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1. Introduction and main results

We assume that the readers are familiar with the fundamental results and
standard notations of the Nevanlinna theory in the unit disk A = {z : |2| < 1}
and in the complex plane C (see [2,17]). The value distribution theory of mero-
morphic functions introduced by Nevanlinna was extended to the corresponding
theory of algebroid functions by Selberg [13], Ullrich [10] and Valiron [11, 12]
around 1930. For the uniqueness theory of algebroid functions, Valiron [11],
Baganas [1], He [4], Sun [14], Xuan [16] and others have already done a lot of
work.

Zheng [19,20] was the first one who considered the uniqueness of two mero-
morphic functions dealing with shared values in a proper subset of C. After
Zheng’s work, many authors have investigated the uniqueness of meromorphic
functions in angular domains, such as Lin, Mori and Tohge [5], Lin, Mori and
Yi [6], Liu and Sun [7], Mao and Liu [9]. In 2010, Liu and Sun [8] studied the
uniqueness theorem of algebroid functions in an angular domain.

In this paper, we will get some uniqueness theorems of algebroid functions
defined on an angular domain and extend some uniqueness theorems of mero-
morphic functions given by Yi [18] and Zheng [19] to algebroid functions.
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Before stating the results, we give some notations and definitions of an al-

gebroid function. Let Ag(z), -, A,(z) be analytic functions with no common
zeros in the complex plane. Then the following equation
(1.1) A, ()WY + A, ()WY 4 Ay(2)W + Ap(2) =0

defines a v-valued algebroid function W (z).

Let W(z) be a v-valued algebroid function and a € C be a finite or infinite
complex number. E(W = a) denotes the set of zeros of W(z) — a, whose
multiplicities are not greater than ¢. Denote by ;) (W = a) the number of
distinct zeros of W(z) —a in {z : |2| < r}, whose multiplicities are not greater
than ¢ and are counted only once. Similarly, we define the functions 741 (W =
a), Nyy(W = a) and N (441 (W = a). Denote by E(a, X, W) the set of zeros of
W(z) — a in a subset X of the complex plane C.

Next we recall some definitions of a v-valued algebroid function.

Definition 1.1. Let W(z) be a v-valued algebroid function in the disc {z :
|z] < R},0 < R < o0. Define

2m
Zm/Z/ log ™ |W;(re?)|do,

N(?",W): %/ n(t,W);n( ) )dt—l-n(o;W) 10g7“,
0

T(r,W)=m(r,W)+ N(r,W).

Definition 1.2. Let W (z) be a v-valued algebroid function in the unit disc A.
We call W(z) an admissible v-valued algebroid function in the unit disc, if

. T(r,W)

lim sup T = +00

r—1— og —r

Recently, Sun and Gao [14,15] gave the definitions of +, x and the inverse
of +, x of two algebroid functions as follows:

Definition 1.3. Let
W(z) = {w;(2),b}]—

M (2) = {m;(2), b}j
be v-valued and k-valued algebroid functions respectively. Define the operations

of W(z) and M(z) as follows:
—W(z) = {-w;(2),0}j1;
W (z) = {w; " (2), b}y
W (2)£M (2) = {(wtm);(2), )51 = {(w; (2)Ems(2),b); i =1,2,- - vy = 1,2, k)
W (2)-M(2) = {(wm);(2),b};E1 = {(wj(2) ms(2),0);5 = 1,2,--- v, = 1,2, k}.

and
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The single-valued domain R. of definition of W (z) is a v-valued covering of

the 2-plane and it is a Riemann surface. A point in R, is denoted by z if its
projection in the z—plane is z. The open set which lies over |z| < r is denoted

by |Z] < r. Given an angular domain X = {z: o« < argz < 3}, and write X for

the part of R, on X, we can define the Ahlfors-Shimizu characteristic function
of a v-valued algebroid function as follows:

S(r, X, W(z)) = %/0 /f <m>2tdtd0,z = te”,

T X, W(2) = 1/ S X W) g

We have known that 7 (r,C, W (z)) = T(r, W(z)) + O(1).
In this article, we mainly obtain the following theorems.

Theorem 1.4. Let W(z) and M(z) be two v-valued algebroid functions in the
complex plane and let ay,ag, - ,a4,4+1 be distinct complex numbers. Assume
that on an angular domain X ={z:a <argz < S} with 0 < a < § < 2,

E(aj, X,W(2)) = E(a;, X, M(2))(j = 1,2, ,4v + 1),
and for some 0 <e < (8 —«a)/2,

X
(1.2) lim sup S(r X, W) =00
r—00 v
hold, where X = {z : a+e < argz < f—¢} and w = 7/(B — «). Then

Theorem 1.5. Let W(z) and M(z) be two v-valued algebroid functions in the
complex plane and let ay,as, -+ ,a4,41 be distinct complex numbers. Assume
that on an angular domain X ={z:a < argz < B} with 0 < a < § < 27,

E(a'J7X7W(Z)) = E(CL],X,M(Z))(] = 172a"' 74V+1)7
and for some 0 < e < (8 — a)/2,

(1.3) limsupM =00
r—o0 rvlogr
hold, where X = {z : a+e < argz < f—¢} and w = 7/(B — «). Then

Theorem 1.6. Let W(z) and M(z) be two v-valued algebroid functions in the

complex plane and let aq,ag, - ,a4,4+1 be distinct complex numbers. Assume
that on an angular domain X = {z: a < argz < B} with 0 < a < § < 27,

Elaj, X, W(2)) = Eaj, X, M(2))  (j=1,2,---,4v +1)

and for some positive number 0 < e < (f — a)/2 and for some a € C
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X =
(1.4) lim sup w = 00
00 relogr
hold, where n(r,X.,W = a) is the number of the roots of W(z) = a in {|z| <
rtNXe, Xe ={z:a+e < argz < f—¢} andw = 7/(8—«). Then

In the case of multiple values, we get the following:

Theorem 1.7. Let W(z) and M(z) be two v-valued algebroid functions in the
complex plane and let ay, a2, - - ,aq be g distinct complex numbers. Assume that
on an angular domain X, W(z) satisfies the condition (1.2) , (1.3) or (1.4),
andt;(j =1,2,--- ,q) are q positive integers or 0o, such thatty > tg > -+ > tg,
and

Ey(aj, X,W(2)) = Ey,y(a;, X, M(2))(j = 1,2,--- ,q),

and

Then W (z) = M(z).

2. Some lemmas

We need some lemmas for the proofs of the theorems.

Lemma 2.1. [14,15] Let W (z) be a v-valued algebroid function and M (z) be
a k-valued algebroid function. Suppose that there are no poles included in the
sets W(0) and M(0), and a € C=CU {oco}. Then

Tr,WE£M)<T(r,W)+T(r,M)+log2,
T (r, VVl—a> =T(r,IW)+0(1).

Lemma 2.2. [3] Let W(z) be a v-valued algebroid function in the unit disc 2\
and a;(j =1,2,---,q) be q distinct complex numbers (finite or infinite). Then

(q—20)T(r,W) < Zﬁ(r, W =a;) + S(r, W),

where S(r, W) = O(log(7=T'(r, W))) outside a possible exceptional set E with
dr
E 1-r

< 00.
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Lemma 2.3. [14] Let W(z) be a v-valued algebroid function in the unit disc
A and a;(j =1,2,---,q) be q distinct complex numbers, t;(j =1,2,---,q) be
q positive integers. Then

q
_ J
(¢=20)T(r, W) < g —

q
— 1
,)(T, W = aj)+j5:1 tj?N(T', W = aj)JrS(?”, W)7

q
(q—2u—j§:lt+1 (r,W) <Zt +1Nt)rW—aj)+S(rW)
where S(r, W) = O(log(=

e

Now, we are in the position to give the main lemma of this paper.

T(r,W))) outside a possible exceptional set E with

Lemma 2.4. Let W(z) and M(z) be two v-valued admissible algebroid func-

tions in the unit disc A, and ai,a2,--- ,aq be g distinct complex numbers. If
t;(j =1,2,---,q) are positive integer numbers or oo, such that
(2.1) ty 2t > - 2> 1y,
and
(22) Et]‘)(a’j7 A7 W(Z)) = Et]‘)(aj7 Aa M(Z))(] = 17 2a e 7(1)’
and
q ‘

(2.3) Z I > 9,

j=20+1 tj+1

then W(z) = M (z).
Proof. Firstly, we suppose that a;(j = 1,2,--- ,¢q) are all finite complex num-
bers. Let W(z) # M(z). Note that

q q
Zﬁtj)(r,W =a;) = Zﬁtj)(r,M =a;) <n(r,W—-M =0).
=1

Hence

q
ZN (r,W=ua;) <vN(r,W —M=0),

MQ H

Nyy(r,M = a;) <vN(r,W —M =0).
1

We can assume that 0 is not the pole of W (z) and M (z). Otherwise, we can
multiply by a proper factor of z™. By using Lemma 2.1, we get

<.
Il
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zq: y(r, W =a;) + Zq:ﬁtj)(r,Mzaj)<21/N(T,W—M:0)
_ S_T(TW M)+ 0O(1)
<20{T(r,W)+T(r,M)} + O(1).

Applying Lemma 2.3 to W (z), we obtain

q q
1 t. —
2.4 —w—=y — | T(r,W)< LN, \(r,W =a;)+S(r,W).
Now, (2.1) implies that
1> t1 > to > tq 21'
A1~ ty+1 to+1 -2

Combining (2.1) with (2.4), we have

oty t -
Z I | T W) < —2~ Nyy(r, W = ay)
2t 41 i

q
tj t2u —_ B ‘
+Z(t]+1 t2u—|—1)th)(T’W_aJ)+S(T,W)

+T(r,W) ; (t—f T ) +5(r,W).

t]+1 t2u+1

Then we get
(2.5)
q
tj 21/t2u t2u o .
(Z tj+1+t2u+12y>T( S ot Z (W =a;) + 8 W).
Jj=2v+1 Jj=1
We can also obtain
(2.6)
q
tj 2Vt2y t2u T
<]-_;+1tj+1+t2u+12y> T(r,M)<t2u ;N y(r, M = a;) 4+ S(r, M).

Combining (2.5) with (2.6), we obtain

q tj
tj+1

(2.7) — 2w | (T(r,W) + T(r, M)) < S(r,W) + S(r, M).

j=2v+1
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But (2.7) contradicts (2.3). Thus W(z) = M (z).

Secondly, suppose one of the complex numbers a;(j = 1,...,¢q) equals co.
Without loss of generality, we suppose that a; = oo.

Take a finite number

c#a; (j=1,...,q9),

and set
F(z)= ———, G(z) = ——
Z_W(z —c’ z_M(z)fc’
1
b; = =1,...,qg—1 b, =0
J aj—C (] yeeesq )7 q

Then we have

Etj)(a’j7 Aa F(Z)) = Etj)(aj’ Aa G(Z))7 (.7 = 17 27 e aQ)'
From the above proof, we have F(z) = G(z). Therefore, W(z) = M(z). now
the proof is completed O

Letting t1 =to = ... =t4,41 = +00, ¢ = 4v + 1 in Lemma 2.4, we have the
following result.

Lemma 2.5. Let W(z) and M(z) be two v-valued admissible algebroid func-
tions in the unit disc AA. Suppose that a1, - ,as,+1 are distinct complex num-

bers. If
E(aj, A, W(z)) = E(aj, A, M(2))
holds in the unit disc, then W (z) = M (z).

3. Proof of Theorem 77.

Proof. Put 6y = L;B The function
(ze=00)m/(B=a) _q
(Zefieo)ﬂ’/(ﬂfa) +1

(3.1) () =

maps X conformally onto the unit disc |¢| < 1 and maps z = €% to w = 0.
Let 2 =pe? € {z:2€ X.,1<|z| <r}. Then

4p7=s cos 37— (0 — 6o)
(3.2) <= | 1- .

pFea 4 2Pt cos 575 (0 — b)) + 1

Notice that
T

08—«

pw{ﬁ%—?pﬁ%a cos (9—90)—1-134;0/*2%&,

8¢ x
phe.

T = T
— > —a — >
B_a(ﬁ o) > 4p? cosﬁ_a(oz-i-is eo)fﬁ_a

4pF== cos
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Then we have

*-pi-a .
(33) ¢l < 41— :\/1_2 E p PRl s
4pT-a) B — B—a
Put n = ﬁfa,w = ﬂ% Then

S(L—nr, X, W(2()) = S(r, Xe, W(2)).
Write t = 1 — npr~“. Then it follows that

S(t,C, W(z(<)) nS(1 —nr=,C, W(z(¢)))
1

lim sup = lim sup
t—1— 1— r—00 re
S(r, X, W
> lim sup N\ 2es WAR)) (r, Xe, W(z) = 4o00.
r—00 re

SECWEQ) _

1—t

It is obvious that the relation limsup,_,;_ +o00 implies

o TEC I EO)
t—1— log 1=

Since T(t,C,W(2(¢))) = T(t,W(2(¢)))) + O(1), W(z(¢)) is admissible. It

follows from

= +o0.

E(ajaw) :E(aij)

that
4v+1 4v+1
Z n(r, W =a;) = Z (r, M = a;).
j=1 j=1
Hence
4v+1 4v+1

Z N(r,W =aj) = Z N(r,M = aj).

From Lemma 2.2, we have

4v+1
CQu+1DT(r,W) < Z N, W =qa;)+0 <10g T

=1

+log T(r, W)>

4v+1
(3.4) _ -
ZN(T,M a;)+ O logl_r

j=1

+log T(r, W)>

<@Av+1)T(r,M)+ 0O (log + log T'(r, W)) .

1—r
Consequently, M (z(¢)) is admissible in |¢| < 1. Since
E(aj, X,W(z)) = E(a;, X, M(2)),

it follows that - o
E(aj, A, W(2(())) = E(a;, A, M(2(¢)))-
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By Lemma 2.5, we obtain that W (2(¢)) = M(2(¢)). Thus the equality W (z)
M (z) holds in X. Then W(z) = M(z) in C.

O il

4. Proof of Theorem ?77.

Proof. We can apply the method as in Theorem 1.1 to prove Theorem 1.2. We
only prove that W (z(¢)) is an admissible algebroid function in the unit disc.
From (3.3), we have

S(L—nr=, W(z(())) = S(r, Xe, W(2))

and
[ SEHWC [ SU A E WO,
1 t - 1 t
LT S, C W ()
T w /1_77 1—2z dr
(4.1) o plem
<ol seeweo
re T S (2, €W (2(0))
< wn /1_7] . dx.
Hence

T(T‘, X87 f) < T(l — 777’7“)7 (Ca W(Z(C)))
re - wn '
As a result, we can obtain the following
(4.2)
: T(ta w : T(t7 (Ca W) : T(]' — 777"7“), (Cv W)
limsup —————=— = limsup ———+—= = limsup
t—1— log(l —1t) t—1— log(l —1) rooo  wlogr —logwn
> lim sup T —nr—v,C,W)
rooo  wlogr — logwn
Z llm Sup nT(r7 XE? W)
r—oo TY (UJ 1Og r—= log W77)

Thus T'(t, W(z(¢))) is admissible in the unit disc. O

= +o00.

5. Proof of Theorem 1.6.

Proof. We can prove this theorem by the same method used in Theorem 1.1.
Here we only prove that W(z({)) is an admissible algebroid function in the
unit disc. By (3.3), we have

n(l—nr=“, W(z(()) = a) > n(r, X;, W(z) = a).
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Let y=1—nr—v,y' =1—n(2r)~“. Then
T(y', W(=(C))) > Ny, W(2(¢)) = a) + O(1)
> /y n(t’W(Zt(O) =Yg 1 01)

(5.1) Y
=0l WE(0) =)o +0(1)

nlr, Xe, W (2(¢)) = @)

Tw

We can prove that
T Tl
hm sup M Z hm sup M
y—1— log(l—y)~ yos1o log(l—y/)~
X =
> limsup A Xe W@ =a) _ |
r—oo T [o.) 10g(2’r‘) — log 7’]

Therefore, W (z(¢)) is an admissible algebroid function in the unit disc. O

6. Proof of Theorem 1.7.

Proof. First, by a similar argument as in Theorem 1.1 and Theorem 1.2, we
can prove that the function W(z(w)) is admissible in the unit disc. Since

By (aj, A, W(2(0) = Ev;)(a;, A, M(2(C))), (G = 1,2, ,q),

we have
S N W) =a) = 3Ny (M) = o)

< 2T(r, M(2(¢))) + O(1).
Combining the above with (2.5), we get

q
tj 2utay >
Z + —2v | T(r,W)
(j2u+1 tj + 1 t2u + 1

Y
< =2 NN (W =a5) + S(r, W)
j=1

t2u +1
2uta,
< T (5, M=(Q)) + (W),
Thus ot oyt
Vigy Vigy
" [T, W(=(Q) < P 1T, M(2(C))) + S(r, W).

Hence M(z(w)) is also admissible in the unit disc. By using Lemma 2.4, we
get W(z) = M(z). This completes the proof. O
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