
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 41 (2015), No. 5, pp. 1287–1297

.

Title:

.

Hypersurfaces of a Sasakian space form with recurrent shape operator

.

Author(s):

.

E. Abedi and M. Ilmakchi

.

Published by Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 41 (2015), No. 5, pp. 1287–1297
Online ISSN: 1735-8515

HYPERSURFACES OF A SASAKIAN SPACE FORM WITH

RECURRENT SHAPE OPERATOR

E. ABEDI∗ AND M. ILMAKCHI

(Communicated by Mohammad Bagher Kashani)

Abstract. Let (M2n, g) be a real hypersurface with recurrent shape
operator and tangent to the structure vector field ξ of the Sasakian space

form M̃(c). We show that if the shape operator A of M is recurrent
then it is parallel. Moreover, we show that M is locally a product of two
constant ϕ−sectional curvature spaces.
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1. Introduction

The notion of recurrent tensor field of type (r, s) on a differentiable manifold
M with a linear connection was introduced in [9] and [14]. A non-zero tensor
field K of type (r, s) on M is said to be recurrent if there exists a 1-form ω
such that

∇K = ω ⊗K.

We denote by A the shape operator of a real hypersurface in the non flat
complex space form Mn(c) with constant holomorphic sectional curvature. Re-
cently in [5] and [6] Hamada applied such a notion of recurrent tensor to a shape
operator or a Ricci tensor for a real hypersurface M in the complex projective
space CPn, and proved the following :

Theorem 1.1. The complex projective space CPn does not admit any real
hypersurface with recurrent shape operator or recurrent Ricci tensor.

In [12] and [13], Suh studied the real hypersurfaces in complex two planes
Grassmannians with recurrent shape operator and explained the geometrical
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meaning of the recurrent shape operator A by the relation

[∇XA,A] = ω(X)[A,A] = 0

for any tangent vector field X on M , which means that the eignespaces of the
shape operator A of M are parallel along any curve in M . These eigenspaces
are said to be parallel along a curve γ, if they are invariants under any parallel
translation along γ.

Finally, Kim and et. al. in [8], completed the study of real hypersurfaces in
the complex two plane Grassmannians with recurrent shape operator.

Milijevic studied CR submanifolds of maximal CR dimension of a complex
space form with recurrent shape operator. Also . Ryan considered hypersur-
faces of real space forms in [11]. He gave a complete classification of hypersur-
faces in the sphere which satisfy a certain condition and proved the following:

Theorem 1.2. Let M be a hypersurface of Sn+1 whose shape operator has
exactly two distinct eigenvalues, then M is locally a product of two spheres.

This paper considers hypersurfaces of a Sasakian space form M̃2n+1(c) with
constant ϕ-sectional curvature c with recurrent shape operator. Note that in
the case of c = 1, the Sasakian space form is the sphere itself. It is shown

that, if M be a hypersurfaces of a Sasakian space form M̃2n+1(c), where the
structure vector field of ξ is tangent to M and the shape oparator of M is
recurrent, then M is locally a product of M1 and M2 or a product of M ′ and
γ , where M1,M2 and M ′ are constant ϕ-sectional curvature totally geodesic
submanifolds and γ is a geodesic curve in M .

2. Preliminaries

A differentiable manifold M̃2n+1 is said to have an almost contact structure
if it admits a (non-vanishing) vector field ξ , a one-form η and a (1, 1)−tensor
field ϕ satisfying

η(ξ) = 1, ϕ2 = −I + η ⊗ ξ,

where I denotes the field of identity transformations of the tangent spaces at
all points. These conditions imply that ϕξ = 0 and η ◦ ϕ = 0, and that the

endomorphism ϕ has rank 2n at every point in M̃2n+1. A manifold M̃2n+1,
equipped with an almost contact structure (ϕ, ξ, η), is called an almost contact

manifold and shall be denoted by (M̃2n+1, (ϕ, ξ, η)).

Suppose that M̃2n+1 is a manifold carrying an almost contact structure. A

Riemannian metric g̃ on M̃2n+1 satisfying

g̃(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

for all vector fields X and Y , is called compatible with the almost contact struc-

ture, and (M̃2n+1, (ϕ, ξ, η, g)) is said to be an almost contact metric structure
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on M̃2n+1. It is known that an almost contact manifold always admits at least
one compatible metric. Note that

η(X) = g̃(X, ξ),

for all vector fields X tangent to M̃2n+1, which means that η is the metric dual
of the characteristic vector field ξ.

A manifold M̃2n+1 is said to be a contact manifold if it carries a global
one-form η such that

η ∧ (dη)n ̸= 0

everywhere on M . The one-form η is called a contact form.

A submanifold M of a Riemannian contact manifold M̃2n+1 tangent to ξ is
called an invariant (resp. anti-invariant) submanifold if ϕ(TpM) ⊂ TpM, for
each p ∈ M (resp. ϕ(TpM) ⊂ T⊥

p M, for each p ∈ M).

A submanifold M tangent to ξ of a contact manifold M̃2n+1 is called a
contact CR-submanifold if there exists a pair of orthogonal differentiable dis-
tributions D and D⊥ on M such that

(1) TM = D ⊕ D⊥ ⊕ Rξ, where Rξ is the 1−dimensional distribution
spanned by ξ;

(2) D is invariant by ϕ, i.e., ϕ(Dp) ⊂ Dp for each p ∈ M ;
(3) D⊥ is anti-invariant by ϕ, i.e., ϕ(D⊥

p ) ⊂ T⊥
p M for each p ∈ M .

Let (M̃, ϕ, ξ, η, g̃) be a (2n+ 1)-dimensional contact manifold such that

∇̃Xξ = −ϕX, (∇̃Xϕ)Y = g̃(X,Y )ξ − η(Y )X,

where ∇̃ is the Levi-Chivita connection of M̃ , then M̃ is called a Sasakian

manifold. The plane section π of TM̃ is called a ϕ−section if ϕπx ⊆ πx, for

each x ∈ M̃ . Also M̃ is called of constant ϕ−sectional curvature if the sectional
curvature of ϕ−sections are constant. A Sasakian space form is a Sasakian
manifold of constant ϕ− sectional curvature. In this case the Riemannian

curvature tensor field R̃ is given by

R̃(X,Y )Z =
c+ 3

4
{g̃(Y, Z)X − g̃(X,Z)Y }

−c− 1

4
{η(Z)[η(Y )X − η(X)Y ] + [g̃(Y,Z)η(X)− g̃(X,Z)η(Y )]ξ

−g̃(ϕY,Z)ϕX + g̃(ϕX,Z)ϕY + 2g̃(ϕX, Y )ϕZ}

for each X,Y, Z ∈ χ(M̃).

Definition 2.1. Let T be a (1, 1) tensor field on a Riemannian manifold M .
Then T is called a recurrent tensor field if (∇XT )Y = ω(X)TY , one form ω
and vector fields X,Y on M .
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3. Hypersurfaces of a Sasakian space form with recurrent shape
operator

Let (M2n, g) be a real hypersurface of Sasakian space form M̃2n+1(c) with
recurrent shape operator and tangent to ξ. Assume moreover that N is a
local unit normal vector field on M . Clearly D⊥ is unidimensional distribution
spanned by U = −ϕ(N).

Lemma 3.1. Let M2n be a hypersurface of a Sasakian space form M̃2n+1(c)
tangent to the vector field of ξ and A be the shape operator of M . Then Aξ =
−U .

Proof. Let ∇̃ and ∇ be the Levi-Chivita connections of M̃ and M , respectively.
Then, by the Gauss formula and Sasakian conditions,

∇Uξ + g(AU, ξ)N = ∇̃Uξ = −ϕU = −N.

Considering the tangential and normal parts of the above relation, we have

(3.1) ∇Uξ = 0, g(AU, ξ) = −1.

Also, since

∇ξξ + g(Aξ, ξ)N = −ϕξ = 0,

we have

(3.2) ∇ξξ = 0, g(Aξ, ξ) = 0.

On the other hand,

∇Xξ + g(AX, ξ)N = ∇̃Xξ = −ϕX

for each X in TM . Now if X ∈ D, then by the above relation we have

g(Aξ,X) = g(AX, ξ) = 0, ∇Xξ = −ϕX,

which implies that Aξ = −U . □

Now let AU = αU + βξ + (AU)D where (AU)D is the projected part of AU
on D. Since g(AU, ξ) = −1 we have

(3.3) AU = −ξ + αU + (AU)D.

Lemma 3.2. Let (M, g) be a real hypersurface tangent to ξ of the Sasakian

space form M̃2n+1(c). If the shape operator A of M is the recurrent operator
then it is parallel.

Proof. By Codazzi equation, Sasakian conditions together with recurrent as-
sumption for the shape operator imply

(3.4) ω(X)AY −w(Y )AX =
c− 1

4
{g(X,U)FY −g(Y, U)FX−2g(FX, Y )U},



1291 Abedi and Ilmakchi

for each X,Y in TM where FX is the tangent part of ϕX on TM . Choosing
X = ξ and Y = U in (3.4) we have

ω(ξ)AU − w(U)Aξ =
c− 1

4
{g(ξ, U)FU − g(U,U)Fξ − 2g(Fξ, U)U} = 0.

Now from Lemma (3.1) and equation (3.3) we have

−ω(ξ)ξ + ω(ξ)(AU)D + (w(U) + αω(ξ))U = 0.

Since ξ, U and (AU)D are linearly independent,

ω(ξ) = 0, ω(U) = 0.

Setting X ∈ D and Y = ξ in (3.4), one obtains

ω(X)Aξ − w(ξ)AX =
c− 1

4
{g(X,U)Fξ − g(ξ, U)FX − 2g(FX, ξ)U} = 0.

Therefore ω(X) = 0, for all X in D and ∇A = 0. □

If the shape operator A of the hypersurface M is parallel, then

R(X,Y )(AZ) = ∇X∇Y (AZ)−∇Y ∇X(AZ)−∇[X,Y ](AZ)

= AR(X,Y )Z(3.5)

for all X,Y, Z in TM .

Lemma 3.3. Let (M, g) be a real hypersurface tangent to ξ of the Sasakian

space form M̃2n+1(c). If the shape operator A of M is parallel then the subspace
of D is invariant under A.

Proof. By the Gauss formula, we have

(3.6) R(ξ, U)U = −ξ −AU − g(AU,U)U

and

(3.7) R(U, ξ)ξ = U + g(Aξ, ξ)AU − g(AU, ξ)Aξ = U − U = 0.

Now, choosing X = U and Y = Z = ξ in (3.5), from Lemma (3.1), we conclude
that

(3.8) AR(U, ξ)ξ = R(U, ξ)Aξ = −R(U, ξ)U.

Therefore by (3.6),(3.7) and (3.8)

AU = −ξ − g(AU,U)U.

Hense AU ∈ span{ξ, U}. This shows that AD = D. □

Since Ap is self adjoint and D and span{ξ, U} are invariant subspaces under
Ap, for any p ∈ M , there exists a locally orthonormal frame

X1, . . . , X2n−2
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for D. Also there a frame {W1,W2} for span{ξ, U}, where
AXi = µiXi, i = 1, . . . , 2n− 2,

AW1 = γ1W1 , AW2 = γ2W2.

We set

W1 = ξ cos θ + U sin θ,

W2 = −ξ sin θ + U cos θ.

for some 0 < θ < π/2. Note that ξ and U can not be eigenvectors of A and
hence cos θ and sin θ are not vanishing at any p ∈ M .

Lemma 3.4. Under the above conditions, γ1 = − tan θ and γ2 = cot θ.

Proof. Using the structures of W1,W2 one has

U = W1 sin θ +W2 cos θ.

On the other hand, by Lemma 3.1 we get

AW1 = Aξ cos θ +AU sin θ = −U cos θ +AU sin θ,

AW2 = −Aξ sin θ +AU cos θ = U sin θ +AU cos θ.

Therefore,

U = AW2 sin θ −AW1 cos θ = γ2W2 sin θ − γ1W1 cos θ.

Comparing the above values of U we have

(γ2 sin θ − cos θ)W2 − (γ1 cos θ + sin θ)W1 = 0.

Since W1 and W2 are linearly independent,

γ1 = − tan θ, γ2 = cot θ.

□
Using the Gauss equation, the structure of curvature tensor of the a Sasakian

space form and (3.5) , we get

c+ 3

4
{g(Y,AZ)X − g(X,AZ)Y }

−c− 1

4
{η(AZ)[η(Y )X − η(X)Y ] + [g(Y,AZ)η(X)− g(X,AZ)η(Y )]ξ

−g(FY,AZ)FX + g(FX,AZ)FY + 2g(FX, Y )FAZ}
+g(AY,AZ)AX − g(AX,AZ)AY

=
c+ 3

4
{g(Y,Z)X − g(X,Z)Y }

−c− 1

4
{η(Z)[η(Y )AX − η(X)AY ] + [g(Y, Z)η(X)− g(X,Z)η(Y )]Aξ

−g(FY,Z)AFX + g(FX,Z)AFY + 2g(FX, Y )AFZ}
+g(AY,AZ)A2X − g(AX,AZ)A2Y,(3.9)
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for each X,Y, Z in TM .
Now from (3.9) setting X = Xi and Y = Z = Xj , where Xj is normal to

span{Xi, ϕXi}, we have

(3.10) (λi − λj)(
c+ 3

4
+ λiλj) = 0.

Furthermore, setting X = W1 and Y = Z = Xi in (3.9), we get

(
c+ 3

4
λi + λ2

i γ1)W1 −
c− 1

4
λi cos θξ = (

c+ 3

4
γ1 + λiγ

2
1)W1 +

c− 1

4
cos θU.

Therefore

(
c+ 3

4
λi + λ2

i γ1)(ξ cos θ + U sin θ)− c− 1

4
λi cos θξ

= (
c+ 3

4
γ1 + λiγ

2
1)(ξ cos θ + U sin θ) +

c− 1

4
cos θU.

Since ξ and U are linearly independent,

λi cos θ + λ2
i γ1 cos θ =

c+ 3

4
γ1 cos θ + λiγ

2
1 cos θ,

c+ 3

4
λi sin θ + λ2

i γ1 sin θ =
c+ 3

4
γ1 sin θ + λiγ

2
1 sin θ +

c− 1

4
cos θ

and by the structure of W1,W2 and (3.4), we have

(
c+ 3

4
+ λiγ1)(λi − γ1) =

c− 1

4
λi,

(
c+ 3

4
+ λiγ1)(λi − γ1) =

c− 1

4
γ2.(3.11)

Therefore, for λi ̸= γ1,

(3.12)
c− 1

4
λi =

c− 1

4
γ2.

Lemma 3.5. For any x ∈ M , rank Ax = 2n.

Proof. Assume that rank Ax ̸= 2n. First, suppose that c ̸= 1 for some i ∈
{1, . . . , 2n − 2} or j ∈ {1, 2}, then since γj ̸= 0 in (3.12) we have λi ̸= 0
for all i. In this case, rank Ax = 2n. Now suppose that c = 1 for some
i ∈ {1, . . . , 2n− 2} or j ∈ {1, 2}, then since γj ̸= 0 in (3.11) we have λi = γ1 or
λi = γ2 ehich imply λi ̸= 0 for all i. Again, we have rank Ax = 2n. □

Lemma 3.6. Ax has exactly two distinct eigenvalues.

Proof. If c ̸= 1 the relations (3.11) and (3.12) imply that, for all i = 1 . . . 2n−2,
λi = δ1 or λi = δ2 hence Ax has at most two distinct eigenvalues. Otherwise,
if c = 1, then the relation (3.10), for i = 1, reads as (λi − λ1)(1 + λiλ1) = 0.
If λi ̸= λ1 then λi = − 1

λ1
, but from (3.11) we have λi = γ1 or λi = γ2 which

shows that in this case Ax has at most two distinct eigenvalues. Now if Ax has
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one eigenvalue then γ1 = γ2. On the other hand, γ1 = − 1
γ2

implies γ2
2 = −1

which is impossible. Hence Ax has exactly two distinct eigenvalues. □
Corollary 3.7. If c ̸= 1 then multiplicities of the eigenvalues for the shape
operator A at x ∈ M are 2n− 1 and 1.

Proof. If c ̸= 1 the relations (3.11) and (3.12) imply λi = δ1 or λi = δ2 for all
i = 1, . . . , 2n− 2. □

Let us denote the two eigenvalues of Ax by λ and µ.

Lemma 3.8. The multiplicities of the eigenvalues are constant for the shape
operator A.

Proof. Let λ be an eigenvalue of A of multiplicity p at x ∈ M and multiplicity
q at y ∈ M . Then µ has the multiplicity n− p at x and n− q at y. Therefore,

(trace A)(x)− (trace A)(y) = pλ(x)− qλ(y) + (n− p)µ(x) + (n− p)µ(y)

= (p− q)(λ(x)− µ(x)) + q(λ(x)− λ(y))− (n− q)(µ(x)− µ(y)).

Since the trace map is continuous, this implies p = q.
For eigenvalues λ and µ of A we put

Tλ(x) = {Xx ∈ Tx(M)|AxXx = λXx},(3.13)

Tµ(x) = {Xx ∈ Tx(M)|AxXx = µXx}.(3.14)

Then, using Lemma 3.8, we get two distributions Tλ and Tµ. □
Lemma 3.9. The distributions Tλ and Tµ are both involutive.

Proof. Let us choose X,Y ∈ Tλ. Then, using Codazzi equation, it follows that

A[X,Y ] = A∇XY −A∇Y X

= ∇X(AY )− (∇XA)Y −∇Y (AX) + (∇Y A)X

= (Xλ)Y − (Y λ)X + λ[X,Y ].

Hence,

(3.15) (A− λI)[X,Y ] = (Xλ)Y − (Y λ)X.

However, the left-hand sides of (3.15) belong to Tµ. In fact, [X,Y ] = [X,Y ]λ+
[X,Y ]µ implies that

(A− λI)[X,Y ] = (A− λI)([X,Y ]λ + [X,Y ]µ)

= A[X,Y ]λ +A[X,Y ]µ − λ[X,Y ]λ − λ[X,Y ]µ

= (µ− λ)[X,Y ]µ ∈ Tµ.

On the other hand, the right-hand sides of (3.15) belong to Tλ and therefore,

A[X,Y ] = λ[X,Y ] , (Xλ)Y − (Y λ)X = 0.(3.16)

This shows that the distribution Tλ is involutive. Similarly, one can see that
the distribution Tµ is also involutive. □
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Theorem 3.10. Let M2n be a hypersurface tangent to ξ of a Sasakian space

form M̃2n+1(c) with recurrent shape operator. If c ̸= 1 then M is locally a
product M ′ × γ , where M ′ is a constant ϕ-sectional curvature totally geodesic
submanifold and γ is a geodesic of M . If c = 1 then M is locally a product
M1×M2 or M ′×γ , where M1,M2 and M ′ are constant ϕ-sectional curvature
totally geodesic submanifolds and γ is a geodesic of M .

Proof. Let Tλ and Tµ be as in the proof of Lemma 3.8. If X ∈ Tλ, Y ∈ Tµ, the
Codazzi equation yields

∇X(µY )−∇Y (λX) = A∇XY −A∇Y X.

Since λ and µ are constant, we get (A− λI)∇Y X = (A− µI)∇XY . The left-
hand side of the equation is in Tµ while the right-hand side is in Tλ. Hence
both sides are zero. That is, ∇Y X ∈ Tλ,∇XY ∈ Tµ, and for Z ∈ Tλ,

g(∇ZX,Y ) + g(X,∇ZY ) = ∇Z(g(X,Y )) = 0.

On the other hand,∇ZY ∈ Tµ implies g(X,∇ZY ) = 0. Thus, ∇ZX ∈ T⊥
µ

for all Z and X ∈ Tλ. Since T⊥
µ = Tλ, we may write ∇Tλ

Tλ ⊆ Tλ and
∇Tλ

Tµ ⊆ Tµ. This means that Tλ is a totally geodesic parallel distribution.
The same conclusion can be drawn for Tµ, namely, Tµ is also a totally geodesic
parallel distribution. Hence, by de Rham decomposition theorem [10], M is
locally isometric to the Riemannian product of the maximal integral manifolds
Mλ and Mµ.

Now we consider the integral submanifold Mλ. Let ιλ be the immersion of

Mλ into M and j = ι ◦ ιλ, that is, j is the immersion of Mλ into M̃ via M .

Denoting by hλ and hM
λ the second fundamental forms of Mλ in M̃ and M ,

respectively, we get for any X ′, Y ′ ∈ Tλ the covariant derivative ∇λ of Mλ as
follows:

∇X′jY ′ = j∇λ
X′Y ′ + hλ(X

′, Y ′)

= ∇X′ι ◦ ιλY ′

= ι∇X′ιλY
′ + h(ιλX

′, ιλY
′)

= ι{ιλ∇λ
X′Y ′ + hM

λ (X ′, Y ′)}+ h(ιλX
′, ιλY

′)

= j∇λ
X′Y ′ + ιhM

λ (X ′, Y ′) + h(ιλX
′, ιλY

′).

Since Mλ is totally geodesic in M , hM
λ = 0. One cased easily show that

hλ(X
′, Y ′) = h(X,Y ) = g(AX,Y )N = λg(X,Y )N . By the Gauss equation,
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the curvature tensor Rλ of Mλ satisfies

gλ(Rλ(X ′, Y ′)Z′,W ′) = g(jY ′, jZ′)g(jY ′, jW ′)− g(jX ′, jZ′)g(jY ′, jW ′)

+hλ(Y ′, Z′)hλ(X ′,W ′)− hλ(X ′, Z′)hλ(Y ′,W ′)

= (
c+ 3

4
)[g(Y ′, Z′)g(X ′,W ′)− g(X ′, Z′)g(Y ′,W ′)]

+(
c− 1

4
)[g(X ′, ϕZ′)g(ϕY ′,W ′)− g(Y ′, ϕZ′)g(ϕX ′,W ′)

+2g(X ′, ϕY ′)g(ϕZ′,W ′)]

+λ2g(Y ′, Z′)g(X ′,W ′)− λ2g(X ′, Z′)g(Y ′,W ′)

Thus

H(X ′) = Rλ(X ′, ϕX ′) = gλ(Rλ(X ′, ϕX ′)ϕX ′, X ′) = c+ λ2.

This shows that the integral manifoldMλ is a Riemannian manifold of ϕ−invari-
ant constant curvature c + λ2. In the same way we obtain that Mµ is a Rie-
mannian manifold of ϕ−invariant constant curvature c+µ2. Thus, M is locally
a product of two constant ϕ−sectional curvature spaces.

Now, if c ̸= 1 from Corollary 3.7 one of the multiplicities of Tλ or Tµ is
2n − 1 and the other multiplicity is 1. Hence an integral manifold M ′ and a
curve γ exist so that M is locally a product of M ′×γ. Moreover, M ′ is constant
ϕ-sectional curvature totally geodesic submanifold and γ is a geodesic of M .
If c = 1, the multiplicities of Tλ and Tµ are both greater than one or one of them
is 2n− 1 and the other is 1. If the multiplicities are 2n− 1 and 1, then, similar
to the previous case, M is locally a product M ′ × γ , where M ′ is a constant
ϕ-sectional curvature totally geodesic submanifold and γ is a geodesic of M . If
both multiplicities are greater than one then the integral manifolds M1 = Mλ

and M2 = Mµ exist so that M is locally a product of M1 ×M2, where M1 and
M2 are two constant ϕ-sectional curvature totally geodesic submanifolds of M .
This completes the proof. □
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[10] G. de Rham, Sur la réductibilité d’un espace de Riemann, Comment. Math. Helv. 268

(1952) 328–344.
[11] P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math.
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