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1. Introduction

Let A denote the class of analytic functions f of the form

(1.1) f(z) :Z—FZanz”
n=2

in the open unit disc F = {z: |z| < 1}. Let S be the subclass of A consisting
of univalent functions.

The Hankel determinant of f for ¢ > 1 and n > 1 was defined by Pom-
merenke [23] as

Qp Qp41 Gp4q—1
Ap41 Ap+2 et anJrq
(1.2) Hey(n) = :
Up4q—1 Qniq Up4-2q—2

This determinant has been considered by several authors in the literature. For
example, Noonan and Thomas [20] studied the second Hankel determinant of
areally mean p-valent functions. In [21], Noor determined the rate of growth of
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H,(n) as n — oo for the functions in S with a bounded boundary. Ehrenborg
[7] studied the Hankel determinant of exponential polynomials. The Hankel
transform of an integer sequence and some of its properties were discussed by
Layman in [13]. One can easily observe that the Fekete-Szegd functional is
Hy(1). Fekete-Szegd then further generalized the estimate |as — pa3| with u
real and f € S. Ali [2] found sharp bounds for the first four coefficients and
sharp estimate for the Fekete-Szegd functional |y3 — ty3|, where ¢ is real, for
the inverse function of f defined as f~'(w) = w+ Y oo, vow™ to the class of

strongly starlike functions of order @ (0 < o < 1) denoted by ST(«). In this
paper, we consider the Hankel determinant in the case of ¢ = 2 and n = 2,
known as the second Hankel determinant, given by

az as

(1.3) Hy(2)=| 2 %

= a204 — ag.

Janteng, Halim and Darus [12] considered the functional |asas — a3| and found
a sharp upper bound for the function f in the subclass RT of S, consisting of
functions whose derivative has a positive real part studied by Mac Gregor [16].
In their work, they have shown that if f € RT then |azas — a?| < %. Janteng,
Halim and Darus [11] also obtained the second Hankel determinant and sharp
bounds for the familiar subclasses of S, namely, starlike and convex functions
denoted by ST and C'V and have shown that |azas —a3| < 1 and |asas—aj| < &
respectively. Similarly, the same coefficient inequality was calculated for certain
subclasses of univalent and multivalent analytic functions by many authors
([1,3,4,10,17-19]) in the literature.

Motivated by the above mentioned results obtained by different authors in
this direction, in the present paper, we consider the subclass S-convex of S and
obtain an upper bound to the functional |asas — a3| for the function f which
belongs to this class.

Definition 1.1. A function f € A is said to be Gamma-starlike function,
denoted by f € ST, (0 <~ < 1), if and only if

(1.4) Re { (Z]J:gi;))l_w (1 T ZJ{,ZS)Y} >0, forall z € E,

where the powers are meant for principal values. This class was defined and
studied by Lewandowski, Miller and Zlotkiewicz [14]. It is observed that for
v=0and v =1, we get STy = ST and ST} = CV, respectively. Furthermore
they have obtained the Fekete-Szego inequality for the function f belonging to
this class. Darus and Thomas [5] investigated this class and proved that the
functions in it are starlike.

Some preliminary lemmas required in proving our result are as follows:
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2. Preliminary results

Let & denote the class of functions consisting of p, such that
(o]

1+ Z cnznl ,
n=1

which are regular in the open unit disc E and satisfies Re{p(z)} > 0 for any
z € E. Here p(z) is called the Caratheodory function [6].

(2.1) p(z) =14ciz+coz® +e32® + ... =

Lemma 2.1. ( [22,2/]) If p € &, then |ck| < 2 for each k > 1 and the

inequality is sharp for the function %fz

Lemma 2.2. ([9]) The power series for p(z) =1+ Y 07| c,2™ given in (2.1)
converges in the open unit disc E to a function in & if and only if the Toeplitz
determinants

2 c1 C2 Cn
C_1 2 C1 R Cp—1
D, =| 2 ¢ 2 G2 | n=1,2,3,-
C-n Coptl Cony2 - 2

are all non-negative c_y, = ¢. They are strictly positive except for p =
S pePo(et2), pp > 0, ty real and ty, # t;, fork # j, where Py(z
in this case Dy, > 0 forn < (m —1) and D,, =0 for n > m.

This necessary and sufficient condition found in [9] is due to Caratheodory
and Toeplitz. We may assume without restriction that ¢; > 0. On using
Lemma 2.2, for n = 2, we have

2 C1 C2
Dy=|¢ 2 ¢ |=[8+2Re{c?co} —2|ca|® —4le1]?] >0
Cc ¢ 2

which is equivalent to

(2.2) 2cy = {c} +x(4 — %)}, for some x, |z| < 1.
For n =3,

2 CcC1 C2 C3

C1 2 C1 C2

s 1 2

c3 C ¢ 2

D3

Il
%
o

and it is equivalent to

(2.3) |(4cz —4erea + ) (4 — )+ c1(2c0 — )2 < 2(4 — )% —2|(2¢co — c2)|2.
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From the relations (2.2) and (2.3), after simplifying, we get
(2.4) des ={c} +2c;(4— D)z —c1(4 — cD)a® +2(4 — &) (1 — |z2]*)z}

for some real value of z, with |z| < 1.
To obtain our result, we refer to the classical method initiated by Libera
and Zlotkiewicz [15] and used by several authors in the literature.

3. Main result

Theorem 3.1. If f(z) =z + >~ ,a,2" € ST, (0 <~ <1) then

(11275 + 7687 + 226373 + 170072 + 372y — 4)
(1+27)2(1 4 37)(37v* 4+ 2533 + 60372 + 263y — 4) |

lazas — a3 < {

Proof. For f(z) = z+ > .2 ,a,2" € ST,, there exists an analytic function
p € & in the open unit disc E with p(0) =1 and Re{p(z)} > 0 such that

() (1 L)

Using the series representations for f(z), f/'(z) and f”(z), we have

(3.2) (Z;£i§)> = |z {1 —&-inanz"_l} X {z+§anz"}l

= p(2).

oo (158) < o) ) )

Applying the binomial expansion on the right-hand side of (3.2) and (3.3)
subject to the conditions [}07 , an2"| <1 and |Y07, nanz"~!| <1, gives

zf'(2)\ _ 0oz ae — a2)22 au — 3aoas - ad)zd ...
(3.4) <f(z))—{1+2 + (2a3 2)2" + (3a4 — 3azaz + ay)z” + }

and

1
(1 + 2 (Z)> ={1+ 2azz + (6a3 — 4a3)z> + (12a4 — 18azas + 8a3)2" + -+ }.
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Similarly, using the binomial expansion and simplifying the expressions (3.4)
and (3.5), we obtain

(Zf/(Z)

Lz g
e :

>H - {1 + (1= 7)azz + {2(1 —)az — :

+{3(1 = 7)as — (1 = 7)(3+ 27)azas

(3.6) n (1*7)(127)(6+V)a;}za+...}
and (1+Zfﬁ(z) )7 - [1 + 20277 + {637 + 2(v2 — 37)ad} 22
'(z) ?
(3.7) + {12a47 +3(47% — 107)agas + gv(v -2)(v - 7)@%} 24 ]

Since f € ST, there exists p(z) of the form (2.1) whereby the product of (3.6)
and (3.7) equates to p(z). Thus, we have

[1 +(1—7)azz+ {2(1 —7)as — M;Z_Wag} 22
+ {3(1 s — (1= )3 + 29)azas + L=V 27)(6”)@3} PR } X

(14 20292 + {6ag7 +2(1* — 3)a3} 2°
4 . .
+{““7+“%Pww@%+3wvmwn@}f+~ﬂ

= [1+clz+0222+03z3+~-].

Upon simplification, we obtain

(3-8) {1 + (1 +7y)azz + {2(1 +27)az + Wu%} 24

(7° — 249* + 657 + 6) 3}Zs+m]

{3(1 +37)as + (49* — 19y — 3)azaz + 5 ay

= |:1+012+CQZ2+6323+~-~].
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Equating the coefficients of equal powers of z, 22 and 23, respectively, on both
sides of (3.8), we get

a @

2 = )

(1+7)

as = 2014+ 7)%cy — (42 =Ty — 2)32)
1

aq

R R R

(3.9) —6(1+7)%(4y* — 19y — 3)cica + (8y* — 479 + 1549° + 23y + 6)cf }.

Considering the second Hankel functional |agay — a3| for the function
f € ST, and substituting the values of az, az and a4 from (3.9), we have

C1 1
X
(L47)  36(1+7)3(1+27)(1+ 3y
—6(1+7)*(47* — 19y — 3)cico + (87" — 477" + 1549% + 23y + 6)c} }
1

S aTarnp R0 e -0 - d) |

|azas —a3| = 7% {1201 +79)°(1 + 29)e3

Further simplification gives

1
p— X
144(1 4+ )41 + 27v)2(1 + 3v)
148(1 +7)3(1 4 29)2c1es 4+ 129(1 + )3 (=772 + 8y + 11) 2y
—36(1 +7)*(1+37)c3 + (377 + 259* — 4593 — 36172 — 220y — 12)c}],

lagay — a§|

which is equivalent to

1
3.10 asay — a2l = X
(3.10)  azas — a3 144(1 + ) (1 + 27)2(1 + 37)

‘dlclcg + dQC%CQ + ddcg + d40411 ,

where dy = 48(1 +7)*(1 + 27)%;
dy = 129(1 + )3 (=772 + 8y + 11);
dy = =36(1+7)*(1+37);
(3.11) dy = (377 4 259" — 4593 — 36192 — 2207y — 12).



1333 Vamshee Krishna and Ramreddy

Substituting the values of ¢3 and ¢z given in (2.2) and (2.4) respectively from
Lemma 2.2 on the right-hand side of (3.10), we have

|d16103 + dQC?CQ —+ dgC% —+ d40411|
1
=|dicy % Z{Ci’ +2¢1(4 — c%)x —c(4-— cf)xQ +2(4 - c%)(l — |x\2)z}—|—

doc} x (S + a4 — )} +ds x (S +ad — ) + duc.
Using triangle inequality and the fact that |z] < 1, we get
(3.12)
4ldycres + daci ey + dsci + dyct| < |(dy + 2do + ds + 4dy)c} + 2dyci (4 — )+

2(dy + da + d3)ci (4 — )|z — {(d1 + ds)c} + 2d1c) — 4ds} (4 — c})|=]?).
From (3.11), we can now write

(dy + 2do + ds + 4dy) = 4(167° + 64y* + 17793 — 11592 — 133y — 9);

dy = 48(1 +7)*(1 + 27)%;

(3.13) (dy +dg + d3) = 12(1 +7)*(1992 + 167y + 1).

(3.14) and {(dy +d3)ci +2dyc1 — 4ds} = 12(1 +)°
x {(77* + 4y + 1)c} + 8(1 + 27)%c1 + 12(1 +7)(1 +37) } -

Consider
{77 + 47 + 1)ci +8(1 + 2v)%c1 +12(1 +7) (1 + 37) }
8(1+27)° 12(1+y)(1+3y)}
= (7 2 4 1) x 2 .
(77" +4y+1) {cl-k T Py L ey vy e
= (77" + 47 +1)x
{c LA+ 2y)” }2 160 429)*  12(1+9)(1+3y)
YT Ay +1) (772 + 4y +1)2 Tt a1 |
= (79" + 4y + 1) x
_ o 2
{c + M} 2 8 18y 48y + 1
1 (T2 4+4v+1) (772 + 47 + 1) .
= (77" + 47 + 1) x
_c . 4(1 + 2'y)2 2\/’}/4 T8+ 182 +87+1
(3.15) X |+ 41427 2/ 8P + 182 + 87+ 1 .
(T2 +4v+1) (742 + 4y + 1)
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Since ¢1 € [0,2], using the result (c1 + a)(c1 +b) > (¢1 — a)(c1 — b), where
a,b > 0 on the right-hand side of (3.15), upon simplification, we obtain
(3.16)  {(T7* + 47+ 1)cf +8(1 +27)%c1 +12(1 +7)(1 +3y)}
> {(77% + 4y + 1)cf — 8(1+27)%cr + 12(1+7)(1 +37) } -

From the expressions (3.14) and (3.16), we get

(317) — {(dl + dg)C% + 2dic1 — 4d3}
<M +4y+ 1) —8(1+29)%ci +12(1 +9) (1 +3v)} .
Substituting the calculated values from (3.13) and (3.17) on the right-hand side
of (3.12), after simplifying, we obtain
|d10103 + d2C§CQ + dgcg + d4C‘11|
< (16795 + 647 + 1777% — 1157 — 133y — 9)ci+
24(1+7)* (1 +27)%c1(4 = ¢f) + 6(1 +7)*(199” + 167 + 1)cf(4 — cf) ||
=3(1+)° {(79? + 4y + 1)t = 8(1+29)%ex + 12(1 +7) (1 + 37) } (4=cP)|a]?].
Choosing ¢; = ¢ € [0, 2], applying triangle inequality and replacing |z| by px on
the right-hand side of the above inequality, we have
(318) |d161€3 + dQC%CQ + dgcg + d46411|
< [(=1679° — 647 — 1777 4+ 11572 4 133y + 9)c*+
24(1 4+ 7)3(1 4+ 29)%c(4 — ) 4+ 6(1 +7)2(199% + 167y + 1)c*(4 — )
+3(1+7)° {(T? + 4y + 1) = 8(1+29)°c + 12(1 +7)(1 + 37) } (4 — )]
=F(c,p), for 0 < p=|z] <1

We next maximize the function F(c, 1) on the closed region [0,2] x [0,1]. Dif-
ferentiating F'(c, u) partially with respect to u, we get

F
(3.19) ?97 = [6(1+7)%(199 + 167 + 1) (4 — ¢?)

+6(1+7)* {(T7* + 4y + 1) — 8(1 +27)%c+ 12(1 + ) (1 + 37) } (4 —c*)y.

For 0 < p < 1, for any fixed ¢ with 0 < ¢ < 2 and 0o < v < 1, from (3.19),
we observe that ‘3—5 > 0. Therefore, F(c, i) is an increasing function of y and
hence it cannot have maximum value at any point in the interior of the closed
region [0,2] x [0, 1]. Moreover, for fixed ¢ € [0, 2], we have

(3.20) Joax, F(e,u) = F(e,1) = G(e).
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Therefore, replacing p by 1 in F(c, ) on the right-hand side of (3.18), upon
simplification, we obtain
(321) G(c) = F(c,1) = {—v(37y"* + 2537® + 603~ + 263y — 4)c*+

24y(1 +7)% (=2 + 14y + 11)¢% + 144(1 +9)* (1 + 37)}

(3.22) G'(c) = {—4v(37T7* + 2537> + 60372 + 2637 — 4)c*+
48y(1 +7)?(—v* + 14y + 11)c} .

(3.23) G"(c) = {—12v(37y" + 253~ + 6037> + 263y — 4)c*+
48y(1+7)*(—* + 14y + 11) }..

For optimum value of ¢, consider G’(¢) = 0. From (3.22), we get

(3.24)  — 4vyc {379" +253+° + 6037% + 263y — 4)c*—
12(1+9)%(—* + 14y +11)} = 0.

We now discuss the following cases.
Case 1) If ¢ = 0 and 7 # 0, then, we have G'(¢) = 0 and

G"(c) =48(1 4+ )% (=2 + 14y +11) >0, for 0<~y <1

From the second derivative test, G(c¢) has minimum value at ¢ = 0.

Case 2) If ¢ # 0 and y = 0, then, we have G'(¢) = 0 and G”(¢) = 0. Therefore,
G(c) is a constant and the constant value is 144, i.e., G(c) = 144.

Case 3) If ¢ = 0 and v = 0, then, we have G'(¢) = 0 and G"’(¢) = 0. In this
case also, we have G(c) = 144, which is a constant.

From cases 2 and 3, we conclude that G(c) = 144, a constant, for every ¢ € [0, 2],
provided v = 0.

Case 4) If ¢ # 0 and v # 0, from (3.24), on applying the Division algorithm
for polynomials, we obtain

(3.25) &= {3% {_12+ (

8364~ + 2410872 4 19140~ + 4836) 0
(374 + 25373 + 60372 + 263y — 4) ’
for 0 < v < 1.

Substituting the ¢? value given by (3.25) in (3.23), it can be shown that

12
G (c) = {—ﬁ(—29674 + 3552+° + 11248+% 4 10658y + 3256)} <0,

for 0 < v < 1.

Therefore, by the second derivative test, G(c¢) has maximum value at ¢, where
c? is given by (3.25). Substituting the c? value in (3.21), after simplifying, we
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get

(3.26) Gmaz = 144(1 + )" x
(11275 + 7687 4 2263~ + 1700~% + 372y — 4)
(3774 + 25373 + 60372 + 263y — 4) '

Considering, only the maximum value of G(c) at ¢, where ¢? is given by (3.25),
from the relations (3.18) and (3.26), we have

(327) |d10103 -+ dQC%CQ -+ d3c§ -+ d4czll| < 144(1 —+ ’7)4><

(112+° + 7687 + 2263+ + 1700~> + 372y — 4)
(3794 + 25373 + 60372 + 263 — 4) '

From the expressions (3.10) and (3.27), upon simplification, we obtain

(11279° 4 768~ + 2263~ + 170072 + 372y — 4)
14 27)2(1 + 37)(37v% 4 25373 + 60372 + 263y — 4) |
This completes the proof of our Theorem. O

(3.28) |azas — a3| < {(

Remark 3.2. Choosing v = 0, we have STy = ST, from (3.28), we obtain
lagay — a3| < 1 and this inequality is sharp.

Remark 3.3. For the choice of v = 1, we have ST} = CV, for which, from
(3.28), we get |agas — a3| < & and is sharp.

Both the results coincide with those of Jateng, Halim and Darus [11].
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