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Abstract. Let F be an algebraically closed field of prime characteristic
p > 2 and (g, [p]) a finite-dimensional restricted Lie superalgebra over
F. It is shown that any finite-dimensional indecomposable g-module is a

module for a finite-dimensional quotient of the universal enveloping su-
peralgebra of g. These quotient superalgebras are called the generalized
reduced enveloping superalgebras, which generalize the notion of reduced
enveloping superalgebras. Properties and representations of these gen-

eralized reduced enveloping superalgebras are studied. Moreover, each
such superalgebra can be identified as a reduced enveloping superalgebra
of the associated restricted Lie superalgebra.
Keywords: Restricted Lie superalgebra, generalized reduced represen-

tation, indecomposable module, p-character, block.
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1. Introduction

The finite-dimensional simple Lie superalgebras over the field of complex
numbers were classified by Kac in the 1970s (cf. [8]). Although until now, the
classification of finite-dimensional simple (restricted) Lie superalgebras over a
field of prime characteristic has not yet been completed, there has been increas-
ing interest in modular representation theory of restricted Lie superalgebras in
recent years. W. Wang and L. Zhao [12, 13] initiated and developed system-
atically the modular representations of Lie superalgebras over an algebraically
closed field of characteristic p > 2. In [12], the super version of the celebrated
Kac-Weisfeiler Property was shown to be held for the basic classical Lie super-
algebras, which by definition admit an even non-degenerate supersymmetric
bilinear form and whose even subalgebras are reductive. There also has been
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increasing interest [2–5,9,11] in modular representation theory of algebraic su-
pergroups in connection with other areas in recent years. Indeed, the modular
representation theory of supergroups and Lie superalgebras has found remark-
able applications to classical mathematics (see [11] for references about some
historical remarks).

Motivated by the work [1] of C. P. Bendel on generalized reduced enveloping
algebras for restricted Lie algebras, we further consider the case of restricted
Lie superalgebras in this paper. Let (g, [p]) be a finite-dimensional restricted
Lie superalgebra over an algebraically closed field F of characteristic p > 2. It
is obvious that for each x ∈ g0̄, the element xp − x[p] is even and central in the
universal enveloping superalgebra U(g). Let Z denote the central subalgebra of
U(g) generated by all the elements xp −x[p] with x ∈ g0̄, which is the so-called
p-center. Since each irreducible g-module is finite-dimensional (cf. [12,14]), the
Lie superalgebra version of Schur’s Lemma [8, Subsection 1.1.6] implies that
the p-center Z acts by scalars on any irreducible g-module M . Then there
exists a unique χ ∈ g∗0̄ such that xp · v − x[p] · v = χ(x)pv, ∀x ∈ g0̄, v ∈ M .
Therefore, M is a module for the finite-dimensional superalgebra Uχ(g) =

U(g)/(xp − x[p] − χ(x)p | x ∈ g0̄), where (xp − x[p] − χ(x)p | x ∈ g0̄) denotes
the ideal of U(g) generated by all the elements xp − x[p] − χ(x)p with x ∈
g0̄. The superalgebra Uχ(g) is called the χ-reduced enveloping superalgebra.
More generally, a g-module M is said to have a p-character χ provided that
xp · v−x[p] · v = χ(x)pv, ∀x ∈ g0̄, v ∈M , or equivalently, it is a Uχ(g)-module.

While each simple g-module is a Uχ(g)-module for a unique χ ∈ g∗0̄, this
is not necessary true for an arbitrary indecomposable g-module. Indeed, for
any indecomposable g-module M , there exists a unique χ ∈ g∗0̄ and a least

positive integer r such that xp
r

v − (x[p])p
r−1

v = χ(x)p
r

v for all x ∈ g0̄, v ∈
M (see Theorem 3.4), i.e., it is a module for a finite-dimensional quotient

superalgebra Uχr (g) = U(g)/
(
(xp − x[p] − χ(x)p)p

r−1 | x ∈ g0̄
)
, where

(
(xp −

x[p] − χ(x)p)p
r−1 | x ∈ g0̄

)
denotes the ideal of U(g) generated by all the

elements (xp − x[p] − χ(x)p)p
r−1

with x ∈ g0̄. Each superalgebra Uχr (g) is
called a generalized χ-reduced enveloping superalgebra. In particular, when
r = 1, it coincides with the usual χ-reduced enveloping superalgebra. In some
sense, the family {Uχr (g) | χ ∈ g0̄, r ∈ N} encompasses the representation
theory of all finite-dimensional indecomposable g-modules (see Remark 3.5).

This paper is structured as follows. In Section 2, we recall some basic no-
tations and properties for restricted Lie superalgebras. Section 3 is devoted to
studying indecomposable representations of restricted Lie superalgebras. Our
main results imply that any finite-dimensional indecomposable module for a
finite-dimensional restricted Lie superalgebra g over an algebraically closed
field is a module for a finite-dimensional quotient of the universal enveloping
superalgebra. These quotient superalgebras form a two-parameter family which
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generalize the notion of reduced enveloping superalgebras. They are called the
generalized reduced enveloping superalgebras. In the final section, representa-
tion theory of the generalized χ-reduced enveloping superalgebra Uχr (g) is stud-
ied. It is shown that Uχr (g) is a Frobenius superalgebra for any r ∈ N. Then
the projective objects coincide with the injective objects in the Uχr (g)-module
category. Moreover, with some super trace condition on g, the generalized
reduced enveloping superalgebras are further proved to be symmetric super-
algebras. For any positive integer r, the collection of simple Uχr (g)-modules
is precisely the set of simple Uχ(g)-modules regarded as Uχr (g)-modules (see
Theorem 4.5). Moreover, the block structure in Uχr (g) coincides with the one
in Uχ(g). Finally, we show that each generalized χ-reduced enveloping superal-
gebra can be identified as the reduced enveloping superalgebra of the associated
restricted Lie superalgebra (see Theorem 4.13). Hence the representation the-
ory of this more general family of superalgebras {Uχr (g)} is reduced in some
sense to the representation theory of reduced enveloping superalgebras.

2. Preliminaries on restricted Lie superalgebras

Throughout this paper, F is assumed to be an algebraically closed field of
prime characteristic p > 2. All modules (vector spaces) are over F and finite-
dimensional.

The following notion of restricted Lie superalgebras is a generalization of
the one for restricted Lie algebras (see [7]).

Definition 2.1. (cf. [10]) A Lie superalgebra g = g0̄ ⊕ g1̄ is called a restricted
Lie superalgebra if there is a so-called p-mapping [p] on g0̄ satisfying the fol-
lowing conditions:

(i) (adx)py = ad(x[p])y, ∀x ∈ g0̄ and y ∈ g.
(ii) (kx)[p] = kpx[p], ∀ k ∈ F, x ∈ g0̄.

(iii) (x+ y)[p] = x[p] + y[p] +
p−1∑
i=1

si(x, y), ∀x, y ∈ g0̄,

where isi(x, y) is the coefficient of λi−1 in ad(λx+ y)p−1(x) and λ is an inde-
terminant.

Remark 2.2. The condition (iii) in Definition 2.1 is equivalent to the following
condition.

(iii′) We have the following relation in the universal enveloping superalgebra
U(g):

(x+ y)p − xp − yp = (x+ y)[p] − x[p] − y[p],∀x, y ∈ g0̄.

Remark 2.3. In short, a restricted Lie superalgebra is a Lie superalgebra whose
even subalgebra is a restricted Lie algebra and the odd part is a restricted module
over the even subalgebra by the adjoint action.



Representations of Lie superalgebras 1274

Example 2.4. Let A = A0̄ ⊕ A1̄ be any associative F-superalgebra. Then A
admits the structure of a Lie superalgebra by defining the bracket operation as
[x, y] = xy− (−1)x̄ȳyx for any homogeneous elements x, y ∈ A with x̄, ȳ denot-
ing the parity of x and y respectively. Furthermore, this becomes a restricted
Lie superalgebra with the p-mapping given by x[p] = xp for any x ∈ A0̄, i.e., the
p-mapping is just taken as the pth power in the superalgebra A. As a special
case, let

g = sl(2|1) =

{ a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣aij ∈ F, a11 + a22 − a33 = 0

}

with

g0̄ = span
F
{e11 + e33, e22 + e33, e12, e21}

and

g1̄ = span
F
{e13, e23, e31, e32},

where the eij denotes the 3 × 3 matrix with 1 in the (i, j)-position and 0 in
the other positions for 1 ≤ i, j ≤ 3. Then g is an associative F-superalgebra in
the natural way. Consequently, g admits a structure of a Lie superalgebra with
[x, y] = xy − (−1)x̄ȳyx for any x, y ∈ g0̄ ∪ g1̄. Moreover, g is a restricted Lie
superalgebra with the p-mapping defined as follows:

(e11 + e33)
[p] = e11 + e33, (e22 + e33)

[p] = e22 + e33, e
[p]
12 = e

[p]
21 = 0.

This restricted Lie superalgebra g is a simple Lie superalgebra of classical type
A(1, 0).

Example 2.5. The Lie superalgebra of an algebraic supergroup is a restricted
Lie superalgebra (see [11]).

We will make use of the following generalization of the equivalent condition
(iii)′ for the definition of a restricted Lie superalgebra.

Lemma 2.6. Let (g, [p]) be a restricted Lie superalgebra over F. Let x =
n∑

i=1

kixi ∈ g0̄ with ki ∈ F and xi ∈ g0̄. Then

xp − x[p] =
n∑

i=1

kpi (x
p
i − x

[p]
i )

holds in the universal enveloping superalgebra U(g).

Proof. We use induction on the number n of summands in the expression of x
to show the conclusion.

The conclusion obviously holds for n = 1. Assume that it holds for n < m,
where m ≥ 2 is a positive integer. Next we claim that the statement is also
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valid for n = m. Indeed, write x as

x =

m∑
i=1

kixi =
(m−1∑

i=1

kixi
)
+ kmxm.

Then

xp − x[p] =

((m−1∑
i=1

kixi
)
+ kmxm

)p

−
((m−1∑

i=1

kixi
)
+ kmxm

)[p]

=
(m−1∑

i=1

kixi
)p

+ kpmx
p
m −

(m−1∑
i=1

kixi
)[p] − kpmx

[p]
m

=
(m−1∑

i=1

kixi
)p −

(m−1∑
i=1

kixi
)[p]

+ kpm(xpm − x[p]m )

=

m∑
i=1

kpi (x
p
i − x

[p]
i ),

as desired. □

Let (g, [p]) be a restricted Lie superalgebra and χ ∈ g∗0̄. A g-moduleM is said

to be χ-reduced if xp · v− x[p] · v = χ(x)pv for all x ∈ g0̄, v ∈M . In particular,
it is called a restricted module for χ = 0. As in the case of restricted Lie
algebras, one can define the so-called χ-reduced enveloping superalgebra Uχ(g)

to be the quotient of U(g) by the ideal generated by {xp−x[p]−χ(x)p | x ∈ g0̄},
where U(g) denotes the universal enveloping superalgebra of g, i.e., Uχ(g) =

U(g)/(xp − x[p] − χ(x)p | x ∈ g0̄). If χ = 0, the superalgebra U0(g) is called
the restricted enveloping superalgebra and denoted by u(g) for brevity. All the
χ-reduced (resp. restricted) g-modules constitute a full subcategory of the g-
module category, which coincides with the Uχ(g) (resp. u(g))-module category.
Each simple g-module is a Uχ(g)-module for a unique χ ∈ g∗0̄ (cf. [12, 14]).

3. Indecomposable representations of restricted Lie superalgebras

In this section, we show that every finite-dimensional indecomposable mod-
ule for a finite-dimensional restricted Lie superalgebra is a module for a certain
finite-dimensional superalgebra, which is a quotient of the universal enveloping
superalgebra.

Let (g, [p]) be a finite-dimensional restricted Lie superalgebra over F. By the
condition (i) in the Definition 2.1, xp − x[p] is central in U(g) for any x ∈ g0̄.
Fix a basis {x1, · · · , xm, y1, · · · , yn} of g with xi ∈ g0̄ and yj ∈ g1̄ for 1 ≤ i ≤
m, 1 ≤ j ≤ n. Set zi = xpi − x

[p]
i ∈ U(g) for 1 ≤ i ≤ m. Let Z denote the even

central subalgebra of U(g) generated by xp−x[p] for all x ∈ g0̄. Then by Lemma
2.6 and the PBW Theorem, Z is a polynomial algebra F[z1, · · · , zm]. Moreover,
U(g) is free over Z of rank pm2n. More generally, for each positive integer r,

define Zr to be the even central subalgebra of U(g) generated by (xp−x[p])pr−1



Representations of Lie superalgebras 1276

for all x ∈ g0̄. Then Zr is a polynomial algebra F[zp
r−1

1 , · · · , zpr−1

m ] and U(g) is
free over Zr of rank prm2n. In particular, Z1 = Z. We have the following easy
observation.

Lemma 3.1. Let (g, [p]) be a finite-dimensional restricted Lie superalgebra

and r be a positive integer. Let S∗(g
(r)

0̄
) be the symmetric algebra on the vector

space g
(r)

0̄
, where g

(r)

0̄
is the r-twist of g0̄ with the underlying space g0̄ and k ∈ F

acting by kp
−r

. Then the natural map S∗(g
(r)

0̄
) −→ Zr defined on generators

by x 7−→ (xp − x[p])p
r−1

for all x ∈ g0̄ is an isomorphism of F-algebras.

The following lemma is an easy generalization of Lemma 2.6, the proof of
which is completely similar.

Lemma 3.2. Let (g, [p]) be a restricted Lie superalgebra over F and r ∈ N. Let

x =
n∑

i=1

kixi ∈ g0̄ with ki ∈ F and xi ∈ g0̄. Then

(xp − x[p])p
r−1

=
n∑

i=1

kp
r

i (xpi − x
[p]
i )p

r−1

holds in the universal enveloping superalgebra U(g).

In the sequel, we always assume that (g, [p]) is a finite-dimensional re-
stricted Lie superalgebra and χ ∈ g∗0̄ is a p-character of g and r is a pos-
itive integer. A g-module M is called a generalized χ-reduced g-module if

xp
r

v − (x[p])p
r−1

v = χ(x)p
r

v for all x ∈ g0̄, v ∈ M . Define Uχr (g) to be the
quotient superalgebra U(g)/Iχr (g), where Iχr (g) is the ideal in U(g) generated

by the set {(xp −x[p] −χ(x)p)p
r−1 | x ∈ g0̄}. The superalgebra Uχr (g) is called

a generalized χ-reduced enveloping superalgebra. In particular, if χ = 0, it
is called the generalized restricted enveloping superalgebra, and denoted by
ur(g) for brevity. A generalized χ-reduced g-module is a Uχr (g)-module for
some r ∈ N, and the vice versa also holds. We have the following PBW Theo-
rem for the superalgebra Uχr (g).

Lemma 3.3. Let (g, [p]) be a restricted Lie superalgebra with an F-basis {x1, · · · ,
xm, y1, · · · , yn} in which xi ∈ g0̄ and yj ∈ g1̄ for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Let
χ ∈ g∗0̄ and r ∈ N. Then the generalized χ-reduced enveloping superalgebra

Uχr (g) has an F-basis {xs11 · · ·xsmm yt11 · · · ytnn | 0 ≤ si ≤ pr − 1, tj = 0 or 1},
where we abusively denote the coset representative in Uχr (g) of any element
x ∈ g ↪→ U(g) simply by x.

Now we are in a position to present one of the main results, which asserts
that any finite-dimensional indecomposable g-module is a Uχr (g)-module for a
unique χ ∈ g∗0̄ and a least positive integer r.
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Theorem 3.4. Let (g, [p]) be a finite-dimensional restricted Lie superalgebra
over an algebraically closed field F of prime characteristic p > 2. Then any
finite-dimensional g-module M can be decomposed as a direct sum of indecom-
posable modules M = ⊕Mi, where each Mi is a Uχ

ri
i
(g)-module for a unique

χi ∈ g∗0̄ and a least positive integer ri.

Proof. Take a basis {x1, · · · , xm, y1, · · · , yn} of g with xi ∈ g0̄ and yj ∈ g1̄ for

1 ≤ i ≤ m, 1 ≤ j ≤ n. Set zi = xpi −x
[p]
i for 1 ≤ i ≤ m. Then all zi (1 ≤ i ≤ m)

are even central elements in U(g).
Let M be any finite-dimensional g-module. Since z1 · M ⊆ M , we can

decompose M as a direct sum of generalized eigenspaces for the element z1
regarded as a transformation on M , i.e.,

M =

s⊕
i=1

Mλi ,

where

Mλi
= {v ∈M | (z1 − λi)

tiv = 0 for some ti ∈ N}.
Note that all zi (1 ≤ i ≤ m) are even central elements in U(g), each Mλi is
invariant under the action of z2, i.e., z2 ·Mλi ⊆Mλi for 1 ≤ i ≤ s. Hence, each
such generalized eigenspace Mλi can be further decomposed into a direct sum
of generalized eigenspaces for the element z2. We can continue in this manner
and thenM can be decomposed as a direct sum of generalized eigenspacesM =
⊕MΛi over some collection of m-tuples in Fm, where for Λi = (λi1 , · · · , λim) ∈
Fm,

MΛi = {v ∈M | (zj − λij )
tij v = 0 for 1 ≤ j ≤ m, tij ∈ N}.

Moreover, it is easy to check that all MΛi ’s are g-modules.
By Lemma 3.2, we can identify each MΛi as the following generalized eigen-

space

Mχi = {v ∈M | (xp − x[p] − χi(x)
p)p

ri−1

v = 0 for all x ∈ g0̄}

for a unique χi ∈ g∗0̄ and the smallest positive integer ri such that χi(xj) =
p
√
λij . Then Mχi is a Uχ

ri
i
(g)-module. Therefore, M can be decomposed as a

direct sum of g-modules

(3.1) M = ⊕Mχi

in which the sum runs over a collection of p-characters in g∗0̄.
In particular, if M is an indecomposable g-module, then there is only one

summand in (3.1), i.e., there exists a unique p-character χ ∈ g∗0̄ and a least
positive integer r ∈ N such that M is a Uχr (g)-module. □

Remark 3.5. By Theorem 3.4, studying finite-dimensional representation the-
ory of a restricted Lie superalgebra g can be reduced to studying the represen-
tation theory of the family of finite-dimensional generalized reduced enveloping
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superalgebras {Uχr (g) | χ ∈ g∗0̄, r ∈ N}. As such, in the following, we proceed
to study such superalgebras and their representation theory.

4. Representation theory of the generalized reduced enveloping
superalgebras

As before, we always assume that (g, [p]) is a finite-dimensional restricted
Lie superalgebra over F, and χ ∈ g∗0̄, r ∈ N. Note that a Uχr (g)-module M

is simply a g-module for which xp
r

v − (x[p])p
r−1

v = χ(x)p
r

v holds for any
x ∈ g0̄ and v ∈ M . Then it is easy to check that the dual module M∗ is a
U(−χ)r (g)-module. Moreover, if M ′ is a Uχ′r (g)-module, then M ⊗ M ′ is a
U(χ+χ′)r (g)-module. For positive integers s < r, a Uχs(g)-module is necessarily
a Uχr (g)-module. However, the converse is not true.

Recall that the universal enveloping superalgebra U(g) admits the structure
of a cocommutative Hopf superalgebra. Specifically, the comultiplication ∆, the
antipode σ and the counit ϵ are defined for any homogeneous element x ∈ g by

∆(x) = 1⊗ x+ (−1)x̄x⊗ 1, σ(x) = −x, ϵ(x) = 0

and extended multiplicatively to all elements in U(g). It is easy to check that

the ideal I0r (g) =
(
(xp − x[p])p

r−1 | x ∈ g0̄
)
defining the generalized restricted

enveloping superalgebra ur(g) is a Hopf ideal. However, if 0 ̸= χ ∈ g∗0̄, the ideal
Iχr (g) is not a Hopf ideal. We then obtain the following lemma.

Lemma 4.1. For each positive integer r, the generalized restricted envelop-
ing superalgebra ur(g) is a finite-dimensional cocommutative Hopf superalgebra
upon restriction of the usual Hopf superalgebra structure on U(g).

Although the general generalized χ-reduced enveloping superalgebra Uχr (g)
need not be a Hopf superalgebra, it is a Frobenius superalgebra in the following
sense.

Definition 4.2. A finite-dimensional associative F-superalgebra A is said to
be a Frobenius superalgebra if it admits a non-degenerate associative bilinear
form. Moreover, it is further called a symmetric superalgebra if the bilinear
form is supersymmetric.

Theorem 4.3. Let r be a positive integer. Let (g, [p]) be a finite-dimensional
restricted Lie superalgebra and χ ∈ g∗0̄. Then the generalized χ-reduced envelop-
ing superalgebra Uχr (g) is a Frobenius superalgebra. Moreover, if str(adx) = 0
for all x ∈ g, then Uχr (g) is a symmetric superalgebra, where the supertrace
str(X) of an endomorphism X on a vector superspace V = V0̄ ⊕ V1̄ is defined
as str(X) = tr(X|V0̄

)− tr(X|V1̄
). The supertrace condition holds if g is a basic

classical Lie superalgebra or g is p-nilpotent (i.e., some iterate of the p-mapping
on g is zero).
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Proof. Take a basis {x1, · · · , xm, y1, · · · , yn} of g with xi ∈ g0̄, yj ∈ g1̄ for
1 ≤ i ≤ m, 1 ≤ j ≤ n. Define the Zr-linear map from U(g) to Zr as follows

Φr : U(g) −→ Zr

xs11 · · ·xsmm yt11 · · · ytnn 7−→ δs1, pr−1 · · · δsm, pr−1δt1, 1 · · · δtn, 1,

where δi,j is defined as

δi,j =

{
1, if i = j,
0, if i ̸= j.

Then Φr induces the following F-linear map on the quotient superalgebra

Φ̄r : U(g)/Iχr (g) = Uχr (g) −→ Zr/Ir ∼= F,

where Ir is an ideal of Zr generated by (xpi − x
[p]
i − χ(xi)

p)p
r−1

for 1 ≤ i ≤ m.
Define a bilinear form B(. , .) on Uχr (g) as follows

B(. , .) : Uχr (g)× Uχr (g) −→ F
(u, v) 7−→ Φ̄r(uv).

Then

B(uw, v) = Φ̄r((uw)v) = Φ̄r(u(wv)) = B(u,wv), ∀u,w, v ∈ Uχr (g).

Moreover, the bilinear form B(. , .) is non-degenerate, since for any

xs11 · · ·xsmm yt11 · · · ytnn , x
k1
1 · · ·xkm

m yl11 · · · ylnn ∈ Uχr (g),

we have

B(xs1
1 · · ·xsm

m yt11 · · · ytnn , xk1
1 · · ·xkm

m yl11 · · · ylnn ) =


±1, if si + ki = pr − 1, tj + lj = 1

for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

0, otherwise.

Now suppose that str(adx) = 0 for all x ∈ g. We then claim that the bilinear
form B(. , .) defined above is symmetric. Indeed, since B(. , .) is non-degenerate,
for each homogeneous element u ∈ Uχr (g), there exists a unique homogeneous
u∗ ∈ Uχr (g) satisfying that ū = u∗ and B(u,w) = (−1)ūw̄B(w, u∗) for all
w ∈ Uχr (g). Hence, for any homogeneous elements u1, u2, w ∈ Uχr (g), we have

B(u1u2, w) = B(u1, u2w)

= (−1)ū1(ū2+w̄)B(u2w, u
∗
1)

= (−1)ū1(ū2+w̄)B(u2, wu
∗
1)

= (−1)ū1(ū2+w̄)(−1)ū2(w̄+ū1)B(wu∗1, u
∗
2)

= (−1)w̄(ū1+ū2)B(w, u∗1u
∗
2).

On the other hand, B(u1u2, w) = (−1)w̄(ū1+ū2)B(w, (u1u2)
∗). Hence, B(w,

u∗
1u

∗
2) = B(w, (u1u2)

∗) for all w ∈ Uχr (g). Then the non-degeneracy of the
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bilinear form B(., .) implies that (u1u2)
∗ = u∗1u

∗
2 for all u1, u2 ∈ Uχr (g), i.e.,

φ : Uχr (g) −→ Uχr (g)

u 7−→ u∗

is an superalgebra endomorphism.
A straightforward computation implies that for any x ∈ g, we have

B(x, xs11 · · ·xsmm yt11 · · · ytnn )=(−1)x̄(
∑n

j=1 tj)B(xs11 · · ·xsmm yt11 · · · ytnn , x)−str(adx).

Therefore, if str(adx) = 0 for all x ∈ g, then

B(x, xs11 · · ·xsmm yt11 · · · ytnn ) = (−1)x̄(
∑n

j=1 tj)B(xs11 · · ·xsmm yt11 · · · ytnn , x)

holds for any x ∈ g and xs11 · · ·xsmm yt11 · · · ytnn ∈ Uχr (g). Thus x∗ = x for any
x ∈ g. Since g generates Uχr (g), we conclude that u∗ = u for all u ∈ Uχr (g).
This shows that B(. , .) is symmetric, i.e., Uχr (g) is a symmetric superalgebra.

The proof is completed. □

As a direct consequence, we have

Corollary 4.4. Let (g, [p]) be a finite-dimensional restricted Lie superalgebra.
Let χ ∈ g∗0̄ and r ∈ N. Then

(1) A Uχr (g)-module is projective if and only if it is injective.
(2) If str(adx) = 0 for all x ∈ g, then the Cartan matrix of Uχr (g) is

symmetric.

A fundamental question in representation theory is the identification of the
simple modules. Any simple Uχ(g)-module obviously remains simple when
considered as a Uχr (g)-module for any r > 1. Indeed, it is simple if simply
considered as a g-module. The following result implies that these are precisely
all the simple Uχr (g)-modules.

Theorem 4.5. Let (g, [p]) be a finite-dimensional restricted Lie superalgebra
over an algebraically closed field F of prime characteristic p > 2. Let χ ∈ g∗0̄
and r ∈ N. Then the collection of simple Uχr (g)-modules is precisely the set of
simple Uχ(g)-modules regarded as Uχr (g)-modules.

Proof. Let S be any simple Uχr (g)-module. If S is a Uχ(g)-module, then it
is simple as a Uχ(g)-module, since Uχ(g)-submodule of S would be a Uχr (g)-
submodule. Therefore, we need to show that S is in fact a Uχ(g)-module.

Since S is a simple Uχr (g)-module, S is just a simple g-module satisfying
that

(4.1) xp
r

v − (x[p])p
r−1

v = χ(x)p
r

v, ∀x ∈ g0̄, v ∈M.

By [12, 14], there exists a unique p-character χ′ ∈ g∗0̄ such that S is a Uχ′(g)-
module, i.e.,

xpv − x[p]v = χ′(x)pv, ∀x ∈ g0̄, v ∈M.
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Hence we have

(4.2) xp
r

v − (x[p])p
r−1

v = χ′(x)p
r

v, ∀x ∈ g0̄, v ∈M.

By (4.1) and (4.2), we then have

χ(x)p
r

= χ′(x)p
r

, ∀x ∈ g0̄.

Since prth roots are unique in a field of characteristic p, this implies that
χ(x) = χ′(x) for any x ∈ g0̄, i.e., χ = χ′, as required.

□
The following result implies that the block structure in Uχr (g) is independent

of the positive integer r. Indeed, for any r ∈ N, the block structure in Uχr (g)
coincides with the one in Uχ(g).

Theorem 4.6. Let (g, [p]) be a finite-dimensional restricted Lie superalgebra
over F. Let χ ∈ g∗0̄ and r ∈ N. Then any pair of simple Uχr (g)-modules S and
T lie in the same block over Uχr (g) if and only if they lie in the same block
over Uχ(g).

Proof. If S and T lie in the same block over Uχ(g), then there exists a chain of
simple Uχ(g)-modules: S = S1, S2, · · · , Sk = T such that for any 1 ≤ i ≤ k−1,

Ext 1Uχ(g)
(Si, Si+1) ̸= 0 or Ext 1Uχ(g)

(Si+1, Si) ̸= 0.

As any Uχ(g)-module is a Uχr (g)-module, then for any 1 ≤ i ≤ k − 1,

Ext 1Uχr (g)(Si, Si+1) ̸= 0 or Ext 1Uχr (g)(Si+1, Si) ̸= 0.

Hence S and T lie in the same block over Uχr (g).
If S and T lie in the different block over Uχ(g), we claim that they lie in dif-

ferent block over Uχr (g). Suppose they lie in the same block over Uχr (g), then
there exists s chain of simple Uχr (g)-modules (in fact simple Uχ(g)-modules by
Theorem 4.5): S = S1, S2, · · · , Sk = T such that

Ext 1Uχr (g)(Si, Si+1) ̸= 0 or Ext 1Uχr (g)(Si+1, Si) ̸= 0 for any 1 ≤ i ≤ k − 1.

Since S and T lie in different block over Uχ(g), there exists some j ≤ k − 1
such that

Ext •Uχ(g)
(Sj , Sj+1) = Ext •Uχ(g)

(Sj+1, Sj) = 0.

Similar to [6, Proposition 5.3], for any Uχ(g)-modules M and N , we have the
following convergent spectral sequence:

Es,t
2 (M,N) = Ext sUχ(g)

(M,N)⊗
∧t

g∗0̄
(1) ⇒ Ext s+t

U(g)(M,N).

Take M = Sj and N = Sj+1, or M = Sj+1 and N = Sj , we obtain that

Ext •U(g)(Sj , Sj+1) = Ext •U(g)(Sj+1, Sj) = 0.

In particular,

Ext 1U(g)(Sj , Sj+1) = Ext 1U(g)(Sj+1, Sj) = 0,
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i.e., neither nontrivial extension of Sj by Sj+1 over U(g) nor nontrivial exten-
sion of Sj+1 by Sj over U(g) exists. While any nontrivial Uχr (g)-extension is
necessarily a nontrivial extension over U(g). Hence

Ext 1Uχr (g)(Sj , Sj+1) = Ext 1Uχr (g)(Sj+1, Sj) = 0.

It is a contradiction. Therefore, S and T lie in different blocks over Uχr (g).
The proof is completed. □
Let (g, [p]) be a finite-dimensional restricted Lie superalgebra, χ ∈ g∗0̄ and

r ∈ N. In the following, we will realize the generalized χ-reduced enveloping
superalgebra Uχr (g) as a restricted enveloping superalgebra of the associated
restricted Lie superalgebra gr defined as below.

Definition 4.7. Let r be a positive integer. Let (g, [p]) be a finite-dimensional
restricted Lie superalgebra over F with an F-basis {x1, · · · , xm, y1, · · · , yn} where
xi ∈ g0̄, yj ∈ g1̄ for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Consequently, the following set

{xs11 · · ·xsmm yt11 · · · ytnn | 0 ≤ si ≤ pr − 1, tj = 0 or 1}
is a basis for the generalized restricted enveloping superalgebra ur(g). Define
gr to be the F-subsuperspace of ur(g) with the following F-basis

{xi, yj , xpi , x
p2

i , · · · , x
pr−1

i | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

such that the even part (gr)0̄ =spanF{xi, x
p
i , · · · , x

pr−1

i | 1 ≤ i ≤ m} and the
odd part (gr)1̄ =spanF{yj | 1 ≤ j ≤ n}.

Remark 4.8. In the case that r = 1, the subsuperspace g1 is just the original
restricted Lie superalgebra g.

Remark 4.9. As before, set zi = xpi − x
[p]
i for 1 ≤ i ≤ m. It is a routine to

check that the subset {xi, yj , zi, zpi , · · · , z
pr−2

i | 1 ≤ i ≤ m, 1 ≤ j ≤ n} of ur(g)
is also an F-basis for the vector superspace gr.

Proposition 4.10. Let (g, [p]) be a finite-dimensional restricted Lie superal-
gebra over F and r ∈ N. Then the F-subsuperspace gr = (gr)0̄ ⊕ (gr)1̄ of ur(g)
is preserved under the natural bracket operation and the p-mapping on ur(g).
Hence gr is a restricted Lie superalgebra. Moreover, the Lie superalgebra g em-
beds as a Lie subsuperalgebra in gr, but not as a restricted Lie subsuperalgebra.

Proof. Take any w ∈ gr. By Remark 4.9, w can be expressed as w = w1 + w2

with

w1 =

m∑
i=1

aixi +

n∑
j=1

bjyj , w2 =

m, r−2∑
i=1, j=0

cijz
pj

i ,

i.e., w1 is the unique part of w which lies in g. Similarly, we may write
v = v1 + v2 ∈ gr. Then

[w, v] = [w1 + w2, v1 + v2] = [w1, v1] ∈ g ⊆ gr.
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Therefore, gr is closed under the bracket operation. Moreover, [gr, gr] ⊆ g.
Take any u ∈ (gr)0̄. Then by Remark 4.9, u can be written as u =∑m
i=1 aixi +

∑m, r−2
i=1, j=0 cijz

pj

i . Since the restricted structure on ur(g) is just
taken as the pth power. We have

up = (
m∑
i=1

aixi)
p + (

m, r−2∑
i=1, j=0

cijz
pj

i )p =
m∑
i=1

api zi + (
m∑
i=1

aixi)
[p] +

m, r−2∑
i=1, j=0

cpijz
pj+1

i ∈ gr.

Thus gr is closed under the natural p-mapping on ur(g).
Finally, it is obvious that the embedding g ↪→ U(g) ↠ ur(g) of g into gr as

an F-subsuperspace preserves the Lie bracket structure, but not the restricted
p-mapping structure. □

Let (g, [p]) be a finite-dimensional restricted Lie superalgebra and r > 1 be

an integer. Let gr be defined as above with a basis {xi, yj , zpi , · · · , z
pr−2

i | 1 ≤
i ≤ m, 1 ≤ j ≤ n}. Set zi,0 = xi and zi,j = zp

j−1

i for 1 ≤ i ≤ m, 1 ≤ j ≤ r − 1.
Then the set {zi,j , yk | 1 ≤ i ≤ m, 0 ≤ j ≤ r − 1, 1 ≤ k ≤ n} is a basis for
gr. To avoid possible confusion, we denote the p-mapping on gr by [[p]]. If

x
[p]
i =

∑m
k=1 akxk holds in g for 1 ≤ i ≤ m, we denote by z

[p]
i,0 the element∑m

k=1 akzk,0 ∈ gr. Then z
[[p]]
i,0 = z

[p]
i,0 + zi,1 for 1 ≤ i ≤ m, while z

[[p]]
i,j = zi,j+1

for 1 ≤ i ≤ m, 1 ≤ j ≤ r − 2 and z
[[p]]
i,r−1 = 0 for 1 ≤ i ≤ m. We define an

associated character χr on gr as follows.

Definition 4.11. Let (g, [p]) be a finite-dimensional restricted Lie superalgebra,
χ ∈ g∗0̄ and r > 1 be an integer. Define χr ∈ (gr)

∗
0̄ as follows.

(1) χr(zi,j) = 0 for any 1 ≤ i ≤ m and 0 ≤ j ≤ r − 2.

(2) χr(zi,r−1) = χ(xi)
pr−1

for any 1 ≤ i ≤ m.

The natural embedding of Lie superalgebras g ↪→ gr sending xi ∈ g to
zi,0 ∈ gr induces a homomorphism of superalgebras ϕr : U(g) −→ U(gr). Let
ψr denote the composite homomorphism ψr : U(g) −→ U(gr) ↠ Uχr (gr).

Lemma 4.12. Let (g, [p]) be a finite-dimensional restricted Lie superalgebra,
χ ∈ g∗0̄ and r > 1 be an integer. Let ψr be defined as above. Then we have

ψr(z
pj

i ) = zi,j+1 for 1 ≤ i ≤ m, 0 ≤ j ≤ r−2, where zi,j+1 abusively denotes the
image of the element zi,j+1 ∈ gr under the composite gr ↪→ U(gr) ↠ Uχr (gr).

Proof. Since ψr : U(g) −→ U(gr) ↠ Uχr (gr) is a superalgebra homomorphism,
we have the following computation for 1 ≤ i ≤ m,

ψr(zi) = ψr(x
p
i − x

[p]
i )

= ψr(xi)
p − ψr(x

[p]
i )

= zpi,0 − z
[p]
i,0.
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By the definition of χr, in the superspace Uχr (gr), z
p
i,0 = z

[[p]]
i,0 holds. On the

other hand, z
[[p]]
i,0 = z

[p]
i,0 + zi,1 holds in gr. Hence

ψr(zi) = zpi,0 − z
[p]
i,0 = z

[[p]]
i,0 − z

[p]
i,0 = zi,1,

i.e., the statement holds for 1 ≤ i ≤ m, j = 0.
Next assume that 1 ≤ j ≤ r − 2. Then

ψr(z
pj

i ) = ψr(zi)
pj

= zp
j

i,1.

By the definition of χr, the identity zpi, l − z
[[p]]
i, l = 0 holds in Uχr (gr) for 1 ≤

i ≤ m, 1 ≤ l ≤ r − 2. Note that z
[[p]]
i, l = zi, l+1 for 1 ≤ l ≤ r − 2, then

zpi, l = zi, l+1 for 1 ≤ i ≤ m, 1 ≤ l ≤ r − 2. So zp
j

i,1 = zi,j+1 holds in Uχr (gr) for
1 ≤ i ≤ m, 1 ≤ j ≤ r − 2. Therefore,

ψr(z
pj

i ) = zp
j

i,1 = zi,j+1, 1 ≤ i ≤ m, 0 ≤ j ≤ r − 2.

The proof is completed. □

Theorem 4.13. Let (g, [p]) be a finite-dimensional restricted Lie superalgebra,
χ ∈ g∗0̄ and r > 1 be an integer. Let gr be the associated restricted Lie su-
peralgebra and χr ∈ (gr)

∗
0̄ defined as before. Then there is an isomorphism of

superalgebras ψ̄r : Uχr (g)
∼−→ Uχr (gr).

Proof. Recall the homomorphism ψr : U(g) −→ Uχr (gr) defined above. We
claim that it induces a homomorphism ψ̄r : Uχr (g) −→ Uχr (gr). For that we
need to show that ψr(Iχr (g)) = 0. Since ψr is a superalgebra homomorphism, it

suffices to show that ψr is zero on the set of generators {(xpi −x
[p]
i −χ(xi)p)p

r−1 |
1 ≤ i ≤ m} for the ideal Iχr (g). In fact, for any 1 ≤ i ≤ m, we have

ψr

(
(xpi − x

[p]
i − χ(xi)

p)p
r−1)

= ψr

(
zp

r−1

i − χ(xi)
pr)

= ψr

(
(zp

r−2

i )p
)
− χ(xi)

pr

=
(
ψr(z

pr−2

i )
)p − χ(xi)

pr

= zpi,r−1 − χ(xi)
pr

= zpi,r−1 − z
[[p]]
i,r−1 − χ(zi,r−1)

p

= 0.

Hence ψr : U(g) −→ Uχr (gr) induces the corresponding superalgebra homo-

morphism ψ̄r : Uχr (g) −→ Uχr (gr). Note that ψ̄r(xi) = zi,0, ψ̄r(z
pj−1

i ) = zi,j
and ψ̄r(yk) = yk for 1 ≤ i ≤ m, 1 ≤ j ≤ r − 1, 1 ≤ k ≤ n. Therefore, ψ̄r is
surjective. Since

dimUχr (g) = dimUχr (gr) = prm2n,

the homomorphism ψ̄r is indeed an isomorphism.
□
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Remark 4.14. By Theorem 4.13, the study of representation theory of the
generalized χ-reduced enveloping superalgebra Uχr (g) can be reduced to the study
of the representation theory of the χr-reduced enveloping superalgebra Uχr (gr)
for the associated restricted Lie superalgebra gr.
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