Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 5, pp. 1287-1297

Title:
Hypersurfaces of a Sasakian space form with recurrent shape operator
Author(s):
E. Abedi and M. Ilmakchi

Published by Iranian Mathematical Society

HYPERSURFACES OF A SASAKIAN SPACE FORM WITH RECURRENT SHAPE OPERATOR

E. ABEDI* AND M. ILMAKCHI

(Communicated by Mohammad Bagher Kashani)

Abstract

Let $\left(M^{2 n}, g\right)$ be a real hypersurface with recurrent shape operator and tangent to the structure vector field ξ of the Sasakian space form $\widetilde{M}(c)$. We show that if the shape operator A of M is recurrent then it is parallel. Moreover, we show that M is locally a product of two constant ϕ-sectional curvature spaces. Keywords: Recurrent hypersurfaces, Sasakian manifold. MSC(2010): Primary: 53C25; Secondary: 53C40.

1. Introduction

The notion of recurrent tensor field of type (r, s) on a differentiable manifold M with a linear connection was introduced in [9] and [14]. A non-zero tensor field K of type (r, s) on M is said to be recurrent if there exists a 1-form ω such that

$$
\nabla K=\omega \otimes K
$$

We denote by A the shape operator of a real hypersurface in the non flat complex space form $M^{n}(c)$ with constant holomorphic sectional curvature. Recently in [5] and [6] Hamada applied such a notion of recurrent tensor to a shape operator or a Ricci tensor for a real hypersurface M in the complex projective space $\mathbb{C} P^{n}$, and proved the following :

Theorem 1.1. The complex projective space $\mathbb{C} P^{n}$ does not admit any real hypersurface with recurrent shape operator or recurrent Ricci tensor.

In [12] and [13], Suh studied the real hypersurfaces in complex two planes Grassmannians with recurrent shape operator and explained the geometrical

[^0]meaning of the recurrent shape operator A by the relation
$$
\left[\nabla_{X} A, A\right]=\omega(X)[A, A]=0
$$
for any tangent vector field X on M, which means that the eignespaces of the shape operator A of M are parallel along any curve in M. These eigenspaces are said to be parallel along a curve γ, if they are invariants under any parallel translation along γ.

Finally, Kim and et. al. in [8], completed the study of real hypersurfaces in the complex two plane Grassmannians with recurrent shape operator.

Milijevic studied CR submanifolds of maximal CR dimension of a complex space form with recurrent shape operator. Also . Ryan considered hypersurfaces of real space forms in [11]. He gave a complete classification of hypersurfaces in the sphere which satisfy a certain condition and proved the following:

Theorem 1.2. Let M be a hypersurface of S^{n+1} whose shape operator has exactly two distinct eigenvalues, then M is locally a product of two spheres.

This paper considers hypersurfaces of a Sasakian space form $\widetilde{M}^{2 n+1}(c)$ with constant ϕ-sectional curvature c with recurrent shape operator. Note that in the case of $c=1$, the Sasakian space form is the sphere itself. It is shown that, if M be a hypersurfaces of a Sasakian space form $\widetilde{M}^{2 n+1}(c)$, where the structure vector field of ξ is tangent to M and the shape oparator of M is recurrent, then M is locally a product of M_{1} and M_{2} or a product of M^{\prime} and γ, where M_{1}, M_{2} and M^{\prime} are constant ϕ-sectional curvature totally geodesic submanifolds and γ is a geodesic curve in M.

2. Preliminaries

A differentiable manifold $\widetilde{M}^{2 n+1}$ is said to have an almost contact structure if it admits a (non-vanishing) vector field ξ, a one-form η and a (1, 1)-tensor field ϕ satisfying

$$
\eta(\xi)=1, \quad \phi^{2}=-I+\eta \otimes \xi
$$

where I denotes the field of identity transformations of the tangent spaces at all points. These conditions imply that $\phi \xi=0$ and $\eta \circ \phi=0$, and that the endomorphism ϕ has rank $2 n$ at every point in $\widetilde{M}^{2 n+1}$. A manifold $\widetilde{M}^{2 n+1}$, equipped with an almost contact structure (ϕ, ξ, η), is called an almost contact manifold and shall be denoted by $\left(\widetilde{M}^{2 n+1},(\phi, \xi, \eta)\right)$.

Suppose that $\widetilde{M}^{2 n+1}$ is a manifold carrying an almost contact structure. A Riemannian metric \widetilde{g} on $\widetilde{M}^{2 n+1}$ satisfying

$$
\widetilde{g}(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

for all vector fields X and Y, is called compatible with the almost contact structure, and $\left(\widetilde{M}^{2 n+1},(\phi, \xi, \eta, g)\right)$ is said to be an almost contact metric structure
on $\widetilde{M}^{2 n+1}$. It is known that an almost contact manifold always admits at least one compatible metric. Note that

$$
\eta(X)=\widetilde{g}(X, \xi)
$$

for all vector fields X tangent to $\widetilde{M}^{2 n+1}$, which means that η is the metric dual of the characteristic vector field ξ.

A manifold $\widetilde{M}^{2 n+1}$ is said to be a contact manifold if it carries a global one-form η such that

$$
\eta \wedge(d \eta)^{n} \neq 0
$$

everywhere on M. The one-form η is called a contact form.
A submanifold M of a Riemannian contact manifold $\widetilde{M}^{2 n+1}$ tangent to ξ is called an invariant (resp. anti-invariant) submanifold if $\phi\left(T_{p} M\right) \subset T_{p} M$, for each $p \in M$ (resp. $\phi\left(T_{p} M\right) \subset T_{p}^{\perp} M$, for each $\left.p \in M\right)$.

A submanifold M tangent to ξ of a contact manifold $\widetilde{M}^{2 n+1}$ is called a contact CR-submanifold if there exists a pair of orthogonal differentiable distributions D and D^{\perp} on M such that
(1) $T M=D \oplus D^{\perp} \oplus \mathbb{R} \xi$, where $\mathbb{R} \xi$ is the 1 -dimensional distribution spanned by $\xi ;$
(2) D is invariant by ϕ, i.e., $\phi\left(D_{p}\right) \subset D_{p}$ for each $p \in M$;
(3) D^{\perp} is anti-invariant by ϕ, i.e., $\phi\left(D_{p}^{\perp}\right) \subset T_{p}^{\perp} M$ for each $p \in M$.

Let $(\widetilde{M}, \phi, \xi, \eta, \widetilde{g})$ be a $(2 n+1)$-dimensional contact manifold such that

$$
\widetilde{\nabla}_{X} \xi=-\phi X, \quad\left(\widetilde{\nabla}_{X} \phi\right) Y=\widetilde{g}(X, Y) \xi-\eta(Y) X
$$

where $\widetilde{\nabla}$ is the Levi-Chivita connection of \widetilde{M}, then \widetilde{M} is called a Sasakian manifold. The plane section π of $T \widetilde{M}$ is called a ϕ-section if $\phi \pi_{x} \subseteq \pi_{x}$, for each $x \in \widetilde{M}$. Also \widetilde{M} is called of constant ϕ-sectional curvature if the sectional curvature of ϕ-sections are constant. A Sasakian space form is a Sasakian manifold of constant ϕ - sectional curvature. In this case the Riemannian curvature tensor field \widetilde{R} is given by

$$
\begin{aligned}
\widetilde{R}(X, Y) Z= & \frac{c+3}{4}\{\widetilde{g}(Y, Z) X-\widetilde{g}(X, Z) Y\} \\
& -\frac{c-1}{4}\{\eta(Z)[\eta(Y) X-\eta(X) Y]+[\widetilde{g}(Y, Z) \eta(X)-\widetilde{g}(X, Z) \eta(Y)] \xi \\
& \quad-\widetilde{g}(\phi Y, Z) \phi X+\widetilde{g}(\phi X, Z) \phi Y+2 \widetilde{g}(\phi X, Y) \phi Z\}
\end{aligned}
$$

for each $X, Y, Z \in \chi(\widetilde{M})$.
Definition 2.1. Let T be a $(1,1)$ tensor field on a Riemannian manifold M. Then T is called a recurrent tensor field if $\left(\nabla_{X} T\right) Y=\omega(X) T Y$, one form ω and vector fields X, Y on M.

3. Hypersurfaces of a Sasakian space form with recurrent shape operator

Let $\left(M^{2 n}, g\right)$ be a real hypersurface of Sasakian space form $\widetilde{M^{2 n+1}}(c)$ with recurrent shape operator and tangent to ξ. Assume moreover that N is a local unit normal vector field on M. Clearly D^{\perp} is unidimensional distribution spanned by $U=-\phi(N)$.
Lemma 3.1. Let $M^{2 n}$ be a hypersurface of a Sasakian space form $\widetilde{M}^{2 n+1}(c)$ tangent to the vector field of ξ and A be the shape operator of M. Then $A \xi=$ $-U$.
Proof. Let $\widetilde{\nabla}$ and ∇ be the Levi-Chivita connections of \widetilde{M} and M, respectively. Then, by the Gauss formula and Sasakian conditions,

$$
\nabla_{U} \xi+g(A U, \xi) N=\widetilde{\nabla}_{U} \xi=-\phi U=-N
$$

Considering the tangential and normal parts of the above relation, we have

$$
\begin{equation*}
\nabla_{U} \xi=0, \quad g(A U, \xi)=-1 \tag{3.1}
\end{equation*}
$$

Also, since

$$
\nabla_{\xi} \xi+g(A \xi, \xi) N=-\phi \xi=0
$$

we have

$$
\begin{equation*}
\nabla_{\xi} \xi=0, \quad g(A \xi, \xi)=0 \tag{3.2}
\end{equation*}
$$

On the other hand,

$$
\nabla_{X} \xi+g(A X, \xi) N=\widetilde{\nabla}_{X} \xi=-\phi X
$$

for each X in $T M$. Now if $X \in D$, then by the above relation we have

$$
g(A \xi, X)=g(A X, \xi)=0, \quad \nabla_{X} \xi=-\phi X
$$

which implies that $A \xi=-U$.
Now let $A U=\alpha U+\beta \xi+(A U)_{D}$ where $(A U)_{D}$ is the projected part of $A U$ on D. Since $g(A U, \xi)=-1$ we have

$$
\begin{equation*}
A U=-\xi+\alpha U+(A U)_{D} \tag{3.3}
\end{equation*}
$$

Lemma 3.2. Let (M, g) be a real hypersurface tangent to ξ of the Sasakian space form $\widetilde{M}^{2 n+1}(c)$. If the shape operator A of M is the recurrent operator then it is parallel.

Proof. By Codazzi equation, Sasakian conditions together with recurrent assumption for the shape operator imply

$$
\begin{equation*}
\omega(X) A Y-w(Y) A X=\frac{c-1}{4}\{g(X, U) F Y-g(Y, U) F X-2 g(F X, Y) U\} \tag{3.4}
\end{equation*}
$$

for each X, Y in $T M$ where $F X$ is the tangent part of ϕX on $T M$. Choosing $X=\xi$ and $Y=U$ in (3.4) we have

$$
\omega(\xi) A U-w(U) A \xi=\frac{c-1}{4}\{g(\xi, U) F U-g(U, U) F \xi-2 g(F \xi, U) U\}=0
$$

Now from Lemma (3.1) and equation (3.3) we have

$$
-\omega(\xi) \xi+\omega(\xi)(A U)_{D}+(w(U)+\alpha \omega(\xi)) U=0
$$

Since ξ, U and $(A U)_{D}$ are linearly independent,

$$
\omega(\xi)=0, \omega(U)=0
$$

Setting $X \in D$ and $Y=\xi$ in (3.4), one obtains
$\omega(X) A \xi-w(\xi) A X=\frac{c-1}{4}\{g(X, U) F \xi-g(\xi, U) F X-2 g(F X, \xi) U\}=0$.
Therefore $\omega(X)=0$, for all X in D and $\nabla A=0$.
If the shape operator A of the hypersurface M is parallel, then

$$
\begin{align*}
R(X, Y)(A Z) & =\nabla_{X} \nabla_{Y}(A Z)-\nabla_{Y} \nabla_{X}(A Z)-\nabla_{[X, Y]}(A Z) \\
& =A R(X, Y) Z \tag{3.5}
\end{align*}
$$

for all X, Y, Z in $T M$.
Lemma 3.3. Let (M, g) be a real hypersurface tangent to ξ of the Sasakian space form $\widetilde{M}^{2 n+1}(c)$. If the shape operator A of M is parallel then the subspace of D is invariant under A.

Proof. By the Gauss formula, we have

$$
\begin{equation*}
R(\xi, U) U=-\xi-A U-g(A U, U) U \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
R(U, \xi) \xi=U+g(A \xi, \xi) A U-g(A U, \xi) A \xi=U-U=0 \tag{3.7}
\end{equation*}
$$

Now, choosing $X=U$ and $Y=Z=\xi$ in (3.5), from Lemma (3.1), we conclude that

$$
\begin{equation*}
A R(U, \xi) \xi=R(U, \xi) A \xi=-R(U, \xi) U \tag{3.8}
\end{equation*}
$$

Therefore by (3.6),(3.7) and (3.8)

$$
A U=-\xi-g(A U, U) U
$$

Hense $A U \in \operatorname{span}\{\xi, U\}$. This shows that $A D=D$.
Since A_{p} is self adjoint and D and $\operatorname{span}\{\xi, U\}$ are invariant subspaces under A_{p}, for any $p \in M$, there exists a locally orthonormal frame

$$
X_{1}, \ldots, X_{2 n-2}
$$

for D. Also there a frame $\left\{W_{1}, W_{2}\right\}$ for $\operatorname{span}\{\xi, U\}$, where

$$
\begin{gathered}
A X_{i}=\mu_{i} X_{i}, \quad i=1, \ldots, 2 n-2 \\
A W_{1}=\gamma_{1} W_{1}, A W_{2}=\gamma_{2} W_{2}
\end{gathered}
$$

We set

$$
\begin{aligned}
& W_{1}=\xi \cos \theta+U \sin \theta \\
& W_{2}=-\xi \sin \theta+U \cos \theta
\end{aligned}
$$

for some $0<\theta<\pi / 2$. Note that ξ and U can not be eigenvectors of A and hence $\cos \theta$ and $\sin \theta$ are not vanishing at any $p \in M$.
Lemma 3.4. Under the above conditions, $\gamma_{1}=-\tan \theta$ and $\gamma_{2}=\cot \theta$.
Proof. Using the structures of W_{1}, W_{2} one has

$$
U=W_{1} \sin \theta+W_{2} \cos \theta
$$

On the other hand, by Lemma 3.1 we get

$$
\begin{aligned}
A W_{1} & =A \xi \cos \theta+A U \sin \theta=-U \cos \theta+A U \sin \theta \\
A W_{2} & =-A \xi \sin \theta+A U \cos \theta=U \sin \theta+A U \cos \theta
\end{aligned}
$$

Therefore,

$$
U=A W_{2} \sin \theta-A W_{1} \cos \theta=\gamma_{2} W_{2} \sin \theta-\gamma_{1} W_{1} \cos \theta
$$

Comparing the above values of U we have

$$
\left(\gamma_{2} \sin \theta-\cos \theta\right) W_{2}-\left(\gamma_{1} \cos \theta+\sin \theta\right) W_{1}=0
$$

Since W_{1} and W_{2} are linearly independent,

$$
\gamma_{1}=-\tan \theta, \quad \gamma_{2}=\cot \theta
$$

Using the Gauss equation, the structure of curvature tensor of the a Sasakian space form and (3.5), we get

$$
\begin{aligned}
& \frac{c+3}{4}\{g(Y, A Z) X-g(X, A Z) Y\} \\
& \quad-\frac{c-1}{4}\{\eta(A Z)[\eta(Y) X-\eta(X) Y]+[g(Y, A Z) \eta(X)-g(X, A Z) \eta(Y)] \xi \\
& \quad \quad-g(F Y, A Z) F X+g(F X, A Z) F Y+2 g(F X, Y) F A Z\} \\
& \quad+g(A Y, A Z) A X-g(A X, A Z) A Y \\
& =\frac{c+3}{4}\{g(Y, Z) X-g(X, Z) Y\} \\
& \quad-\frac{c-1}{4}\{\eta(Z)[\eta(Y) A X-\eta(X) A Y]+[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] A \xi \\
& \quad \quad-g(F Y, Z) A F X+g(F X, Z) A F Y+2 g(F X, Y) A F Z\} \\
& \quad+g(A Y, A Z) A^{2} X-g(A X, A Z) A^{2} Y
\end{aligned}
$$

for each X, Y, Z in $T M$.
Now from (3.9) setting $X=X_{i}$ and $Y=Z=X_{j}$, where X_{j} is normal to $\operatorname{span}\left\{X_{i}, \phi X_{i}\right\}$, we have

$$
\begin{equation*}
\left(\lambda_{i}-\lambda_{j}\right)\left(\frac{c+3}{4}+\lambda_{i} \lambda_{j}\right)=0 \tag{3.10}
\end{equation*}
$$

Furthermore, setting $X=W_{1}$ and $Y=Z=X_{i}$ in (3.9), we get

$$
\left(\frac{c+3}{4} \lambda_{i}+\lambda_{i}^{2} \gamma_{1}\right) W_{1}-\frac{c-1}{4} \lambda_{i} \cos \theta \xi=\left(\frac{c+3}{4} \gamma_{1}+\lambda_{i} \gamma_{1}^{2}\right) W_{1}+\frac{c-1}{4} \cos \theta U .
$$

Therefore

$$
\begin{aligned}
&\left(\frac{c+3}{4} \lambda_{i}+\lambda_{i}^{2} \gamma_{1}\right)(\xi \cos \theta+U \sin \theta)-\frac{c-1}{4} \lambda_{i} \cos \theta \xi \\
&=\left(\frac{c+3}{4} \gamma_{1}+\lambda_{i} \gamma_{1}^{2}\right)(\xi \cos \theta+U \sin \theta)+\frac{c-1}{4} \cos \theta U
\end{aligned}
$$

Since ξ and U are linearly independent,

$$
\begin{aligned}
\lambda_{i} \cos \theta+\lambda_{i}^{2} \gamma_{1} \cos \theta & =\frac{c+3}{4} \gamma_{1} \cos \theta+\lambda_{i} \gamma_{1}^{2} \cos \theta \\
\frac{c+3}{4} \lambda_{i} \sin \theta+\lambda_{i}^{2} \gamma_{1} \sin \theta & =\frac{c+3}{4} \gamma_{1} \sin \theta+\lambda_{i} \gamma_{1}^{2} \sin \theta+\frac{c-1}{4} \cos \theta
\end{aligned}
$$

and by the structure of W_{1}, W_{2} and (3.4), we have

$$
\begin{align*}
& \left(\frac{c+3}{4}+\lambda_{i} \gamma_{1}\right)\left(\lambda_{i}-\gamma_{1}\right)=\frac{c-1}{4} \lambda_{i} \\
& \left(\frac{c+3}{4}+\lambda_{i} \gamma_{1}\right)\left(\lambda_{i}-\gamma_{1}\right)=\frac{c-1}{4} \gamma_{2} \tag{3.11}
\end{align*}
$$

Therefore, for $\lambda_{i} \neq \gamma_{1}$,

$$
\begin{equation*}
\frac{c-1}{4} \lambda_{i}=\frac{c-1}{4} \gamma_{2} \tag{3.12}
\end{equation*}
$$

Lemma 3.5. For any $x \in M$, rank $A_{x}=2 n$.
Proof. Assume that rank $A_{x} \neq 2 n$. First, suppose that $c \neq 1$ for some $i \in$ $\{1, \ldots, 2 n-2\}$ or $j \in\{1,2\}$, then since $\gamma_{j} \neq 0$ in (3.12) we have $\lambda_{i} \neq 0$ for all i. In this case, $\operatorname{rank} A_{x}=2 n$. Now suppose that $c=1$ for some $i \in\{1, \ldots, 2 n-2\}$ or $j \in\{1,2\}$, then since $\gamma_{j} \neq 0$ in (3.11) we have $\lambda_{i}=\gamma_{1}$ or $\lambda_{i}=\gamma_{2}$ ehich imply $\lambda_{i} \neq 0$ for all i. Again, we have rank $A_{x}=2 n$.

Lemma 3.6. A_{x} has exactly two distinct eigenvalues.
Proof. If $c \neq 1$ the relations (3.11) and (3.12) imply that, for all $i=1 \ldots 2 n-2$, $\lambda_{i}=\delta_{1}$ or $\lambda_{i}=\delta_{2}$ hence A_{x} has at most two distinct eigenvalues. Otherwise, if $c=1$, then the relation (3.10), for $i=1$, reads as $\left(\lambda_{i}-\lambda_{1}\right)\left(1+\lambda_{i} \lambda_{1}\right)=0$. If $\lambda_{i} \neq \lambda_{1}$ then $\lambda_{i}=-\frac{1}{\lambda_{1}}$, but from (3.11) we have $\lambda_{i}=\gamma_{1}$ or $\lambda_{i}=\gamma_{2}$ which shows that in this case A_{x} has at most two distinct eigenvalues. Now if A_{x} has
one eigenvalue then $\gamma_{1}=\gamma_{2}$. On the other hand, $\gamma_{1}=-\frac{1}{\gamma_{2}}$ implies $\gamma_{2}^{2}=-1$ which is impossible. Hence A_{x} has exactly two distinct eigenvalues.

Corollary 3.7. If $c \neq 1$ then multiplicities of the eigenvalues for the shape operator A at $x \in M$ are $2 n-1$ and 1 .
Proof. If $c \neq 1$ the relations (3.11) and (3.12) imply $\lambda_{i}=\delta_{1}$ or $\lambda_{i}=\delta_{2}$ for all $i=1, \ldots, 2 n-2$.

Let us denote the two eigenvalues of A_{x} by λ and μ.
Lemma 3.8. The multiplicities of the eigenvalues are constant for the shape operator A.
Proof. Let λ be an eigenvalue of A of multiplicity p at $x \in M$ and multiplicity q at $y \in M$. Then μ has the multiplicity $n-p$ at x and $n-q$ at y. Therefore, $(\operatorname{trace} A)(x)-(\operatorname{trace} A)(y)=p \lambda(x)-q \lambda(y)+(n-p) \mu(x)+(n-p) \mu(y)$

$$
=(p-q)(\lambda(x)-\mu(x))+q(\lambda(x)-\lambda(y))-(n-q)(\mu(x)-\mu(y))
$$

Since the trace map is continuous, this implies $p=q$.
For eigenvalues λ and μ of A we put

$$
\begin{align*}
& T_{\lambda}(x)=\left\{X_{x} \in T_{x}(M) \mid A_{x} X_{x}=\lambda X_{x}\right\} \tag{3.13}\\
& T_{\mu}(x)=\left\{X_{x} \in T_{x}(M) \mid A_{x} X_{x}=\mu X_{x}\right\} \tag{3.14}
\end{align*}
$$

Then, using Lemma 3.8, we get two distributions T_{λ} and T_{μ}.
Lemma 3.9. The distributions T_{λ} and T_{μ} are both involutive.
Proof. Let us choose $X, Y \in T_{\lambda}$. Then, using Codazzi equation, it follows that

$$
\begin{aligned}
A[X, Y] & =A \nabla_{X} Y-A \nabla_{Y} X \\
& =\nabla_{X}(A Y)-\left(\nabla_{X} A\right) Y-\nabla_{Y}(A X)+\left(\nabla_{Y} A\right) X \\
& =(X \lambda) Y-(Y \lambda) X+\lambda[X, Y]
\end{aligned}
$$

Hence,

$$
\begin{equation*}
(A-\lambda I)[X, Y]=(X \lambda) Y-(Y \lambda) X \tag{3.15}
\end{equation*}
$$

However, the left-hand sides of (3.15) belong to T_{μ}. In fact, $[X, Y]=[X, Y]_{\lambda}+$ $[X, Y]_{\mu}$ implies that

$$
\begin{aligned}
(A-\lambda I)[X, Y] & =(A-\lambda I)\left([X, Y]_{\lambda}+[X, Y]_{\mu}\right) \\
& =A[X, Y]_{\lambda}+A[X, Y]_{\mu}-\lambda[X, Y]_{\lambda}-\lambda[X, Y]_{\mu} \\
& =(\mu-\lambda)[X, Y]_{\mu} \in T_{\mu}
\end{aligned}
$$

On the other hand, the right-hand sides of (3.15) belong to T_{λ} and therefore,

$$
\begin{equation*}
A[X, Y]=\lambda[X, Y] \quad, \quad(X \lambda) Y-(Y \lambda) X=0 \tag{3.16}
\end{equation*}
$$

This shows that the distribution T_{λ} is involutive. Similarly, one can see that the distribution T_{μ} is also involutive.

Theorem 3.10. Let $M^{2 n}$ be a hypersurface tangent to ξ of a Sasakian space form $\widetilde{M}^{2 n+1}(c)$ with recurrent shape operator. If $c \neq 1$ then M is locally a product $M^{\prime} \times \gamma$, where M^{\prime} is a constant ϕ-sectional curvature totally geodesic submanifold and γ is a geodesic of M. If $c=1$ then M is locally a product $M_{1} \times M_{2}$ or $M^{\prime} \times \gamma$, where M_{1}, M_{2} and M^{\prime} are constant ϕ-sectional curvature totally geodesic submanifolds and γ is a geodesic of M.

Proof. Let T_{λ} and T_{μ} be as in the proof of Lemma 3.8. If $X \in T_{\lambda}, Y \in T_{\mu}$, the Codazzi equation yields

$$
\nabla_{X}(\mu Y)-\nabla_{Y}(\lambda X)=A \nabla_{X} Y-A \nabla_{Y} X
$$

Since λ and μ are constant, we get $(A-\lambda I) \nabla_{Y} X=(A-\mu I) \nabla_{X} Y$. The lefthand side of the equation is in T_{μ} while the right-hand side is in T_{λ}. Hence both sides are zero. That is, $\nabla_{Y} X \in T_{\lambda}, \nabla_{X} Y \in T_{\mu}$, and for $Z \in T_{\lambda}$,

$$
g\left(\nabla_{Z} X, Y\right)+g\left(X, \nabla_{Z} Y\right)=\nabla_{Z}(g(X, Y))=0
$$

On the other hand, $\nabla_{Z} Y \in T_{\mu}$ implies $g\left(X, \nabla_{Z} Y\right)=0$. Thus, $\nabla_{Z} X \in T_{\mu}^{\perp}$ for all Z and $X \in T_{\lambda}$. Since $T_{\mu}^{\perp}=T_{\lambda}$, we may write $\nabla_{T_{\lambda}} T_{\lambda} \subseteq T_{\lambda}$ and $\nabla_{T_{\lambda}} T_{\mu} \subseteq T_{\mu}$. This means that T_{λ} is a totally geodesic parallel distribution. The same conclusion can be drawn for T_{μ}, namely, T_{μ} is also a totally geodesic parallel distribution. Hence, by de Rham decomposition theorem [10], M is locally isometric to the Riemannian product of the maximal integral manifolds M_{λ} and M_{μ}.

Now we consider the integral submanifold M_{λ}. Let ι_{λ} be the immersion of M_{λ} into M and $j=\iota \circ \iota_{\lambda}$, that is, j is the immersion of M_{λ} into \widetilde{M} via M. Denoting by h_{λ} and h_{λ}^{M} the second fundamental forms of M_{λ} in \widetilde{M} and M, respectively, we get for any $X^{\prime}, Y^{\prime} \in T_{\lambda}$ the covariant derivative ∇^{λ} of M_{λ} as follows:

$$
\begin{aligned}
\bar{\nabla}_{X^{\prime}} j Y^{\prime} & =j \nabla_{X^{\prime}}^{\lambda} Y^{\prime}+h_{\lambda}\left(X^{\prime}, Y^{\prime}\right) \\
& =\bar{\nabla}_{X^{\prime} \iota \iota} \circ \iota_{\lambda} Y^{\prime} \\
& =\iota \nabla_{X^{\prime} \iota_{\lambda} Y^{\prime}+h\left(\iota_{\lambda} X^{\prime}, \iota_{\lambda} Y^{\prime}\right)} \\
& =\iota\left\{\iota_{\lambda} \nabla_{X^{\prime}}^{\lambda} Y^{\prime}+h_{\lambda}^{M}\left(X^{\prime}, Y^{\prime}\right)\right\}+h\left(\iota_{\lambda} X^{\prime}, \iota_{\lambda} Y^{\prime}\right) \\
& =j \nabla_{X^{\prime}}^{\lambda} Y^{\prime}+\iota h_{\lambda}^{M}\left(X^{\prime}, Y^{\prime}\right)+h\left(\iota_{\lambda} X^{\prime}, \iota_{\lambda} Y^{\prime}\right)
\end{aligned}
$$

Since M_{λ} is totally geodesic in $M, h_{\lambda}^{M}=0$. One cased easily show that $h_{\lambda}\left(X^{\prime}, Y^{\prime}\right)=h(X, Y)=g(A X, Y) N=\lambda g(X, Y) N$. By the Gauss equation,
the curvature tensor R^{λ} of M_{λ} satisfies

$$
\begin{aligned}
g^{\lambda}\left(R^{\lambda}\left(X^{\prime}, Y^{\prime}\right) Z^{\prime}, W^{\prime}\right)= & g\left(j Y^{\prime}, j Z^{\prime}\right) g\left(j Y^{\prime}, j W^{\prime}\right)-g\left(j X^{\prime}, j Z^{\prime}\right) g\left(j Y^{\prime}, j W^{\prime}\right) \\
& +h^{\lambda}\left(Y^{\prime}, Z^{\prime}\right) h^{\lambda}\left(X^{\prime}, W^{\prime}\right)-h^{\lambda}\left(X^{\prime}, Z^{\prime}\right) h^{\lambda}\left(Y^{\prime}, W^{\prime}\right) \\
= & \left(\frac{c+3}{4}\right)\left[g\left(Y^{\prime}, Z^{\prime}\right) g\left(X^{\prime}, W^{\prime}\right)-g\left(X^{\prime}, Z^{\prime}\right) g\left(Y^{\prime}, W^{\prime}\right)\right] \\
& +\left(\frac{c-1}{4}\right)\left[g\left(X^{\prime}, \phi Z^{\prime}\right) g\left(\phi Y^{\prime}, W^{\prime}\right)-g\left(Y^{\prime}, \phi Z^{\prime}\right) g\left(\phi X^{\prime}, W^{\prime}\right)\right. \\
& \left.+2 g\left(X^{\prime}, \phi Y^{\prime}\right) g\left(\phi Z^{\prime}, W^{\prime}\right)\right] \\
& +\lambda^{2} g\left(Y^{\prime}, Z^{\prime}\right) g\left(X^{\prime}, W^{\prime}\right)-\lambda^{2} g\left(X^{\prime}, Z^{\prime}\right) g\left(Y^{\prime}, W^{\prime}\right)
\end{aligned}
$$

Thus

$$
H\left(X^{\prime}\right)=R^{\lambda}\left(X^{\prime}, \phi X^{\prime}\right)=g^{\lambda}\left(R^{\lambda}\left(X^{\prime}, \phi X^{\prime}\right) \phi X^{\prime}, X^{\prime}\right)=c+\lambda^{2}
$$

This shows that the integral manifold M_{λ} is a Riemannian manifold of ϕ-invariant constant curvature $c+\lambda^{2}$. In the same way we obtain that M_{μ} is a Riemannian manifold of ϕ-invariant constant curvature $c+\mu^{2}$. Thus, M is locally a product of two constant ϕ-sectional curvature spaces.

Now, if $c \neq 1$ from Corollary 3.7 one of the multiplicities of T_{λ} or T_{μ} is $2 n-1$ and the other multiplicity is 1 . Hence an integral manifold M^{\prime} and a curve γ exist so that M is locally a product of $M^{\prime} \times \gamma$. Moreover, M^{\prime} is constant ϕ-sectional curvature totally geodesic submanifold and γ is a geodesic of M. If $c=1$, the multiplicities of T_{λ} and T_{μ} are both greater than one or one of them is $2 n-1$ and the other is 1 . If the multiplicities are $2 n-1$ and 1 , then, similar to the previous case, M is locally a product $M^{\prime} \times \gamma$, where M^{\prime} is a constant ϕ-sectional curvature totally geodesic submanifold and γ is a geodesic of M. If both multiplicities are greater than one then the integral manifolds $M_{1}=M_{\lambda}$ and $M_{2}=M_{\mu}$ exist so that M is locally a product of $M_{1} \times M_{2}$, where M_{1} and M_{2} are two constant ϕ-sectional curvature totally geodesic submanifolds of M. This completes the proof.

References

[1] A. Bejancu, CR-submanifolds of Kaeher Manifold I, Proc. Amer. Math. Soc. 69 (1978), no. 1, 135-142.
[2] A. Bejancu, Geometry of CR-Submanifolds, Mathematics and its Applications (East European Series), 23, D. Reidel Publishing Co., Dordrecht, 1986.
[3] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin-New York, 1976.
[4] M. Djoric and M. Okumura, Certain CR submanifolds of maximal CR dimension of complex space forms, Differential Geom. Appl. 26 (2008), no. 2, 208-217.
[5] T. Hamada, On real hypersurfaces of a complex projective space with recurrent second fundamental tensor, J. Ramanujan Math. Soc. 11 (1996), no. 2, 103-107.
[6] T. Hamada, Real hypersurfaces of a complex projective space with recurrent Ricci tensor, Glasg Math. J. 41 (1999), no. 3, 297-302.
[7] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2) 24 (1972) 93-103.
[8] S. Kim, H. Lee and H. Yang, Real hypersurfaces in complex two-plane Grassmannians with recurrent shape operator, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 2, 295-305.
[9] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, II, Reprint of the 1969 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley \& Sons, Inc., New York, 1996.
[10] G. de Rham, Sur la réductibilité d'un espace de Riemann, Comment. Math. Helv. 268 (1952) 328-344.
[11] P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J. 21 (1969) 363-388.
[12] Y. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator, II, J. Korean Math. Soc. 41 (2004), no. 3, 535-565.
[13] Y. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator, II, J. Korean Math. Soc. 41 (2004), no. 3, 535-565.
[14] Y. C. Wong, Recurrent tensors on a linearly connected differentiable manifold, Trans. Amer. Math. Soc. 99 (1961) 325-341.
[15] K. Yano and M. Kon, Structure on Manifold, World Scientific Publishing Co., Singapore, 1984.
(Esmaiel Abedi) Department of Mathematics, Azarbaijan Shahid Madani UniverSity, P.O. Box 53751 71379, Tabriz, Iran

E-mail address: esabedi@azaruniv.edu
(Mohammad Ilmakchi) Department of Mathematics, Azarbaijan Shahid Madani University, P.O. Box 53751 71379, Tabriz, Iran

E-mail address: ilmakchi@azaruniv.edu

[^0]: Article electronically published on October 17, 2015.
 Received: 18 September 2012, Accepted: 8 August 2014.

 * Corresponding author.

