Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 6, pp. 1327-1337

Title:

An upper bound to the second Hankel functional for the class of gamma-starlike functions
Author(s):

D. Vamshee Krishna and T. Ramreddy

AN UPPER BOUND TO THE SECOND HANKEL FUNCTIONAL FOR THE CLASS OF GAMMA-STARLIKE FUNCTIONS

D. VAMSHEE KRISHNA* AND T. RAMREDDY

(Communicated by Ali Abkar)

Abstract

The objective of this paper is to obtain an upper bound to the second Hankel determinant $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the function f, belonging to the class of Gamma-starlike functions, using Toeplitz determinants. The result presented here include two known results as their special cases. Keywords: Analytic function, gamma-starlike function, second Hankel functional, positive real function, Toeplitz determinants. MSC(2010): Primary: 30C45, Secondary: 30C50.

1. Introduction

Let A denote the class of analytic functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

in the open unit disc $E=\{z:|z|<1\}$. Let S be the subclass of A consisting of univalent functions.

The Hankel determinant of f for $q \geq 1$ and $n \geq 1$ was defined by Pommerenke [23] as

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \tag{1.2}\\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right| .
$$

This determinant has been considered by several authors in the literature. For example, Noonan and Thomas [20] studied the second Hankel determinant of areally mean p-valent functions. In [21], Noor determined the rate of growth of

[^0]$H_{q}(n)$ as $n \rightarrow \infty$ for the functions in S with a bounded boundary. Ehrenborg [7] studied the Hankel determinant of exponential polynomials. The Hankel transform of an integer sequence and some of its properties were discussed by Layman in [13]. One can easily observe that the Fekete-Szegö functional is $H_{2}(1)$. Fekete-Szegö then further generalized the estimate $\left|a_{3}-\mu a_{2}^{2}\right|$ with μ real and $f \in S$. Ali [2] found sharp bounds for the first four coefficients and sharp estimate for the Fekete-Szegö functional $\left|\gamma_{3}-t \gamma_{2}^{2}\right|$, where t is real, for the inverse function of f defined as $f^{-1}(w)=w+\sum_{n=2}^{\infty} \gamma_{n} w^{n}$ to the class of strongly starlike functions of order $\alpha(0<\alpha \leq 1)$ denoted by $\widetilde{S T}(\alpha)$. In this paper, we consider the Hankel determinant in the case of $q=2$ and $n=2$, known as the second Hankel determinant, given by
\[

H_{2}(2)=\left|$$
\begin{array}{ll}
a_{2} & a_{3} \tag{1.3}\\
a_{3} & a_{4}
\end{array}
$$\right|=a_{2} a_{4}-a_{3}^{2}
\]

Janteng, Halim and Darus [12] considered the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ and found a sharp upper bound for the function f in the subclass $R T$ of S, consisting of functions whose derivative has a positive real part studied by Mac Gregor [16]. In their work, they have shown that if $f \in R T$ then $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4}{9}$. Janteng, Halim and Darus [11] also obtained the second Hankel determinant and sharp bounds for the familiar subclasses of S, namely, starlike and convex functions denoted by $S T$ and $C V$ and have shown that $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1$ and $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{8}$ respectively. Similarly, the same coefficient inequality was calculated for certain subclasses of univalent and multivalent analytic functions by many authors ($[1,3,4,10,17-19])$ in the literature.

Motivated by the above mentioned results obtained by different authors in this direction, in the present paper, we consider the subclass β-convex of S and obtain an upper bound to the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the function f which belongs to this class.

Definition 1.1. A function $f \in A$ is said to be Gamma-starlike function, denoted by $f \in S T_{\gamma}(0 \leq \gamma \leq 1)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\right\} \geq 0, \text { for all } z \in E \tag{1.4}
\end{equation*}
$$

where the powers are meant for principal values. This class was defined and studied by Lewandowski, Miller and Zlotkiewicz [14]. It is observed that for $\gamma=0$ and $\gamma=1$, we get $S T_{0}=S T$ and $S T_{1}=C V$, respectively. Furthermore they have obtained the Fekete-Szegö inequality for the function f belonging to this class. Darus and Thomas [5] investigated this class and proved that the functions in it are starlike.

Some preliminary lemmas required in proving our result are as follows:

2. Preliminary results

Let \mathscr{P} denote the class of functions consisting of p, such that

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots=\left[1+\sum_{n=1}^{\infty} c_{n} z^{n}\right] \tag{2.1}
\end{equation*}
$$

which are regular in the open unit disc E and satisfies $\operatorname{Re}\{p(z)\}>0$ for any $z \in E$. Here $p(z)$ is called the Caratheòdory function [6].

Lemma 2.1. ([22, 24]) If $p \in \mathscr{P}$, then $\left|c_{k}\right| \leq 2$ for each $k \geq 1$ and the inequality is sharp for the function $\left(\frac{1+z}{1-z}\right)$.

Lemma 2.2. ([9]) The power series for $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ given in (2.1) converges in the open unit disc E to a function in \mathscr{P} if and only if the Toeplitz determinants

$$
D_{n}=\left|\begin{array}{ccccc}
2 & c_{1} & c_{2} & \cdots & c_{n} \\
c_{-1} & 2 & c_{1} & \cdots & c_{n-1} \\
c_{-2} & c_{-1} & 2 & \cdots & c_{n-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2
\end{array}\right|, n=1,2,3, \cdots
$$

are all non-negative $c_{-k}=\bar{c}_{k}$. They are strictly positive except for $p(z)=$ $\sum_{k=1}^{m} \rho_{k} P_{0}\left(e^{i t_{k}} z\right), \rho_{k}>0, t_{k}$ real and $t_{k} \neq t_{j}$, for $k \neq j$, where $P_{0}(z)=\left(\frac{1+z}{1-z}\right)$; in this case $D_{n}>0$ for $n<(m-1)$ and $D_{n} \doteq 0$ for $n \geq m$.

This necessary and sufficient condition found in [9] is due to Caratheòdory and Toeplitz. We may assume without restriction that $c_{1}>0$. On using Lemma 2.2, for $n=2$, we have

$$
D_{2}=\left|\begin{array}{ccc}
2 & c_{1} & c_{2} \\
\bar{c}_{1} & 2 & c_{1} \\
\bar{c}_{2} & \bar{c}_{1} & 2
\end{array}\right|=\left[8+2 \operatorname{Re}\left\{c_{1}^{2} c_{2}\right\}-2\left|c_{2}\right|^{2}-4\left|c_{1}\right|^{2}\right] \geq 0
$$

which is equivalent to

$$
\begin{equation*}
2 c_{2}=\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}, \text { for some } x,|x| \leq 1 \tag{2.2}
\end{equation*}
$$

For $n=3$,

$$
D_{3}=\left|\begin{array}{cccc}
2 & c_{1} & c_{2} & c_{3} \\
\bar{c}_{1} & 2 & c_{1} & c_{2} \\
\bar{c}_{2} & \bar{c}_{1} & 2 & c_{1} \\
\bar{c}_{3} & \bar{c}_{2} & \bar{c}_{1} & 2
\end{array}\right| \geq 0
$$

and it is equivalent to

$$
\text { (2.3) }\left|\left(4 c_{3}-4 c_{1} c_{2}+c_{1}^{3}\right)\left(4-c_{1}^{2}\right)+c_{1}\left(2 c_{2}-c_{1}^{2}\right)^{2}\right| \leq 2\left(4-c_{1}^{2}\right)^{2}-2\left|\left(2 c_{2}-c_{1}^{2}\right)\right|^{2}
$$

From the relations (2.2) and (2.3), after simplifying, we get

$$
\begin{equation*}
4 c_{3}=\left\{c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z\right\} \tag{2.4}
\end{equation*}
$$

for some real value of z, with $|z| \leq 1$.
To obtain our result, we refer to the classical method initiated by Libera and Zlotkiewicz [15] and used by several authors in the literature.

3. Main result

Theorem 3.1. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in S T_{\gamma}(0 \leq \gamma \leq 1)$ then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left[\frac{\left(112 \gamma^{5}+768 \gamma^{4}+2263 \gamma^{3}+1700 \gamma^{2}+372 \gamma-4\right)}{(1+2 \gamma)^{2}(1+3 \gamma)\left(37 \gamma^{4}+253 \gamma^{3}+603 \gamma^{2}+263 \gamma-4\right)}\right]
$$

Proof. For $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in S T_{\gamma}$, there exists an analytic function $p \in \mathscr{P}$ in the open unit disc E with $p(0)=1$ and $\operatorname{Re}\{p(z)\}>0$ such that

$$
\begin{equation*}
\left[\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\right]=p(z) \tag{3.1}
\end{equation*}
$$

Using the series representations for $f(z), f^{\prime}(z)$ and $f^{\prime \prime}(z)$, we have

$$
\begin{align*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right) & =\left[z\left\{1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right\} \times\left\{z+\sum_{n=2}^{\infty} a_{n} z^{n}\right\}^{-1}\right] \tag{3.2}\\
\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) & =\left[\left\{1+\sum_{n=2}^{\infty} n^{2} a_{n} z^{n-1}\right\} \times\left\{1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right\}^{-1}\right] . \tag{3.3}
\end{align*}
$$

Applying the binomial expansion on the right-hand side of (3.2) and (3.3) subject to the conditions $\left|\sum_{n=2}^{\infty} a_{n} z^{n}\right|<1$ and $\left|\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right|<1$, gives

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)=\left\{1+a_{2} z+\left(2 a_{3}-a_{2}^{2}\right) z^{2}+\left(3 a_{4}-3 a_{2} a_{3}+a_{2}^{3}\right) z^{3}+\cdots\right\} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\left\{1+2 a_{2} z+\left(6 a_{3}-4 a_{2}^{2}\right) z^{2}+\left(12 a_{4}-18 a_{2} a_{3}+8 a_{2}^{3}\right) z^{3}+\cdots\right\} \tag{3.5}
\end{equation*}
$$

Similarly, using the binomial expansion and simplifying the expressions (3.4) and (3.5), we obtain

$$
\begin{align*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}= & {\left[1+(1-\gamma) a_{2} z+\left\{2(1-\gamma) a_{3}-\frac{(1-\gamma)(2+\gamma)}{2} a_{2}^{2}\right\} z^{2}\right.} \\
& +\left\{3(1-\gamma) a_{4}-(1-\gamma)(3+2 \gamma) a_{2} a_{3}\right. \\
& \left.\left.+\frac{(1-\gamma)(1+\gamma)(6+\gamma)}{6} a_{2}^{3}\right\} z^{3}+\cdots\right] \tag{3.6}
\end{align*}
$$

$$
\begin{align*}
& \text { and }\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}=\left[1+2 a_{2} \gamma z+\left\{6 a_{3} \gamma+2\left(\gamma^{2}-3 \gamma\right) a_{2}^{2}\right\} z^{2}\right. \\
& \left.3.7) \quad+\left\{12 a_{4} \gamma+3\left(4 \gamma^{2}-10 \gamma\right) a_{2} a_{3}+\frac{4}{3} \gamma(\gamma-2)(\gamma-7) a_{2}^{3}\right\} z^{3}+\cdots\right] \tag{3.7}
\end{align*}
$$

Since $f \in S T_{\gamma}$, there exists $p(z)$ of the form (2.1) whereby the product of (3.6) and (3.7) equates to $p(z)$. Thus, we have

$$
\begin{aligned}
& {\left[1+(1-\gamma) a_{2} z+\left\{2(1-\gamma) a_{3}-\frac{(1-\gamma)(2+\gamma)}{2} a_{2}^{2}\right\} z^{2}\right.} \\
& \left.+\left\{3(1-\gamma) a_{4}-(1-\gamma)(3+2 \gamma) a_{2} a_{3}+\frac{(1-\gamma)(1+\gamma)(6+\gamma)}{6} a_{2}^{3}\right\} z^{3}+\cdots\right] \times \\
& {\left[1+2 a_{2} \gamma z+\left\{6 a_{3} \gamma+2\left(\gamma^{2}-3 \gamma\right) a_{2}^{2}\right\} z^{2}\right.} \\
& \left.+\left\{12 a_{4} \gamma+3\left(4 \gamma^{2}-10 \gamma\right) a_{2} a_{3}+\frac{4}{3} \gamma(\gamma-2)(\gamma-7) a_{2}^{3}\right\} z^{3}+\cdots\right] \\
& =\left[1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots\right]
\end{aligned}
$$

Upon simplification, we obtain

$$
\begin{align*}
& \text { 3.8) }\left[1+(1+\gamma) a_{2} z+\left\{2(1+2 \gamma) a_{3}+\frac{\left(\gamma^{2}-7 \gamma-2\right)}{2} a_{2}^{2}\right\} z^{2}+\right. \tag{3.8}\\
& \left.\left\{3(1+3 \gamma) a_{4}+\left(4 \gamma^{2}-19 \gamma-3\right) a_{2} a_{3}+\frac{\left(\gamma^{3}-24 \gamma^{2}+65 \gamma+6\right)}{6} a_{2}^{3}\right\} z^{3}+\cdots\right] \\
& =\left[1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots\right]
\end{align*}
$$

Equating the coefficients of equal powers of z, z^{2} and z^{3}, respectively, on both sides of (3.8), we get

$$
\begin{align*}
& a_{2}=\frac{c_{1}}{(1+\gamma)} \\
& a_{3}=\frac{1}{4(1+\gamma)^{2}(1+2 \gamma)}\left\{2(1+\gamma)^{2} c_{2}-\left(\gamma^{2}-7 \gamma-2\right) c_{1}^{2}\right\} \\
& a_{4}=\frac{1}{36(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)} \times\left\{12(1+\gamma)^{3}(1+2 \gamma) c_{3}\right. \\
& \left.3.9) \quad-6(1+\gamma)^{2}\left(4 \gamma^{2}-19 \gamma-3\right) c_{1} c_{2}+\left(8 \gamma^{4}-47 \gamma^{3}+154 \gamma^{2}+23 \gamma+6\right) c_{1}^{3}\right\} \tag{3.9}
\end{align*}
$$

Considering the second Hankel functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the function $f \in S T_{\gamma}$ and substituting the values of a_{2}, a_{3} and a_{4} from (3.9), we have

$$
\begin{gathered}
\left|a_{2} a_{4}-a_{3}^{2}\right|=\left\lvert\, \frac{c_{1}}{(1+\gamma)} \times \frac{1}{36(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)} \times\left\{12(1+\gamma)^{3}(1+2 \gamma) c_{3}\right.\right. \\
\left.-6(1+\gamma)^{2}\left(4 \gamma^{2}-19 \gamma-3\right) c_{1} c_{2}+\left(8 \gamma^{4}-47 \gamma^{3}+154 \gamma^{2}+23 \gamma+6\right) c_{1}^{3}\right\} \\
\left.-\frac{1}{16(1+\gamma)^{4}(1+2 \gamma)^{2}}\left\{2(1+\gamma)^{2} c_{2}-\left(\gamma^{2}-7 \gamma-2\right) c_{1}^{2}\right\}^{2} \right\rvert\,
\end{gathered}
$$

Further simplification gives

$$
\begin{aligned}
& \left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{1}{144(1+\gamma)^{4}(1+2 \gamma)^{2}(1+3 \gamma)} \times \\
& \mid 48(1+\gamma)^{3}(1+2 \gamma)^{2} c_{1} c_{3}+12 \gamma(1+\gamma)^{2}\left(-7 \gamma^{2}+8 \gamma+11\right) c_{1}^{2} c_{2} \\
& -36(1+\gamma)^{4}(1+3 \gamma) c_{2}^{2}+\left(37 \gamma^{5}+25 \gamma^{4}-45 \gamma^{3}-361 \gamma^{2}-220 \gamma-12\right) c_{1}^{4} \mid
\end{aligned}
$$

which is equivalent to

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{1}{144(1+\gamma)^{4}(1+2 \gamma)^{2}(1+3 \gamma)} \times \tag{3.10}\\
\left|d_{1} c_{1} c_{3}+d_{2} c_{1}^{2} c_{2}+d_{3} c_{2}^{2}+d_{4} c_{1}^{4}\right|
\end{align*}
$$

where $d_{1}=48(1+\gamma)^{3}(1+2 \gamma)^{2}$;

$$
\begin{aligned}
& d_{2}=12 \gamma(1+\gamma)^{2}\left(-7 \gamma^{2}+8 \gamma+11\right) \\
& d_{3}=-36(1+\gamma)^{4}(1+3 \gamma) \\
& d_{4}=\left(37 \gamma^{5}+25 \gamma^{4}-45 \gamma^{3}-361 \gamma^{2}-220 \gamma-12\right)
\end{aligned}
$$

Substituting the values of c_{2} and c_{3} given in (2.2) and (2.4) respectively from Lemma 2.2 on the right-hand side of (3.10), we have

$$
\begin{aligned}
& \left|d_{1} c_{1} c_{3}+d_{2} c_{1}^{2} c_{2}+d_{3} c_{2}^{2}+d_{4} c_{1}^{4}\right| \\
& =\left\lvert\, d_{1} c_{1} \times \frac{1}{4}\left\{c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z\right\}+\right. \\
& \\
& \left.\quad d_{2} c_{1}^{2} \times \frac{1}{2}\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}+d_{3} \times \frac{1}{4}\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}^{2}+d_{4} c_{1}^{4} \right\rvert\,
\end{aligned}
$$

Using triangle inequality and the fact that $|z|<1$, we get

$$
\begin{gather*}
4\left|d_{1} c_{1} c_{3}+d_{2} c_{1}^{2} c_{2}+d_{3} c_{2}^{2}+d_{4} c_{1}^{4}\right| \leq \mid\left(d_{1}+2 d_{2}+d_{3}+4 d_{4}\right) c_{1}^{4}+2 d_{1} c_{1}\left(4-c_{1}^{2}\right)+ \tag{3.12}\\
2\left(d_{1}+d_{2}+d_{3}\right) c_{1}^{2}\left(4-c_{1}^{2}\right)|x|-\left\{\left(d_{1}+d_{3}\right) c_{1}^{2}+2 d_{1} c_{1}-4 d_{3}\right\}\left(4-c_{1}^{2}\right)|x|^{2} \mid
\end{gather*}
$$

From (3.11), we can now write

$$
\left.\begin{array}{rl}
\left(d_{1}+2 d_{2}+d_{3}+4 d_{4}\right) & =4\left(16 \gamma^{5}+64 \gamma^{4}+177 \gamma^{3}-115 \gamma^{2}-133 \gamma-9\right) \\
d_{1} & =48(1+\gamma)^{3}(1+2 \gamma)^{2} \\
3) & \left(d_{1}+d_{2}+d_{3}\right) \tag{3.13}
\end{array}\right)=12(1+\gamma)^{2}\left(19 \gamma^{2}+16 \gamma+1\right) .
$$

$$
\text { and } \begin{align*}
\left\{\left(d_{1}\right.\right. & \left.\left.+d_{3}\right) c_{1}^{2}+2 d_{1} c_{1}-4 d_{3}\right\}=12(1+\gamma)^{3} \tag{3.14}\\
& \times\left\{\left(7 \gamma^{2}+4 \gamma+1\right) c_{1}^{2}+8(1+2 \gamma)^{2} c_{1}+12(1+\gamma)(1+3 \gamma)\right\}
\end{align*}
$$

Consider

$$
\begin{align*}
& \left\{\left(7 \gamma^{2}+4 \gamma+1\right) c_{1}^{2}+8(1+2 \gamma)^{2} c_{1}+12(1+\gamma)(1+3 \gamma)\right\} \\
& =\left(7 \gamma^{2}+4 \gamma+1\right) \times\left[c_{1}^{2}+\frac{8(1+2 \gamma)^{2}}{\left(7 \gamma^{2}+4 \gamma+1\right)} c_{1}+\frac{12(1+\gamma)(1+3 \gamma)}{\left(7 \gamma^{2}+4 \gamma+1\right)}\right] \\
& =\left(7 \gamma^{2}+4 \gamma+1\right) \times \\
& {\left[\left\{c_{1}+\frac{4(1+2 \gamma)^{2}}{\left(7 \gamma^{2}+4 \gamma+1\right)}\right\}^{2}-\frac{16(1+2 \gamma)^{4}}{\left(7 \gamma^{2}+4 \gamma+1\right)^{2}}+\frac{12(1+\gamma)(1+3 \gamma)}{\left(7 \gamma^{2}+4 \gamma+1\right)}\right]} \\
& =\left(7 \gamma^{2}+4 \gamma+1\right) \times \\
& {\left[\left\{c_{1}+\frac{4(1+2 \gamma)^{2}}{\left(7 \gamma^{2}+4 \gamma+1\right)}\right\}^{2}-\left\{\frac{2 \sqrt{\gamma^{4}+8 \gamma^{3}+18 \gamma^{2}+8 \gamma}+1}{\left(7 \gamma^{2}+4 \gamma+1\right)}\right\}^{2}\right]} \\
& =\left(7 \gamma^{2}+4 \gamma+1\right) \times \\
& {\left[c_{1}+\left\{\frac{4(1+2 \gamma)^{2}}{\left(7 \gamma^{2}+4 \gamma+1\right)}+\frac{2 \sqrt{\gamma^{4}+8 \gamma^{3}+18 \gamma^{2}+8 \gamma}+1}{\left(7 \gamma^{2}+4 \gamma+1\right)}\right\}\right]} \\
& \times\left[c_{1}+\left\{\frac{4(1+2 \gamma)^{2}}{\left(7 \gamma^{2}+4 \gamma+1\right)}-\frac{2 \sqrt{\gamma^{4}+8 \gamma^{3}+18 \gamma^{2}+8 \gamma}+1}{\left(7 \gamma^{2}+4 \gamma+1\right)}\right\}\right] \tag{3.15}
\end{align*}
$$

Since $c_{1} \in[0,2]$, using the result $\left(c_{1}+a\right)\left(c_{1}+b\right) \geq\left(c_{1}-a\right)\left(c_{1}-b\right)$, where $a, b \geq 0$ on the right-hand side of (3.15), upon simplification, we obtain

$$
\begin{align*}
& \left\{\left(7 \gamma^{2}+4 \gamma+1\right) c_{1}^{2}+8(1+2 \gamma)^{2} c_{1}+12(1+\gamma)(1+3 \gamma)\right\} \tag{3.16}\\
& \quad \geq\left\{\left(7 \gamma^{2}+4 \gamma+1\right) c_{1}^{2}-8(1+2 \gamma)^{2} c_{1}+12(1+\gamma)(1+3 \gamma)\right\}
\end{align*}
$$

From the expressions (3.14) and (3.16), we get

$$
\begin{align*}
& -\left\{\left(d_{1}+d_{3}\right) c_{1}^{2}+2 d_{1} c_{1}-4 d_{3}\right\} \tag{3.17}\\
& \quad \leq-\left\{\left(7 \gamma^{2}+4 \gamma+1\right) c_{1}^{2}-8(1+2 \gamma)^{2} c_{1}+12(1+\gamma)(1+3 \gamma)\right\}
\end{align*}
$$

Substituting the calculated values from (3.13) and (3.17) on the right-hand side of (3.12), after simplifying, we obtain

$$
\begin{aligned}
& \left|d_{1} c_{1} c_{3}+d_{2} c_{1}^{2} c_{2}+d_{3} c_{2}^{2}+d_{4} c_{1}^{4}\right| \\
& \quad \leq \mid\left(16 \gamma^{5}+64 \gamma^{4}+177 \gamma^{3}-115 \gamma^{2}-133 \gamma-9\right) c_{1}^{4}+ \\
& 24(1+\gamma)^{3}(1+2 \gamma)^{2} c_{1}\left(4-c_{1}^{2}\right)+6(1+\gamma)^{2}\left(19 \gamma^{2}+16 \gamma+1\right) c_{1}^{2}\left(4-c_{1}^{2}\right)|x| \\
& -3(1+\gamma)^{3}\left\{\left(7 \gamma^{2}+4 \gamma+1\right) c_{1}^{2}-8(1+2 \gamma)^{2} c_{1}+12(1+\gamma)(1+3 \gamma)\right\}\left(4-c_{1}^{2}\right)|x|^{2} \mid .
\end{aligned}
$$

Choosing $c_{1}=c \in[0,2]$, applying triangle inequality and replacing $|x|$ by μ on the right-hand side of the above inequality, we have

$$
\begin{align*}
& \text { (3.18) } \quad\left|d_{1} c_{1} c_{3}+d_{2} c_{1}^{2} c_{2}+d_{3} c_{2}^{2}+d_{4} c_{1}^{4}\right| \tag{3.18}\\
& \leq\left[\left(-16 \gamma^{5}-64 \gamma^{4}-177 \gamma^{3}+115 \gamma^{2}+133 \gamma+9\right) c^{4}+\right. \\
& 24(1+\gamma)^{3}(1+2 \gamma)^{2} c\left(4-c^{2}\right)+6(1+\gamma)^{2}\left(19 \gamma^{2}+16 \gamma+1\right) c^{2}\left(4-c^{2}\right) \mu \\
& \left.+3(1+\gamma)^{3}\left\{\left(7 \gamma^{2}+4 \gamma+1\right) c^{2}-8(1+2 \gamma)^{2} c+12(1+\gamma)(1+3 \gamma)\right\}\left(4-c^{2}\right) \mu^{2}\right] \\
& =F(c, \mu), \text { for } 0 \leq \mu=|x| \leq 1
\end{align*}
$$

We next maximize the function $F(c, \mu)$ on the closed region $[0,2] \times[0,1]$. Differentiating $F(c, \mu)$ partially with respect to μ, we get

$$
\begin{equation*}
\frac{\partial F}{\partial \mu}=\left[6(1+\gamma)^{2}\left(19 \gamma^{2}+16 \gamma+1\right) c^{2}\left(4-c^{2}\right)\right. \tag{3.19}
\end{equation*}
$$

$$
\left.+6(1+\gamma)^{3}\left\{\left(7 \gamma^{2}+4 \gamma+1\right) c^{2}-8(1+2 \gamma)^{2} c+12(1+\gamma)(1+3 \gamma)\right\}\left(4-c^{2}\right) \mu\right] .
$$

For $0<\mu<1$, for any fixed c with $0<c<2$ and $o \leq \gamma \leq 1$, from (3.19), we observe that $\frac{\partial F}{\partial \mu}>0$. Therefore, $F(c, \mu)$ is an increasing function of μ and hence it cannot have maximum value at any point in the interior of the closed region $[0,2] \times[0,1]$. Moreover, for fixed $c \in[0,2]$, we have

$$
\begin{equation*}
\max _{0 \leq \mu \leq 1} F(c, \mu)=F(c, 1)=G(c) . \tag{3.20}
\end{equation*}
$$

Therefore, replacing μ by 1 in $F(c, \mu)$ on the right-hand side of (3.18), upon simplification, we obtain

$$
\begin{gather*}
G(c)=F(c, 1)=\left\{-\gamma\left(37 \gamma^{4}+253 \gamma^{3}+603 \gamma^{2}+263 \gamma-4\right) c^{4}+\right. \tag{3.21}\\
\left.24 \gamma(1+\gamma)^{2}\left(-\gamma^{2}+14 \gamma+11\right) c^{2}+144(1+\gamma)^{4}(1+3 \gamma)\right\} \\
G^{\prime}(c)=\left\{-4 \gamma\left(37 \gamma^{4}+253 \gamma^{3}+603 \gamma^{2}+263 \gamma-4\right) c^{3}+\right. \tag{3.22}\\
\left.48 \gamma(1+\gamma)^{2}\left(-\gamma^{2}+14 \gamma+11\right) c\right\} \\
G^{\prime \prime}(c)=\left\{-12 \gamma\left(37 \gamma^{4}+253 \gamma^{3}+603 \gamma^{2}+263 \gamma-4\right) c^{2}+\right. \tag{3.23}\\
\left.48 \gamma(1+\gamma)^{2}\left(-\gamma^{2}+14 \gamma+11\right)\right\}
\end{gather*}
$$

For optimum value of c, consider $G^{\prime}(c)=0$. From (3.22), we get

$$
\begin{align*}
-4 \gamma c\left\{37 \gamma^{4}+253 \gamma^{3}+603 \gamma^{2}+\right. & 263 \gamma-4) c^{2}- \tag{3.24}\\
& \left.12(1+\gamma)^{2}\left(-\gamma^{2}+14 \gamma+11\right)\right\}=0
\end{align*}
$$

We now discuss the following cases.
Case 1) If $c=0$ and $\gamma \neq 0$, then, we have $G^{\prime}(c)=0$ and

$$
G^{\prime \prime}(c)=48(1+\gamma)^{2}\left(-\gamma^{2}+14 \gamma+11\right)>0, \quad \text { for } \quad 0<\gamma \leq 1
$$

From the second derivative test, $G(c)$ has minimum value at $c=0$.
Case 2) If $c \neq 0$ and $\gamma=0$, then, we have $G^{\prime}(c)=0$ and $G^{\prime \prime}(c)=0$. Therefore, $G(c)$ is a constant and the constant value is 144 , i.e., $G(c)=144$.
Case 3) If $c=0$ and $\gamma=0$, then, we have $G^{\prime}(c)=0$ and $G^{\prime \prime}(c)=0$. In this case also, we have $G(c)=144$, which is a constant.
From cases 2 and 3, we conclude that $G(c)=144$, a constant, for every $c \in[0,2]$, provided $\gamma=0$.
Case 4) If $c \neq 0$ and $\gamma \neq 0$, from (3.24), on applying the Division algorithm for polynomials, we obtain

$$
\begin{align*}
c^{2}=\left[\frac{1}{37}\left\{-12+\frac{\left(8364 \gamma^{3}+24108 \gamma^{2}+19140 \gamma+4836\right)}{\left(37 \gamma^{4}+253 \gamma^{3}+603 \gamma^{2}+263 \gamma-4\right)}\right\}\right] & >0 \tag{3.25}\\
& \text { for } 0<\gamma \leq 1
\end{align*}
$$

Substituting the c^{2} value given by (3.25) in (3.23), it can be shown that

$$
\begin{aligned}
& G^{\prime \prime}(c)=\left\{-\frac{12}{37}\left(-296 \gamma^{4}+3552 \gamma^{3}+11248 \gamma^{2}+10658 \gamma+3256\right)\right\}<0 \\
& \text { for } 0<\gamma \leq 1
\end{aligned}
$$

Therefore, by the second derivative test, $G(c)$ has maximum value at c, where c^{2} is given by (3.25). Substituting the c^{2} value in (3.21), after simplifying, we
get

$$
\begin{align*}
G_{\max }=144(1+\gamma)^{4} \times & \tag{3.26}\\
& {\left[\frac{\left(112 \gamma^{5}+768 \gamma^{4}+2263 \gamma^{3}+1700 \gamma^{2}+372 \gamma-4\right)}{\left(37 \gamma^{4}+253 \gamma^{3}+603 \gamma^{2}+263 \gamma-4\right)}\right] . }
\end{align*}
$$

Considering, only the maximum value of $G(c)$ at c, where c^{2} is given by (3.25), from the relations (3.18) and (3.26), we have

$$
\begin{align*}
& \left|d_{1} c_{1} c_{3}+d_{2} c_{1}^{2} c_{2}+d_{3} c_{2}^{2}+d_{4} c_{1}^{4}\right| \leq 144(1+\gamma)^{4} \times \tag{3.27}\\
& \quad\left[\frac{\left(112 \gamma^{5}+768 \gamma^{4}+2263 \gamma^{3}+1700 \gamma^{2}+372 \gamma-4\right)}{\left(37 \gamma^{4}+253 \gamma^{3}+603 \gamma^{2}+263 \gamma-4\right)}\right] .
\end{align*}
$$

From the expressions (3.10) and (3.27), upon simplification, we obtain

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left[\frac{\left(112 \gamma^{5}+768 \gamma^{4}+2263 \gamma^{3}+1700 \gamma^{2}+372 \gamma-4\right)}{(1+2 \gamma)^{2}(1+3 \gamma)\left(37 \gamma^{4}+253 \gamma^{3}+603 \gamma^{2}+263 \gamma-4\right)}\right] . \tag{3.28}
\end{equation*}
$$

This completes the proof of our Theorem.
Remark 3.2. Choosing $\gamma=0$, we have $S T_{0}=S T$, from (3.28), we obtain $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1$ and this inequality is sharp.

Remark 3.3. For the choice of $\gamma=1$, we have $S T_{1}=C V$, for which, from (3.28), we get $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{8}$ and is sharp.

Both the results coincide with those of Jateng, Halim and Darus [11].

Acknowledgement

The authors would like to thank the esteemed Referee(s) for their careful readings, valuable suggestions and comments, which helped to improve the presentation of the paper.

References

[1] A. Abubaker and M. Darus, Hankel determinant for a class of analytic functions involving a generalized linear differential operator, Int. J. Pure Appl. Math. 69 (2011), no. 4, 429-435.
[2] R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc.(2) 26 (2003), no. 1, 63-71.
[3] O. Al-Refai and M. Darus, Second Hankel determinant for a class of analytic functions defined by a fractional operator, Euro. J. Sci. Res. 28 (2009), no. 2, 234-241.
[4] D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett. 26 (2013), no. 1, 103-107.
[5] M. Darus and D. K. Thomas, α-logarithmically convex functions, Indian J. Pure Appl. Math. 29 (1998), no. 10, 1049-1059.
[6] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
[7] R. Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly 107 (2000), no. 6, 557-560.
[8] A. W. Goodman, I, Univalent Functions, Mariner Publishing Co., Inc., Tampa, 1983.
[9] U. Grenander and G. Szegö, Toeplitz Forms and their Applications, Second Edition, Chelsea Publishing Co., New York, 1984.
[10] W. K. Hayman, On the Second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc. (3) 18 (1968) 77-94.
[11] A. Janteng, S. A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse) 1 (2007), no. 13, 619-625.
[12] A. Janteng, S. A. Halim and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math. 7 (2006), no. 2, 1-5.
[13] J. W. Layman, The Hankel transform and some of its properties, J. Integer Seq. 4 (2001), no. 1, 1-11.
[14] Z. Lewandowski, S. S. Miller and E. Zlotkiewicz, Gamma-starlike functions, Ann. Univ. Marie Curie- Sklodowska, 28 (1974) 32-36.
[15] R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in \mathscr{P}, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251-257.
[16] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962) 532-537.
[17] A. K. Mishra and S. N. Kund, The second Hankel determinant for a class of analytic functions associated with the Carlson-Shaffer operator, Tamkang J. Math. 44 (2013), no. 1, 73-82.
[18] N. Mohamed, D. Mohamed and S. Cik Soh, Second Hankel determinant for certain generalized classes of analytic functions, Int. J. Math. Anal. (Ruse) 6 (2012), no. 17-20, 807-812.
[19] G. Murugusundaramoorthy and N. Magesh, Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant, Bull. Math. Anal. Appl. 1 (2009), no. 3, 85-89.
[20] J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976) 337-346.
[21] K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roumaine Math. Pures Appl. 28 (1983), no. 8, 731-739.
[22] Ch. Pommerenke, Univalent Functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[23] Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc. 41 (1966) 111-122.
[24] B. Simon, Orthogonal polynomials on the unit circle, Part 1. Classical theory, American Mathematical Society Colloquium Publications, 54, Part 1. American Mathematical Society, Providence, 2005.
(D. Vamshee Krishna) Department of Mathematics, GIt, Gitam University, Visakh-apatnam-530 045, Andhra Pradesh, India

E-mail address: vamsheekrishna1972@gmail.com
(T. Ramreddy) Department of Mathematics, Kakatiya University, Warangal506009, Telangana State, India.

E-mail address: reddytr2@gmail.com

[^0]: Article electronically published on December 15, 2015
 Received: 13 April 2014, Accepted: 8 August 2014.

 * Corresponding author.

