ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 5, pp. 1287-1297

Title:

Hypersurfaces of a Sasakian space form with recurrent shape operator

Author(s):

E. Abedi and M. Ilmakchi

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 41 (2015), No. 5, pp. 1287–1297 Online ISSN: 1735-8515

HYPERSURFACES OF A SASAKIAN SPACE FORM WITH RECURRENT SHAPE OPERATOR

E. ABEDI* AND M. ILMAKCHI

(Communicated by Mohammad Bagher Kashani)

ABSTRACT. Let (M^{2n}, g) be a real hypersurface with recurrent shape operator and tangent to the structure vector field ξ of the Sasakian space form $\widetilde{M}(c)$. We show that if the shape operator A of M is recurrent then it is parallel. Moreover, we show that M is locally a product of two constant ϕ -sectional curvature spaces.

Keywords: Recurrent hypersurfaces, Sasakian manifold. MSC(2010): Primary: 53C25; Secondary: 53C40.

1. Introduction

The notion of recurrent tensor field of type (r, s) on a differentiable manifold M with a linear connection was introduced in [9] and [14]. A non-zero tensor field K of type (r, s) on M is said to be recurrent if there exists a 1-form ω such that

$$\nabla K = \omega \otimes K.$$

We denote by A the shape operator of a real hypersurface in the non flat complex space form $M^{n}(c)$ with constant holomorphic sectional curvature. Recently in [5] and [6] Hamada applied such a notion of recurrent tensor to a shape operator or a Ricci tensor for a real hypersurface M in the complex projective space $\mathbb{C}P^n$, and proved the following :

Theorem 1.1. The complex projective space $\mathbb{C}P^n$ does not admit any real hypersurface with recurrent shape operator or recurrent Ricci tensor.

In [12] and [13], Suh studied the real hypersurfaces in complex two planes Grassmannians with recurrent shape operator and explained the geometrical

©2015 Iranian Mathematical Society

Article electronically published on October 17, 2015.

Received: 18 September 2012, Accepted: 8 August 2014.

 $^{^{*}}$ Corresponding author.

meaning of the recurrent shape operator A by the relation

$$[\nabla_X A, A] = \omega(X)[A, A] = 0$$

for any tangent vector field X on M, which means that the eignespaces of the shape operator A of M are parallel along any curve in M. These eigenspaces are said to be parallel along a curve γ , if they are invariants under any parallel translation along γ .

Finally, Kim and et. al. in [8], completed the study of real hypersurfaces in the complex two plane Grassmannians with recurrent shape operator.

Milijevic studied CR submanifolds of maximal CR dimension of a complex space form with recurrent shape operator. Also . Ryan considered hypersurfaces of real space forms in [11]. He gave a complete classification of hypersurfaces in the sphere which satisfy a certain condition and proved the following:

Theorem 1.2. Let M be a hypersurface of S^{n+1} whose shape operator has exactly two distinct eigenvalues, then M is locally a product of two spheres.

This paper considers hypersurfaces of a Sasakian space form $M^{2n+1}(c)$ with constant ϕ -sectional curvature c with recurrent shape operator. Note that in the case of c = 1, the Sasakian space form is the sphere itself. It is shown that, if M be a hypersurfaces of a Sasakian space form $\widetilde{M}^{2n+1}(c)$, where the structure vector field of ξ is tangent to M and the shape oparator of M is recurrent, then M is locally a product of M_1 and M_2 or a product of M' and γ , where M_1, M_2 and M' are constant ϕ -sectional curvature totally geodesic submanifolds and γ is a geodesic curve in M.

2. Preliminaries

A differentiable manifold \widetilde{M}^{2n+1} is said to have an almost contact structure if it admits a (non-vanishing) vector field ξ , a one-form η and a (1,1)-tensor field ϕ satisfying

$$\eta(\xi) = 1, \quad \phi^2 = -I + \eta \otimes \xi,$$

where I denotes the field of identity transformations of the tangent spaces at all points. These conditions imply that $\phi\xi = 0$ and $\eta \circ \phi = 0$, and that the endomorphism ϕ has rank 2n at every point in \widetilde{M}^{2n+1} . A manifold \widetilde{M}^{2n+1} , equipped with an almost contact structure (ϕ, ξ, η) , is called an almost contact manifold and shall be denoted by $(\widetilde{M}^{2n+1}, (\phi, \xi, \eta))$.

Suppose that \widetilde{M}^{2n+1} is a manifold carrying an almost contact structure. A Riemannian metric \widetilde{g} on \widetilde{M}^{2n+1} satisfying

$$\widetilde{g}(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

for all vector fields X and Y, is called compatible with the almost contact structure, and $(\widetilde{M}^{2n+1}, (\phi, \xi, \eta, g))$ is said to be an almost contact metric structure on \widetilde{M}^{2n+1} . It is known that an almost contact manifold always admits at least one compatible metric. Note that

$$\eta(X) = \widetilde{g}(X,\xi),$$

for all vector fields X tangent to \widetilde{M}^{2n+1} , which means that η is the metric dual of the characteristic vector field ξ .

A manifold \widetilde{M}^{2n+1} is said to be a contact manifold if it carries a global one-form η such that

$$\eta \wedge (d\eta)^n \neq 0$$

everywhere on M. The one-form η is called a contact form.

A submanifold M of a Riemannian contact manifold \widetilde{M}^{2n+1} tangent to ξ is called an invariant (resp. anti-invariant) submanifold if $\phi(T_pM) \subset T_pM$, for each $p \in M$ (resp. $\phi(T_pM) \subset T_p^{\perp}M$, for each $p \in M$).

A submanifold M tangent to ξ of a contact manifold \widetilde{M}^{2n+1} is called a contact CR-submanifold if there exists a pair of orthogonal differentiable distributions D and D^{\perp} on M such that

- (1) $TM = D \oplus D^{\perp} \oplus \mathbb{R}\xi$, where $\mathbb{R}\xi$ is the 1-dimensional distribution spanned by ξ ;
- (2) D is invariant by ϕ , i.e., $\phi(D_p) \subset D_p$ for each $p \in M$;
- (3) D^{\perp} is anti-invariant by ϕ , i.e., $\phi(D_p^{\perp}) \subset T_p^{\perp}M$ for each $p \in M$.

Let $(\widetilde{M}, \phi, \xi, \eta, \widetilde{g})$ be a (2n+1)-dimensional contact manifold such that

$$\widetilde{\nabla}_X \xi = -\phi X, \qquad (\widetilde{\nabla}_X \phi) Y = \widetilde{g}(X, Y) \xi - \eta(Y) X,$$

where $\widetilde{\nabla}$ is the Levi-Chivita connection of \widetilde{M} , then \widetilde{M} is called a Sasakian manifold. The plane section π of $T\widetilde{M}$ is called a ϕ -section if $\phi\pi_x \subseteq \pi_x$, for each $x \in \widetilde{M}$. Also \widetilde{M} is called of constant ϕ -sectional curvature if the sectional curvature of ϕ -sections are constant. A Sasakian space form is a Sasakian manifold of constant ϕ - sectional curvature. In this case the Riemannian curvature tensor field \widetilde{R} is given by

$$\begin{split} \widetilde{R}(X,Y)Z &= \frac{c+3}{4} \{ \widetilde{g}(Y,Z)X - \widetilde{g}(X,Z)Y \} \\ &\quad -\frac{c-1}{4} \{ \eta(Z)[\eta(Y)X - \eta(X)Y] + [\widetilde{g}(Y,Z)\eta(X) - \widetilde{g}(X,Z)\eta(Y)]\xi \\ &\quad -\widetilde{g}(\phi Y,Z)\phi X + \widetilde{g}(\phi X,Z)\phi Y + 2\widetilde{g}(\phi X,Y)\phi Z \} \end{split}$$

for each $X, Y, Z \in \chi(\widetilde{M})$.

Definition 2.1. Let T be a (1,1) tensor field on a Riemannian manifold M. Then T is called a recurrent tensor field if $(\nabla_X T)Y = \omega(X)TY$, one form ω and vector fields X, Y on M.

3. Hypersurfaces of a Sasakian space form with recurrent shape operator

Let (M^{2n}, g) be a real hypersurface of Sasakian space form $\widetilde{M}^{2n+1}(c)$ with recurrent shape operator and tangent to ξ . Assume moreover that N is a local unit normal vector field on M. Clearly D^{\perp} is unidimensional distribution spanned by $U = -\phi(N)$.

Lemma 3.1. Let M^{2n} be a hypersurface of a Sasakian space form $\widetilde{M}^{2n+1}(c)$ tangent to the vector field of ξ and A be the shape operator of M. Then $A\xi = -U$.

Proof. Let $\widetilde{\nabla}$ and ∇ be the Levi-Chivita connections of \widetilde{M} and M, respectively. Then, by the Gauss formula and Sasakian conditions,

$$\nabla_U \xi + g(AU,\xi)N = \widetilde{\nabla}_U \xi = -\phi U = -N.$$

Considering the tangential and normal parts of the above relation, we have

(3.1) $\nabla_U \xi = 0, \quad g(AU,\xi) = -1.$

Also, since

$$\nabla_{\xi}\xi + g(A\xi,\xi)N = -\phi\xi = 0,$$

we have

(3.2) $\nabla_{\xi}\xi = 0, \quad g(A\xi,\xi) = 0.$

On the other hand,

$$\nabla_X \xi + g(AX,\xi)N = \nabla_X \xi = -\phi X$$

for each X in TM. Now if $X \in D$, then by the above relation we have

$$g(A\xi, X) = g(AX, \xi) = 0, \quad \nabla_X \xi = -\phi X,$$

which implies that $A\xi = -U$.

Now let $AU = \alpha U + \beta \xi + (AU)_D$ where $(AU)_D$ is the projected part of AU on D. Since $g(AU, \xi) = -1$ we have

$$(3.3) AU = -\xi + \alpha U + (AU)_D$$

Lemma 3.2. Let (M,g) be a real hypersurface tangent to ξ of the Sasakian space form $\widetilde{M}^{2n+1}(c)$. If the shape operator A of M is the recurrent operator then it is parallel.

Proof. By Codazzi equation, Sasakian conditions together with recurrent assumption for the shape operator imply

(3.4)
$$\omega(X)AY - w(Y)AX = \frac{c-1}{4} \{g(X,U)FY - g(Y,U)FX - 2g(FX,Y)U\},\$$

for each X, Y in TM where FX is the tangent part of ϕX on TM. Choosing $X = \xi$ and Y = U in (3.4) we have

$$\omega(\xi)AU - w(U)A\xi = \frac{c-1}{4} \{g(\xi, U)FU - g(U, U)F\xi - 2g(F\xi, U)U\} = 0.$$

Now from Lemma (3.1) and equation (3.3) we have

$$-\omega(\xi)\xi + \omega(\xi)(AU)_D + (w(U) + \alpha\omega(\xi))U = 0.$$

Since ξ, U and $(AU)_D$ are linearly independent,

$$\omega(\xi) = 0, \, \omega(U) = 0.$$

Setting $X \in D$ and $Y = \xi$ in (3.4), one obtains

$$\omega(X)A\xi - w(\xi)AX = \frac{c-1}{4} \{g(X,U)F\xi - g(\xi,U)FX - 2g(FX,\xi)U\} = 0.$$

Therefore $\omega(X) = 0$, for all X in D and $\nabla A = 0.$

If the shape operator A of the hypersurface M is parallel, then

$$R(X,Y)(AZ) = \nabla_X \nabla_Y (AZ) - \nabla_Y \nabla_X (AZ) - \nabla_{[X,Y]} (AZ)$$

(3.5)
$$= AR(X,Y)Z$$

for all X, Y, Z in TM.

Lemma 3.3. Let (M, g) be a real hypersurface tangent to ξ of the Sasakian space form $\widetilde{M}^{2n+1}(c)$. If the shape operator A of M is parallel then the subspace of D is invariant under A.

Proof. By the Gauss formula, we have

(3.6)
$$R(\xi, U)U = -\xi - AU - g(AU, U)U$$

and

(3.7)
$$R(U,\xi)\xi = U + g(A\xi,\xi)AU - g(AU,\xi)A\xi = U - U = 0.$$

Now, choosing X = U and $Y = Z = \xi$ in (3.5), from Lemma (3.1), we conclude that

(3.8)
$$AR(U,\xi)\xi = R(U,\xi)A\xi = -R(U,\xi)U.$$

Therefore by (3.6), (3.7) and (3.8)

$$AU = -\xi - g(AU, U)U.$$

Hense $AU \in span\{\xi, U\}$. This shows that AD = D.

Since A_p is self adjoint and D and $span\{\xi, U\}$ are invariant subspaces under A_p , for any $p \in M$, there exists a locally orthonormal frame

$$X_1,\ldots,X_{2n-2}$$

for D. Also there a frame $\{W_1, W_2\}$ for $span\{\xi, U\}$, where

$$AX_i = \mu_i X_i, \qquad i = 1, \dots, 2n - 2,$$

 $AW_1 = \gamma_1 W_1, \ AW_2 = \gamma_2 W_2.$

We set

$$W_1 = \xi \cos \theta + U \sin \theta,$$

$$W_2 = -\xi \sin \theta + U \cos \theta.$$

for some $0 < \theta < \pi/2$. Note that ξ and U can not be eigenvectors of A and hence $\cos \theta$ and $\sin \theta$ are not vanishing at any $p \in M$.

Lemma 3.4. Under the above conditions, $\gamma_1 = -\tan\theta$ and $\gamma_2 = \cot\theta$.

Proof. Using the structures of
$$W_1, W_2$$
 one has

 $U = W_1 \sin \theta + W_2 \cos \theta.$

On the other hand, by Lemma 3.1 we get

$$AW_1 = A\xi \cos\theta + AU\sin\theta = -U\cos\theta + AU\sin\theta,$$

$$AW_2 = -A\xi \sin\theta + AU\cos\theta = U\sin\theta + AU\cos\theta.$$

Therefore,

$$U = AW_2 \sin \theta - AW_1 \cos \theta = \gamma_2 W_2 \sin \theta - \gamma_1 W_1 \cos \theta.$$

Comparing the above values of U we have

$$(\gamma_2 \sin \theta - \cos \theta) W_2 - (\gamma_1 \cos \theta + \sin \theta) W_1 = 0.$$

Since W_1 and W_2 are linearly independent,

$$\gamma_1 = -\tan\theta, \quad \gamma_2 = \cot\theta.$$

Using the Gauss equation, the structure of curvature tensor of the a Sasakian space form and $\left(3.5\right)$, we get

$$\begin{aligned} \frac{c+3}{4} \{g(Y,AZ)X - g(X,AZ)Y\} \\ &- \frac{c-1}{4} \{\eta(AZ)[\eta(Y)X - \eta(X)Y] + [g(Y,AZ)\eta(X) - g(X,AZ)\eta(Y)]\xi \\ &- g(FY,AZ)FX + g(FX,AZ)FY + 2g(FX,Y)FAZ\} \\ &+ g(AY,AZ)AX - g(AX,AZ)AY \\ &= \frac{c+3}{4} \{g(Y,Z)X - g(X,Z)Y\} \\ &- \frac{c-1}{4} \{\eta(Z)[\eta(Y)AX - \eta(X)AY] + [g(Y,Z)\eta(X) - g(X,Z)\eta(Y)]A\xi \\ &- g(FY,Z)AFX + g(FX,Z)AFY + 2g(FX,Y)AFZ\} \\ (3.9) &+ g(AY,AZ)A^2X - g(AX,AZ)A^2Y, \end{aligned}$$

1292

for each X, Y, Z in TM.

Now from (3.9) setting $X = X_i$ and $Y = Z = X_j$, where X_j is normal to $span\{X_i, \phi X_i\}$, we have

(3.10)
$$(\lambda_i - \lambda_j)(\frac{c+3}{4} + \lambda_i\lambda_j) = 0.$$

Furthermore, setting $X = W_1$ and $Y = Z = X_i$ in (3.9), we get

$$\left(\frac{c+3}{4}\lambda_i + \lambda_i^2\gamma_1\right)W_1 - \frac{c-1}{4}\lambda_i\cos\theta\xi = \left(\frac{c+3}{4}\gamma_1 + \lambda_i\gamma_1^2\right)W_1 + \frac{c-1}{4}\cos\theta U.$$

Therefore

$$(\frac{c+3}{4}\lambda_i + \lambda_i^2\gamma_1)(\xi\cos\theta + U\sin\theta) - \frac{c-1}{4}\lambda_i\cos\theta\xi$$
$$= (\frac{c+3}{4}\gamma_1 + \lambda_i\gamma_1^2)(\xi\cos\theta + U\sin\theta) + \frac{c-1}{4}\cos\theta U.$$

Since ξ and U are linearly independent,

$$\lambda_i \cos \theta + \lambda_i^2 \gamma_1 \cos \theta = \frac{c+3}{4} \gamma_1 \cos \theta + \lambda_i \gamma_1^2 \cos \theta,$$

$$\frac{c+3}{4} \lambda_i \sin \theta + \lambda_i^2 \gamma_1 \sin \theta = \frac{c+3}{4} \gamma_1 \sin \theta + \lambda_i \gamma_1^2 \sin \theta + \frac{c-1}{4} \cos \theta$$

and by the structure of W_1, W_2 and (3.4), we have

(3.11)
$$(\frac{c+3}{4} + \lambda_i \gamma_1)(\lambda_i - \gamma_1) = \frac{c-1}{4}\lambda_i,$$
$$(\frac{c+3}{4} + \lambda_i \gamma_1)(\lambda_i - \gamma_1) = \frac{c-1}{4}\gamma_2.$$

Therefore, for $\lambda_i \neq \gamma_1$,

(3.12)
$$\frac{c-1}{4}\lambda_i = \frac{c-1}{4}\gamma_2.$$

Lemma 3.5. For any $x \in M$, rank $A_x = 2n$.

Proof. Assume that rank $A_x \neq 2n$. First, suppose that $c \neq 1$ for some $i \in \{1, \ldots, 2n-2\}$ or $j \in \{1, 2\}$, then since $\gamma_j \neq 0$ in (3.12) we have $\lambda_i \neq 0$ for all i. In this case, rank $A_x = 2n$. Now suppose that c = 1 for some $i \in \{1, \ldots, 2n-2\}$ or $j \in \{1, 2\}$, then since $\gamma_j \neq 0$ in (3.11) we have $\lambda_i = \gamma_1$ or $\lambda_i = \gamma_2$ ehich imply $\lambda_i \neq 0$ for all i. Again, we have rank $A_x = 2n$. \Box

Lemma 3.6. A_x has exactly two distinct eigenvalues.

Proof. If $c \neq 1$ the relations (3.11) and (3.12) imply that, for all $i = 1 \dots 2n-2$, $\lambda_i = \delta_1$ or $\lambda_i = \delta_2$ hence A_x has at most two distinct eigenvalues. Otherwise, if c = 1, then the relation (3.10), for i = 1, reads as $(\lambda_i - \lambda_1)(1 + \lambda_i\lambda_1) = 0$. If $\lambda_i \neq \lambda_1$ then $\lambda_i = -\frac{1}{\lambda_1}$, but from (3.11) we have $\lambda_i = \gamma_1$ or $\lambda_i = \gamma_2$ which shows that in this case A_x has at most two distinct eigenvalues. Now if A_x has

one eigenvalue then $\gamma_1 = \gamma_2$. On the other hand, $\gamma_1 = -\frac{1}{\gamma_2}$ implies $\gamma_2^2 = -1$ which is impossible. Hence A_x has exactly two distinct eigenvalues.

Corollary 3.7. If $c \neq 1$ then multiplicities of the eigenvalues for the shape operator A at $x \in M$ are 2n - 1 and 1.

Proof. If $c \neq 1$ the relations (3.11) and (3.12) imply $\lambda_i = \delta_1$ or $\lambda_i = \delta_2$ for all $i = 1, \ldots, 2n - 2$.

Let us denote the two eigenvalues of A_x by λ and μ .

Lemma 3.8. The multiplicities of the eigenvalues are constant for the shape operator A.

Proof. Let λ be an eigenvalue of A of multiplicity p at $x \in M$ and multiplicity q at $y \in M$. Then μ has the multiplicity n - p at x and n - q at y. Therefore,

$$(\text{trace } A)(x) - (\text{trace } A)(y) = p\lambda(x) - q\lambda(y) + (n-p)\mu(x) + (n-p)\mu(y) = (p-q)(\lambda(x) - \mu(x)) + q(\lambda(x) - \lambda(y)) - (n-q)(\mu(x) - \mu(y)).$$

Since the trace map is continuous, this implies p = q.

For eigenvalues λ and μ of A we put

- (3.13) $T_{\lambda}(x) = \{X_x \in T_x(M) | A_x X_x = \lambda X_x\},$
- (3.14) $T_{\mu}(x) = \{X_x \in T_x(M) | A_x X_x = \mu X_x\}.$

Then, using Lemma 3.8, we get two distributions T_{λ} and T_{μ} .

Lemma 3.9. The distributions T_{λ} and T_{μ} are both involutive.

Proof. Let us choose $X, Y \in T_{\lambda}$. Then, using Codazzi equation, it follows that

$$\begin{aligned} A[X,Y] &= A\nabla_X Y - A\nabla_Y X \\ &= \nabla_X (AY) - (\nabla_X A)Y - \nabla_Y (AX) + (\nabla_Y A)X \\ &= (X\lambda)Y - (Y\lambda)X + \lambda[X,Y]. \end{aligned}$$

Hence,

(3.15)
$$(A - \lambda I)[X, Y] = (X\lambda)Y - (Y\lambda)X.$$

However, the left-hand sides of (3.15) belong to T_{μ} . In fact, $[X, Y] = [X, Y]_{\lambda} + [X, Y]_{\mu}$ implies that

$$(A - \lambda I)[X, Y] = (A - \lambda I)([X, Y]_{\lambda} + [X, Y]_{\mu})$$

= $A[X, Y]_{\lambda} + A[X, Y]_{\mu} - \lambda[X, Y]_{\lambda} - \lambda[X, Y]_{\mu}$
= $(\mu - \lambda)[X, Y]_{\mu} \in T_{\mu}.$

On the other hand, the right-hand sides of (3.15) belong to T_{λ} and therefore, (3.16) $A[X,Y] = \lambda[X,Y]$, $(X\lambda)Y - (Y\lambda)X = 0$.

This shows that the distribution T_{λ} is involutive. Similarly, one can see that the distribution T_{μ} is also involutive.

Abedi and Ilmakchi

Theorem 3.10. Let M^{2n} be a hypersurface tangent to ξ of a Sasakian space form $\widetilde{M}^{2n+1}(c)$ with recurrent shape operator. If $c \neq 1$ then M is locally a product $M' \times \gamma$, where M' is a constant ϕ -sectional curvature totally geodesic submanifold and γ is a geodesic of M. If c = 1 then M is locally a product $M_1 \times M_2$ or $M' \times \gamma$, where M_1, M_2 and M' are constant ϕ -sectional curvature totally geodesic submanifolds and γ is a geodesic of M.

Proof. Let T_{λ} and T_{μ} be as in the proof of Lemma 3.8. If $X \in T_{\lambda}, Y \in T_{\mu}$, the Codazzi equation yields

$$\nabla_X(\mu Y) - \nabla_Y(\lambda X) = A\nabla_X Y - A\nabla_Y X.$$

Since λ and μ are constant, we get $(A - \lambda I)\nabla_Y X = (A - \mu I)\nabla_X Y$. The lefthand side of the equation is in T_{μ} while the right-hand side is in T_{λ} . Hence both sides are zero. That is, $\nabla_Y X \in T_{\lambda}, \nabla_X Y \in T_{\mu}$, and for $Z \in T_{\lambda}$,

$$g(\nabla_Z X, Y) + g(X, \nabla_Z Y) = \nabla_Z(g(X, Y)) = 0.$$

On the other hand, $\nabla_Z Y \in T_{\mu}$ implies $g(X, \nabla_Z Y) = 0$. Thus, $\nabla_Z X \in T_{\mu}^{\perp}$ for all Z and $X \in T_{\lambda}$. Since $T_{\mu}^{\perp} = T_{\lambda}$, we may write $\nabla_{T_{\lambda}} T_{\lambda} \subseteq T_{\lambda}$ and $\nabla_{T_{\lambda}} T_{\mu} \subseteq T_{\mu}$. This means that T_{λ} is a totally geodesic parallel distribution. The same conclusion can be drawn for T_{μ} , namely, T_{μ} is also a totally geodesic parallel distribution. Hence, by de Rham decomposition theorem [10], M is locally isometric to the Riemannian product of the maximal integral manifolds M_{λ} and M_{μ} .

Now we consider the integral submanifold M_{λ} . Let ι_{λ} be the immersion of M_{λ} into M and $j = \iota \circ \iota_{\lambda}$, that is, j is the immersion of M_{λ} into \widetilde{M} via M. Denoting by h_{λ} and h_{λ}^{M} the second fundamental forms of M_{λ} in \widetilde{M} and M, respectively, we get for any $X', Y' \in T_{\lambda}$ the covariant derivative ∇^{λ} of M_{λ} as follows:

$$\begin{aligned} \overline{\nabla}_{X'}jY' &= j\nabla_{X'}^{\lambda}Y' + h_{\lambda}(X',Y') \\ &= \overline{\nabla}_{X'\iota} \circ \iota_{\lambda}Y' \\ &= \iota\nabla_{X'\iota}_{\lambda}Y' + h(\iota_{\lambda}X',\iota_{\lambda}Y') \\ &= \iota\{\iota_{\lambda}\nabla_{X'}^{\lambda}Y' + h_{\lambda}^{M}(X',Y')\} + h(\iota_{\lambda}X',\iota_{\lambda}Y') \\ &= j\nabla_{X'}^{\lambda}Y' + \iota h_{\lambda}^{M}(X',Y') + h(\iota_{\lambda}X',\iota_{\lambda}Y'). \end{aligned}$$

Since M_{λ} is totally geodesic in M, $h_{\lambda}^{M} = 0$. One cased easily show that $h_{\lambda}(X',Y') = h(X,Y) = g(AX,Y)N = \lambda g(X,Y)N$. By the Gauss equation,

the curvature tensor R^{λ} of M_{λ} satisfies

$$\begin{split} g^{\lambda}(R^{\lambda}(X',Y')Z',W') &= g(jY',jZ')g(jY',jW') - g(jX',jZ')g(jY',jW') \\ &+h^{\lambda}(Y',Z')h^{\lambda}(X',W') - h^{\lambda}(X',Z')h^{\lambda}(Y',W') \\ &= (\frac{c+3}{4})[g(Y',Z')g(X',W') - g(X',Z')g(Y',W')] \\ &+(\frac{c-1}{4})[g(X',\phi Z')g(\phi Y',W') - g(Y',\phi Z')g(\phi X',W') \\ &+2g(X',\phi Y')g(\phi Z',W')] \\ &+\lambda^{2}g(Y',Z')g(X',W') - \lambda^{2}g(X',Z')g(Y',W') \end{split}$$

Thus

$$H(X') = R^{\lambda}(X', \phi X') = g^{\lambda}(R^{\lambda}(X', \phi X')\phi X', X') = c + \lambda^2.$$

This shows that the integral manifold M_{λ} is a Riemannian manifold of ϕ -invariant constant curvature $c + \lambda^2$. In the same way we obtain that M_{μ} is a Riemannian manifold of ϕ -invariant constant curvature $c + \mu^2$. Thus, M is locally a product of two constant ϕ -sectional curvature spaces.

Now, if $c \neq 1$ from Corollary 3.7 one of the multiplicities of T_{λ} or T_{μ} is 2n-1 and the other multiplicity is 1. Hence an integral manifold M' and a curve γ exist so that M is locally a product of $M' \times \gamma$. Moreover, M' is constant ϕ -sectional curvature totally geodesic submanifold and γ is a geodesic of M. If c = 1, the multiplicities of T_{λ} and T_{μ} are both greater than one or one of them is 2n-1 and the other is 1. If the multiplicities are 2n-1 and 1, then, similar to the previous case, M is locally a product $M' \times \gamma$, where M' is a constant ϕ -sectional curvature totally geodesic submanifold and γ is a geodesic of M. If both multiplicities are greater than one then the integral manifolds $M_1 = M_{\lambda}$ and $M_2 = M_{\mu}$ exist so that M is locally a product of $M_1 \times M_2$, where M_1 and M_2 are two constant ϕ -sectional curvature totally geodesic submanifold submanifolds of M. This completes the proof.

References

- A. Bejancu, CR-submanifolds of Kaeher Manifold I, Proc. Amer. Math. Soc. 69 (1978), no. 1, 135–142.
- [2] A. Bejancu, Geometry of CR-Submanifolds, Mathematics and its Applications (East European Series), 23, D. Reidel Publishing Co., Dordrecht, 1986.
- [3] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin-New York, 1976.
- [4] M. Djoric and M. Okumura, Certain CR submanifolds of maximal CR dimension of complex space forms, *Differential Geom. Appl.* 26 (2008), no. 2, 208–217.
- [5] T. Hamada, On real hypersurfaces of a complex projective space with recurrent second fundamental tensor, J. Ramanujan Math. Soc. 11 (1996), no. 2, 103–107.
- [6] T. Hamada, Real hypersurfaces of a complex projective space with recurrent Ricci tensor, Glasg Math. J. 41 (1999), no. 3, 297–302.
- [7] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2) 24 (1972) 93–103.

Abedi and Ilmakchi

- [8] S. Kim, H. Lee and H. Yang, Real hypersurfaces in complex two-plane Grassmannians with recurrent shape operator, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 2, 295–305.
- [9] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, II, Reprint of the 1969 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996.
- [10] G. de Rham, Sur la réductibilité d'un espace de Riemann, Comment. Math. Helv. 268 (1952) 328–344.
- [11] P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, *Tôhoku Math. J.* 21 (1969) 363–388.
- [12] Y. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator, II, J. Korean Math. Soc. 41 (2004), no. 3, 535–565.
- [13] Y. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator, II, J. Korean Math. Soc. 41 (2004), no. 3, 535–565.
- [14] Y. C. Wong, Recurrent tensors on a linearly connected differentiable manifold, Trans. Amer. Math. Soc. 99 (1961) 325–341.
- [15] K. Yano and M. Kon, Structure on Manifold, World Scientific Publishing Co., Singapore, 1984.

(Esmaiel Abedi) DEPARTMENT OF MATHEMATICS, AZARBAIJAN SHAHID MADANI UNIVERSITY, P.O. BOX 53751 71379, TABRIZ, IRAN

E-mail address: esabedi@azaruniv.edu

(Mohammad Ilmakchi) DEPARTMENT OF MATHEMATICS, AZARBAIJAN SHAHID MADANI UNIVERSITY, P.O. BOX 53751 71379, TABRIZ, IRAN

E-mail address: ilmakchi@azaruniv.edu