Levitzki’s theorem
in the noncommutative case, in most cases, we need to impose extra
conditions on C to prove those reducibility or triangularizability results
which were ordinarily true in the commutative case. Various obstacles
appear when a field F is replaced by a division ring D. For example,
if A is an F -algebra in Mn(F ), then A is reducible if and only if one
finds a nonzero element x ∈ Fn such that Ax 6= Fn. That is, in case
of fields, irreducibility and transitivity are equivalent. But, when F is
replaced by D, the set Ax is not necessarily a right vector space. To be
more precise, in order to establish the reducibility of A one should find
a proper (A, D)-submodule of Dn. In [4], the distinctions of the notions
of reducibility and transitivity for algebras are illustrated.

We start off with some definitions and notations. Throughout this
article, F is a field, D is a general division ring and V is an n-dimensional
right vector space over D. We denote the set of all linear transformations
on V by L(V). The linear transformations act from the left side, while
scalars are multiplied from the right side of a vector. If we choose a basis
β for V, then the map which assigns an element of L(V) to its matrix
representation with respect to β in Mn(D) is a ring isomorphism. If A
and B are matrix representations of a linear transformation with respect
to the bases β and β′ respectively, then as in the case of fields, there
exists an invertible matrix S such that SAS−1 = B.

Let C be a nonempty collection in L(V). A subspace M of V is said
to be invariant under C if for all T ∈ C, TM ⊆M. In this case, M is
called a C-invariant subspace. The collection C is said to be reducible if
C = {0} or there exists a C-invariant subspace of V different from {0}
and V. We say that C is irreducible if it is not reducible. The collection
C is called simultaneously triangularizable or simply triangularizable, if
there exists a maximal chain of subspaces of V each of which is invariant
under C. Therefore, a linear transformation is triangularizable if and
only if its matrix representation with respect to some basis is an upper
triangular matrix. Similarly, a matrix A as a linear transformation on
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the right vector space Dn is triangularizable if and only if there exists an
invertible matrix S ∈ Mn(D) such that SAS−1 is an upper triangular
matrix.

2. Basic concepts

In this section we present a theorem which is crucial in establishing
our main results. This theorem relates noncommutative ring theory to
operator theory over division rings and is a direct consequence of the
Density Theorem [3, p. 181]. Here, for the sake of completeness, we
give a simple proof. In the following, a ring R is called a prime ring if
for any two ideals I and J of R, IJ = 0 implies that either I = 0 or
J = 0. Now, motivated by [6], we have the following lemma.

Lemma 2.1. Let D be a division ring, V be a finite-dimensional right
vector space over D, and R be an irreducible ring of linear transforma-
tions on V. Then, R is a prime ring.

Proof. Let I and J be two ideals of R such that IJ = 0. It is not
hard to see that IV and JV are R-invariant subspaces of V. If J 6= 0,
then JV 6= 0. Thus, the irreducibility of R implies that JV = V. Now,
0 = (IJ)V = I(JV) = IV. Hence, I = 0. �

To prove our theorem it is essential to remind some Wedderburn-Artin
theory [2]. If R is a left artinian ring, then the Jacobson radical of R,
denoted by J(R), is a nilpotent ideal; i.e., J(R)n = 0 for some n ∈ N .
On the other hand, Wedderburn-Artin Theorem asserts that a nonzero
ring R is semisimple left artinian if and only if

R ' Mn1(D1)×Mn2(D2)× · · · ×Mnk
(Dk)

for some natural numbers n1, n2, · · · , nk and division rings D1, D2, · · ·Dk.
Moreover, R is simple left artinian if and only if R ' Mn(D) for some
natural number n and some division ring D.

Theorem 2.2. Let D be a division ring containing F as a subfield of
its center, V be a finite-dimensional right vector space over D and R
be an irreducible ring (F -algebra) of linear transformations on V. If R
is left artinian, then R is simple left artinian and consequently there
exist a natural number m and a division ring (F -algebra) E such that
R ' Mm(E). Furthermore, m and E are unique.
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Proof. By Lemma 2.1, R is a prime ring. On the other hand, since R is
left artinian, J(R) is a nilpotent ideal [2, p. 430]. Therefore, J(R) = 0
and hence R is a semisimple left artinian ring. Now, by Wedderburn-
Artin Theorem we have the ring (F -algebra) isomorphism

R ' Mn1(D1)×Mn2(D2)× · · · ×Mnk
(Dk),

for some unique natural numbers n1, n2, · · · , nk and unique division rings
(F -algebras) D1, D2, · · · , Dk. Since R is a prime ring, k = 1. �

Remark 2.3. If R is a nonzero irreducible subring of Mn(D) which is
also left artinian, then R contains the identity matrix I. We present a
proof similar to the one given in [11]. From Theorem 2.2, R is a ring
with identity. Let I be the identity of L(V) and I ′ be the identity of
R. Since (I − I ′)R = 0, I 6= I ′ implies that Ker(I − I ′) is a nontrivial
R-invariant subspace, contradicting the irreducibility of R.

3. Main results

In case of fields, a number of triangularizability results can be derived
from the Block Triangularization Theorem [8]. In order to state a cor-
responding theorem in the noncommutative case, we need to impose a
chain condition on the ring to be put into block triangular form. So, we
consider left artinian rings of matrices. Motivated by [5], this enables
us to prove a version of the Block Triangularization Theorem.

Theorem 3.1. (Block Triangularization Theorem) Let n ∈ N, D
be a division ring, and R be a left artinian subring of Mn(D). Then,
there exists an invertible matrix S ∈ Mn(D) such that for any matrix
A ∈ R, SAS−1 has the block upper triangular form,

SAS−1 =


A11 A12 A13 · · · A1k

0 A22 A23 · · · A2k

0 0 A33 · · · A3k
...

...
...

. . .
...

0 0 0 · · · Akk

 , (3.1)

where the set {1, 2, · · · , k} is the disjoint union of subsets J1, J2, · · · , Jl

with the following properties:
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(i) For any i, 1 ≤ i ≤ k, the collection Ri = {Aii : A ∈ R} is either
zero and ni = 1 or an irreducible subring of Mni(D), where ni is the size
of the Aii. Moreover, each nonzero Ri is a simple left artinian ring.

(ii) If i and j are both in the same Js, then Ri ' Rj.
(iii) If i and j are in different subsets Js and Jt, then the set of pairs

(Aii, Ajj) that arise as A ranges over R is Ri ×Rj.
(iv) If 1 ≤ t ≤ l is such that Ri is nonzero for all i ∈ Jt, then there

exists A ∈ R such that Aii = Ini for all i ∈ Jt, and Ajj = 0 for all
j /∈ Jt.

Proof. Let

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk = Dn (3.2)

be a maximal chain of distinct R-invariant subspaces of Dn. Take a
basis β1 of V1 and extend it to a basis β2 of V2 and so on to get bases
β1 ⊂ β2 ⊂ · · · ⊂ βk for V1, V2, · · · , Vk, respectively. Put β = βk.
Obviously, with respect to the basis β, each element of R has the upper
triangular form (3.1). Also, it is evident that for 1 ≤ i ≤ k,

Ri = {Aii : A ∈ R}
is isomorphic to the ring of matrices induced by R on Vi/Vi−1 with
respect to the basis induced by βi\βi−1. For 1 ≤ i ≤ k, define the
surjection,

ϕi : R −→ Ri, ϕi(A) = Aii.

Now, since R is left artinian, then Ri is also left artinian. On the other
hand, the maximality of chain (3.2) implies that either Ri = {0} with
corresponding ni equal to 1, or Ri is an irreducible ring. Therefore, by
Theorem 2.2, Ri is either zero or simple left artinian (1 ≤ i ≤ k). This
proves (i).

In order to prove (ii) and (iii), we define a relation on the set {1, 2, · · · , k}.
We say i is linked to j if either Ri and Rj are both zero or Ri and Rj

are both nonzero and for any A ∈ R, Ajj = 0 whenever Aii = 0. Now,
if i is linked to j, then the surjection

ϕij : Ri −→ Rj , ϕij(Aii) = Ajj ,

is well-defined and is an isomorphism, since Ri is a simple ring. This
shows that the defined relation is an equivalence relation. Now, it is
clear that this relation gives the desired partition J1, J2, · · · , Jl. This
proves part (ii).
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For part (iii), we say i and j are independent if they are not linked.
Let i and j be independent. Without loss of generality, assume that Rj

is nonzero. Since i and j are not linked, then there exists B ∈ R such
that Bii = 0 and Bjj 6= 0. Consider the set,

I = {Ajj : Aii = 0, A ∈ R}.

Obviously, I is a nonzero ideal of the simple ring Rj . Thus,

I = {Ajj : Aii = 0, A ∈ R} = Rj . (3.3)

If Ri = {0}, then the assertion of part (iii) holds. If not, we would
similarly have

Ri = {Aii : Ajj = 0, A ∈ R}. (3.4)

Now, the fact that R is closed under addition establishes part (iii).
To establish the last part, let t, 1 ≤ t ≤ l, be such that Ri 6= 0, for

all i ∈ Jt. We have observed in the previous section that for all i ∈ Jt,
Ri contains Ini , the identity matrix of Mni(D). According to parts (ii)
and (iii), for any u 6= t there exists Bu ∈ R such that Bu

ii = Ini for all
i ∈ Jt and Bu

jj = 0 for all j ∈ Ju. Now, define Xt ∈ R by

Xt =
∏
u 6=t

Bu.

Clearly Xt has the desired property. �

Remark 3.2. Yahaghi [10] has shown that if F is a subfield of the
center of D and A is an F -algebra of triangularizable matrices with
inner eigenvalues in F , then we would have a block triangularization
theorem stronger than the one given here.

Our next result is a generalization of the following theorem [5]: Let F
be a field and A be an F -algebra of triangularizable matrices in Mn(F ).
Then, the following assertions are equivalent.

(i) A is triangularizable.
(ii) A + B is nilpotent whenever A and B are nilpotent matrices in
A.
(iii) For A, B ∈ A, AB is nilpotent whenever A or B is nilpotent.
First, we need to prove the following lemma.

Lemma 3.3. Let n ∈ N, D be a division ring, and R be a left artinian
subring of Mn(D). Assume that for any two nilpotent matrices A, B ∈
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R, A + B is nilpotent. If we put R into block triangular form as in
Theorem 3.1, then each Ri is either zero or a division ring.

Proof. Using the notations of Theorem 3.1, we assume that Ri 6= 0 for
some i, 1 ≤ i ≤ n. Let Ai and Bi be two nilpotent matrices in Ri. In
view of parts (ii) and (iv) of Theorem 3.1, there exist nilpotent matrices
A, B ∈ R such that Aii = Ai and Bii = Bi. Since A + B is nilpotent,
then Ai + Bi is also nilpotent. Thus, Ri has the property that the sum
of its nilpotent elements is again nilpotent, but part (i) of Theorem 3.1
together with Theorem 2.2 imply that Ri ' Mki

(Di) for some division
ring Di and some natural number ki. If ki > 1, then one can find two
nilpotent matrices in Mki

(Di) the sum of which does not happen to be
nilpotent and thus, Ri is a division ring.

Remark 3.4. A similar proof shows that the following property leads
us to the same conclusion: For A, B ∈ R, AB is nilpotent if A or B is
nilpotent.

Theorem 3.5. Let D be a division ring, n ∈ N, and R be a left artinian
subring of Mn(D). If R contains a nilpotent matrix N such that Nn−1 6=
0, then the following assertions are equivalent.

(i) R is triangularizable
(ii) A + B is nilpotent whenever A and B are nilpotent matrices in
R.
(iii) For A, B ∈ R, AB is nilpotent whenever A or B is nilpotent.

Proof. We use the notations of Theorem 3.1. Clearly (i) implies (ii)
and (iii). Assume that any of (ii) or (iii) holds. By Lemma 3.2 and its
following remark Ri is either zero or a division ring. Let i, 1 ≤ i ≤ n,
be arbitrary and consider the block triangular form of N . Since N is
nilpotent, then Nii is also nilpotent. Hence, the fact that Ri is either
zero or a division ring implies that Nii is equal to zero. Now, if nj > 1
for some j, 1 ≤ j ≤ n, then we would have Nn−1 = 0, which is a
contradiction. Thus, for all j, 1 ≤ j ≤ n, nj = 1 which means that R is
triangularizable. �

A direct consequence of Guralnick’s theorem [1] is that if A is a sub-
algebra of Mn(F ) such that any pair of matrices in A are simultaneously
triangularizable, then A is triangularizable. In the next theorem, we ex-
tend this result to subalgebras of Mn(D). Recall that a field F is called
perfect if its finite field extensions are all simple extensions.
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Theorem 3.6. Let D be a division ring and A be a finite-dimensional
F -algebra in Mn(D), where F is a perfect field contained in the center
of D. Then, A is triangularizable if and only if for any pair of matrices
A,B ∈ A, the set {A,B} is triangularizable.

Proof. The “only if” part is trivial. For the “if part” again we use
Theorem 3.1. We assume that A has the block triangular form (3.1).
It is easy to see that each Ai is a finite-dimensional F -algebra. On
the other hand, the hypothesis of the theorem implies that A + B is
nilpotent whenever A and B are nilpotent matrices in A. Therefore,
by Lemma 3.2, each Ai is a finite-dimensional division F -algebra, and
since Ai contains the identity matrix Ini , then we can regard F as all
elements of the form aIni , a ∈ F . By contradiction, let nj > 1 for some
j, 1 ≤ j ≤ n. For Aj , a field, since F is a perfect field, then Aj = F [T ]
for some T ∈ Aj . On the other hand, it is well-known that triangular-
izability is inherited by quotients. Hence, T and consequently Aj are
triangularizable, which is a contradiction. If Aj is a noncommutative
division ring, then it can be generated by two elements as an algebra
over its center [3, p. 246]. Since any pair of matrices in Aj are simulta-
neously triangularizable, then Aj is also triangularizable, which again is
a contradiction. �

If we denote the division ring of quaternions by H, then the following
result is a direct consequence of Theorem 3.6. Recall that the center of
H is the field R of real numbers.

Corollary 3.7. Let n ∈ N and A be an R-algebra in Mn(H). Then, A
is triangularizable if and only if for any A and B in A the pair {A,B}
is triangularizable.
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