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ABSTRACT. Let (M2",g) be a real hypersurface with recurrent shape
operator and tangent to the structure vector field £ of the Sasakian space
form M(C) We show that if the shape operator A of M is recurrent
then it is parallel. Moreover, we show that M is locally a product of two
constant ¢—sectional curvature spaces.
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1. Introduction

The notion of recurrent tensor field of type (r, s) on a differentiable manifold
M with a linear connection was introduced in [9] and [14]. A non-zero tensor
field K of type (r,s) on M is said to be recurrent if there exists a 1-form w
such that

VK =w® K.

We denote by A the shape operator of a real hypersurface in the non flat
complex space form M™(c) with constant holomorphic sectional curvature. Re-
cently in [5] and [6] Hamada applied such a notion of recurrent tensor to a shape
operator or a Ricci tensor for a real hypersurface M in the complex projective
space CP", and proved the following :

Theorem 1.1. The complex projective space CP™ does not admit any real
hypersurface with recurrent shape operator or recurrent Ricci tensor.

In [12] and [13], Suh studied the real hypersurfaces in complex two planes
Grassmannians with recurrent shape operator and explained the geometrical
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meaning of the recurrent shape operator A by the relation
[VxA Al =w(X)[A,A] =0

for any tangent vector field X on M, which means that the eignespaces of the
shape operator A of M are parallel along any curve in M. These eigenspaces
are said to be parallel along a curve ~, if they are invariants under any parallel
translation along .

Finally, Kim and et. al. in [8], completed the study of real hypersurfaces in
the complex two plane Grassmannians with recurrent shape operator.

Milijevic studied CR. submanifolds of maximal CR dimension of a complex
space form with recurrent shape operator. Also . Ryan considered hypersur-
faces of real space forms in [11]. He gave a complete classification of hypersur-
faces in the sphere which satisfy a certain condition and proved the following:

Theorem 1.2. Let M be a hypersurface of S"*' whose shape operator has
exactly two distinct eigenvalues, then M is locally a product of two spheres.

This paper considers hypersurfaces of a Sasakian space form M Intl(c) with
constant ¢-sectional curvature ¢ with recurrent shape operator. Note that in
the case of ¢ = 1, the Sasakian space form is the sphere itself. It is shown
that, if M be a hypersurfaces of a Sasakian space form M?"*1(c), where the
structure vector field of £ is tangent to M and the shape oparator of M is
recurrent, then M is locally a product of M; and M, or a product of M’ and
~ , where M7, My and M’ are constant ¢-sectional curvature totally geodesic
submanifolds and + is a geodesic curve in M.

2. Preliminaries

A differentiable manifold M2"*! is said to have an almost contact structure
if it admits a (non-vanishing) vector field £ , a one-form n and a (1,1)—tensor
field ¢ satisfying

nE) =1, ¢*=-I+n¢,
where I denotes the field of identity transformations of the tangent spaces at
all points. These conditions imply that ¢ = 0 and 1 o ¢ = 0, and that the
endomorphism ¢ has rank 2n at every point in M2"+1. A manifold M2n+!,
equipped with an almost contact structure (¢, £, n), is called an almost contact
manifold and shall be denoted by (M2"+1, (¢, €, 7).

Suppose that M?7+1 ig a manifold carrying an almost contact structure. A
Riemannian metric § on M2+ satisfying

9(9X,dY) = g(X,Y) —n(X)n(Y),
for all vector f fields X and Y, is called compatible with the almost contact struc-
ture, and (M2 (¢,£,m,9)) is said to be an almost contact metric structure



1289 Abedi and Ilmakchi

on M2™*+1 Tt is known that an almost contact manifold always admits at least
one compatible metric. Note that

n(X) = g(X,¢),

for all vector fields X tangent to M 2n+1 " which means that 7 is the metric dual
of the characteristic vector field &.

A manifold M?"*! is said to be a contact manifold if it carries a global
one-form 7 such that

n A (dn)" #0
everywhere on M. The one-form 7 is called a contact form.

A submanifold M of a Riemannian contact manifold M?"*! tangent to ¢ is
called an invariant (resp. anti-invariant) submanifold if ¢(T,M) C T, M, for
each p € M (resp. ¢(T,M) C T;-M, for each p € M).

A submanifold M tangent to & of a contact manifold M2+ s called a
contact CR-submanifold if there exists a pair of orthogonal differentiable dis-
tributions D and D+ on M such that

(1) TM = D @ D+ @ R¢, where R¢ is the 1—dimensional distribution
spanned by &;

(2) D is invariant by ¢, i.e., ¢(D,) C D, for each p € M;

(3) D* is anti-invariant by ¢, i.c., ¢(Dy) C T;-M for each p € M.

Let (M, ,£,m,9) be a (2n + 1)-dimensional contact manifold such that
VxE=—0X,  (Vx9)Y =g(X,Y)¢ —n(Y)X,

where V is the Levi-Chivita connection of M , then M is called a Sasakian
manifold. The plane section 7 of TM is called a ¢—section if ¢, C m,, for
ecach z € M. Also M is called of constant ¢—sectional curvature if the sectional
curvature of ¢—sections are constant. A Sasakian space form is a Sasakian
manifold of constant ¢— sectional curvature. In this case the Riemannian
curvature tensor field R is given by

Rx,v)z = ¢T3

c—1
4

{n(Z2)n(Y)X —n(X)Y]+ [g(Y, Z)n(X) — g(X, Z)n(Y)]¢
—9(oY, 2)¢X +g(¢X, Z)pY +29(¢X,Y)p 2}

for each XY, Z € x(M).

Definition 2.1. Let T be a (1,1) tensor field on a Riemannian manifold M.
Then T is called a recurrent tensor field if (VxT)Y = w(X)TY, one form w
and vector fields X,Y on M.
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3. Hypersurfaces of a Sasakian space form with recurrent shape
operator

Let (M?",g) be a real hypersurface of Sasakian space form M ntl(c) with
recurrent shape operator and tangent to . Assume moreover that N is a
local unit normal vector field on M. Clearly D= is unidimensional distribution
spanned by U = —¢(N).

Lemma 3.1. Let M*" be a hypersurface of a Sasakian space form MQ”H(C)
tangent to the vector field of & and A be the shape operator of M. Then A =
-U.

Proof. Let V and V be the Levi-Chivita connections of M and M , respectively.
Then, by the Gauss formula and Sasakian conditions,

Vué+ g(AUON = Vyé = —4U = —N.
Considering the tangential and normal parts of the above relation, we have
(3.1) Vvé=0, g(AU¢) = —1.
Also, since
we have
(32) Ve =0, g(A€) =0.
On the other hand,
Vxé +g(AX N = Vxé = —9X
for each X in TM. Now if X € D, then by the above relation we have
g(AgvX):g(AXag):Oa VX£:_¢X7
which implies that A = —U. 0

Now let AU = aU + B¢ + (AU)p where (AU)p is the projected part of AU
on D. Since g(AU, &) = —1 we have

(3.3) AU = —¢ + U + (AU)p.

Lemma 3.2. Let (M,g) be a real hypersurface tangent to & of the Sasakian

space form MQ"H(C). If the shape operator A of M is the recurrent operator
then it is parallel.

Proof. By Codazzi equation, Sasakian conditions together with recurrent as-
sumption for the shape operator imply

c—

THO(X U)EY —g(Y,U)F X ~24(FX, ¥)U},

(3.4) W(X)AY —w(Y)AX =
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for each X,Y in TM where F'X is the tangent part of ¢.X on T'M. Choosing
X =¢and Y =U in (3.4) we have

c —

TH9(& U)FU — g(U,U)FE — 29(FE, UV} = 0.

w(§)AU —w(U)AE =
Now from Lemma (3.1) and equation (3.3) we have
—w(&)§ +w(&)(AU)p + (w(U) + aw(§))U = 0.
Since &, U and (AU)p are linearly independent,
w(§) =0,wl) =0.
Setting X € D and Y = £ in (3.4), one obtains

W(X)AE ~ w(€)AX = “ 1 g(X, U)FE ~ g(6,U)FX — 20(FX, U} = 0.

Therefore w(X) =0, for all X in D and VA = 0. O
If the shape operator A of the hypersurface M is parallel, then
R(X,Y)(AZ) = VxVy(AZ)-VyVx(AZ) -V xy|(AZ)
(3.5) = AR(X,Y)Z

forall X,Y,Z in TM.

Lemma 3.3. Let (M,g) be a real hypersurface tangent to £ of the Sasakian

space form M%‘H(c), If the shape operator A of M is parallel then the subspace
of D is invariant under A.

Proof. By the Gauss formula, we have

(3.6) R U)U = - — AU — g(AU,U)U
and
(3.7) R(U,8)E =U + g(AL, ) AU — g(AU,§)AE =U —U = 0.

Now, choosing X =U and Y = Z = £ in (3.5), from Lemma (3.1), we conclude
that

(3.8) AR(U, §)¢ = R(U,§) AL = —R(U, §)U.
Therefore by (3.6),(3.7) and (3.8)
AU = —¢ — g(AU,U)U.
Hense AU € span{&,U}. This shows that AD = D. a

Since A, is self adjoint and D and span{{, U} are invariant subspaces under
Ap, for any p € M, there exists a locally orthonormal frame

X1, Xon 2
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for D. Also there a frame {Wy, Ws} for span{¢,U}, where
AXZ:,LI/lX,L, i:l,...,?n—Q
AWy =y Wy, AWs = % Ws.

9

We set
Wy = &cosf+ Usind,
Wy = —£€sinf + U cosé.

for some 0 < 6 < 7/2. Note that £ and U can not be eigenvectors of A and
hence cos @ and sin 6 are not vanishing at any p € M.

Lemma 3.4. Under the above conditions, y1 = —tanf and 3 = cot 6.
Proof. Using the structures of Wy, W5 one has
U =W;sinf + Wscosb.
On the other hand, by Lemma 3.1 we get
AW, = A€cos@ + AUsin® = —U cosf + AU sin ¥,
AWy, = —A&sinf 4+ AU cos = Usinf + AU cosf.
Therefore,
U= AWsysinf — AW; cos = v, Ws sinf — vy, W1 cos 6.
Comparing the above values of U we have
(y28in 6 — cos @)Wy — (71 cos @ + sin§)W; = 0.
Since W7 and W5 are linearly independent,
v = —tanf, ~9 = cotf.
O

Using the Gauss equation, the structure of curvature tensor of the a Sasakian
space form and (3.5) , we get

c+3
4

{9(Y, AZ)X — g(X, AZ)Y'}

‘ ; ! (AZ)n(Y)X —n(X)Y] + [9(Y, AZ)n(X) — g(X, AZ)n(Y)]€

—g(FY,AZ)FX + g(FX,AZ)FY + 29(FX,Y)FAZ}
+9(AY, AZ)AX — g(AX, AZ)AY

= 2o, 2)X - (X, 2)7)
~C D)) AX —n(X)AY] +[g(Y, Z)n(X) ~ 9(X, Zn(¥)] A€

—g(FY, Z)AFX + g(FX,Z)AFY +29(FX,Y)AFZ}
(3.9)  +g(AY, AZ)A%X — g(AX, AZ)A?Y,



1293 Abedi and Ilmakchi

foreach X, Y, Z in TM .
Now from (3.9) setting X = X; and Y = Z = X, where X, is normal to
span{X;, »X;}, we have

c+3

(3.10) (N = X)( + X)) =0.

Furthermore, setting X = Wj and Y = Z = X; in (3.9), we get
c+3

( 4
Therefore
<c +3

4

c+3 c—1

4

-1
i + APy Wy — CT)\Z- cos B¢ = ( Y1 4+ AW + cos OU.

-1
i + A2v1)(Ecos O + Usin @) — CT)\Z' cos 0¢

3
= (CI Y1 4+ Av3) (€ cos O + Usin 6) +

c—1

cos 0U.

Since ¢ and U are linearly independent,

3
A; cos O + A?’yl cosf = et 1 cos B + )\mf cosf,

c+3 c+3 c—1

\; sin 6 + )\?71 sinf = Y1 sin @ + )\i*le sin @ + cos 6

and by the structure of Wy, Wy and (3.4), we have

c+3 c—1
( + /\i’71)()\i -n)=—X\;
4 4
c+3 c—1
(3.11) (—— FAm) i =) = ==
Therefore, for A\; # 71,
c—1 c—1
3.12 Ai = :
(3.12) 4 4 2

Lemma 3.5. For any x € M, rank A, = 2n.

Proof. Assume that rank A, # 2n. First, suppose that ¢ # 1 for some i €
{1,...,2n — 2} or j € {1,2}, then since 7; # 0 in (3.12) we have \; # 0

for all ¢. In this case, rank A, = 2n. Now suppose that ¢ = 1 for some
ie{l,...,2n—2} or j € {1,2}, then since ; # 0 in (3.11) we have \; = v, or
Ai = 72 ehich imply A; # 0 for all 7. Again, we have rank A, = 2n. (]

Lemma 3.6. A, has exactly two distinct eigenvalues.

Proof. If ¢ # 1 the relations (3.11) and (3.12) imply that, foralli =1...2n—2,
Ai = 01 or \; = 02 hence A, has at most two distinct eigenvalues. Otherwise,
if ¢ = 1, then the relation (3.10), for ¢ = 1, reads as (A; — A1)(1 + A\;A1) = 0.
If A\; # A1 then \; = —%1, but from (3.11) we have A; = v or \; = 2 which
shows that in this case A, has at most two distinct eigenvalues. Now if A, has



Hypersurfaces with recurrent shape operator 1294

one eigenvalue then 7; = 5. On the other hand, v; = —% implies 72 = —1
which is impossible. Hence A, has exactly two distinct eigenvalues. 0

Corollary 3.7. If ¢ # 1 then multiplicities of the eigenvalues for the shape
operator A at x € M are 2n — 1 and 1.

Proof. If ¢ # 1 the relations (3.11) and (3.12) imply A; = 01 or A; = J for all
i=1,...,2n—2. O
Let us denote the two eigenvalues of A, by A and p.

Lemma 3.8. The multiplicities of the eigenvalues are constant for the shape
operator A.

Proof. Let X\ be an eigenvalue of A of multiplicity p at x € M and multiplicity
q at y € M. Then p has the multiplicity n — p at x and n — g at y. Therefore,
(trace A)(z) — (trace A)(y) = pA(z) — gA(y) + (n — p)u(z) + (n — p)u(y)
= (= )\x) = p(x) + ¢(Mz) = Ay)) — (n = q) (u(z) — py)).
Since the trace map is continuous, this implies p = ¢.
For eigenvalues A and p of A we put

(3.13) Th(z) ={X, € T,(M)|A, X, = X},
(3.14) Tu(x) ={Xy € T,(M)|A; X, = pX,}.
Then, using Lemma 3.8, we get two distributions T and T,. O

Lemma 3.9. The distributions T\ and T}, are both involutive.

Proof. Let us choose X,Y € Ty. Then, using Codazzi equation, it follows that
AX)Y] = AVxY — AVy X

Vx(AY) = (VxA)Y — Vy(AX) + (Vy A)X

(XY — (YNOX + )\[X,Y].

Hence,
(3.15) (A= AD[X,Y] = (XN)Y — (Y)N)X.
However, the left-hand sides of (3.15) belong to T),. In fact, [X,Y] = [X, Y]\ +
[X,Y], implies that
(A-ADX,Y] = (A=AD(X, Y]y +[X,Y],)
= AX) YL +AX)Y], - AX, Y]\ - AX, Y],
— (u-NIX.Y], €T,
On the other hand, the right-hand sides of (3.15) belong to Ty and therefore,
(3.16) AX,)Y]=AX,Y] , (XN)Y—-(YNX=0.

This shows that the distribution T} is involutive. Similarly, one can see that
the distribution 7}, is also involutive. g
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Theorem 3.10. Let M?™ be a hypersurface tangent to & of a Sasakian space
form M?"+1(c) with recurrent shape operator. If ¢ # 1 then M is locally a
product M’ x ~v , where M’ is a constant ¢-sectional curvature totally geodesic
submanifold and v is a geodesic of M. If ¢ = 1 then M 1is locally a product
My x My or M’ X~ , where My, My and M’ are constant ¢-sectional curvature
totally geodesic submanifolds and 7y is a geodesic of M.

Proof. Let T and T}, be as in the proof of Lemma 3.8. If X € T),Y € T}, the
Codazzi equation yields

Vx(uY) = Vy(AX) = AVxY — AVy X.

Since A and p are constant, we get (A — A)Vy X = (A — ul)VxY. The left-
hand side of the equation is in T, while the right-hand side is in 7%. Hence
both sides are zero. That is, Vy X € T\,VxY € T),, and for Z € T},

9(V2X,Y) +g(X,VY) = V4(g(X,Y)) = 0.

On the other hand,VzY € T, implies g(X,VzY) = 0. Thus, VzX € Tj‘
for all Z and X € T). Since Tlf- = Ty, we may write Vp, Ty C T and
V7,1, € T,. This means that T) is a totally geodesic parallel distribution.
The same conclusion can be drawn for T),, namely, T}, is also a totally geodesic
parallel distribution. Hence, by de Rham decomposition theorem [10], M is
locally isometric to the Riemannian product of the maximal integral manifolds
My and M,,.

Now we consider the integral submanifold M),. Let ¢y be the imrfn\(/ersion of
M)y into M and j = ¢ oy, that is, j is the immersion of M, into/\]\j[ via M.
Denoting by h) and hﬁ/f the second fundamental forms of My in M and M,
respectively, we get for any X/, Y’ € Ty the covariant derivative V* of M, as
follows:

VxjY' = jVAY +h (XY
= VxiounY’
= (Vxi, Y+ h(in X', 0,Y")
= VXY + (XY} 4 b X, 1Y)
= VY + (XYY + h(bn X YY),

Since M) is totally geodesic in M, h)Y = 0. One cased easily show that
ha(X',Y") = h(X,)Y) = g(AX,Y)N = A\g(X,Y)N. By the Gauss equation,
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the curvature tensor R* of M, satisfies
P RNX'YNZ W) = g(GY',iZ)g(GY W) — g(iX,5Z)g(GY, SW)
+RA Y, ZVNX W) = hAN(XC 2R Y W)

- (¢ Z gy, 2)g(X W) = g(X', Z)g(¥Y', W)
+(° 7 Dlg(X’, 6290y, W) — g(V", 62" )g(6 X', W)

+29(X’, 0Y ) g(pZ' ,W')]
+X2g(Y', Z)g(X', W) = Ng(X', Z")g(Y', W)
Thus
H(X/) _ R)\(X,,d)X/) _ g’\(RA(X',qSX’)ng',X’) _ C—|—)\2.

This shows that the integral manifold M) is a Riemannian manifold of ¢p—invari-
ant constant curvature ¢ + A2. In the same way we obtain that M » is a Rie-
mannian manifold of ¢—invariant constant curvature ¢+ p?. Thus, M is locally
a product of two constant ¢—sectional curvature spaces.

Now, if ¢ # 1 from Corollary 3.7 one of the multiplicities of T or T}, is
2n — 1 and the other multiplicity is 1. Hence an integral manifold M’ and a
curve -y exist so that M is locally a product of M’ x~. Moreover, M’ is constant
¢-sectional curvature totally geodesic submanifold and  is a geodesic of M.
If ¢ = 1, the multiplicities of T and 7T}, are both greater than one or one of them
is 2n — 1 and the other is 1. If the multiplicities are 2n — 1 and 1, then, similar
to the previous case, M is locally a product M’ x ~ , where M’ is a constant
¢-sectional curvature totally geodesic submanifold and ~ is a geodesic of M. If
both multiplicities are greater than one then the integral manifolds My = M)
and My = M, exist so that M is locally a product of M; x My, where M; and
M, are two constant ¢-sectional curvature totally geodesic submanifolds of M.
This completes the proof. O
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