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Abstract. Two types of properties for linear connections (natural and
almost paracontact metric) are discussed in almost paracontact metric

geometry with respect to four linear connections: Levi-Civita, canonical
(Zamkovoy), Golab and generalized dual. Their relationship is also ana-
lyzed with a special view towards their curvature. The particular case
of an almost para-cosymplectic manifold gives a major simplification in

computations since the paracontact form is closed.
Keywords: Almost paracontact metric manifold, natural connection,
canonical connection, Golab connection, generalized dual connections.
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1. Introduction

The paracontact geometry appears as a natural counter-part of the almost
contact geometry in [9]. Comparing with the huge literature in almost contact
geometry, it seems that there are necessary new studies in almost paracontact
geometry; a very interesting paper connecting these fields is [4]. The present
work is another step in this direction, more precisely from the point of view of
linear connections living in the almost paracontact universe; it can be consid-
ered as a continuation and generalization of [1].

Since the Levi-Civita connection is a fundamental object in (pseudo-) Rie-
mannian geometry we add to our study a pseudo-Riemannian metric; so, we
work in the so-called (hyperbolical) paracontact metric geometry, see also [6]. In
this framework there already exists a canonical connection introduced in [11]
in correspondence with the Tanaka-Webster connection of pseudo-convex CR-
geometry; we study the relationship between this linear connection and our
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connections. For example, in Section 2 we consider the notions of almost para-
contact metric connection and natural connection to which the canonical con-
nection belongs.

An important feature of the canonical connection of Zamkovoy is that it is
metrical but not symmetrical. We consider in Section 2 another linear connec-
tion which is metrical and not torsion-free. More precisely, a quarter-symmetric
connection of Golab type [7] is introduced and its properties are analyzed. The
particular case of almost para-cosymplectic manifolds is a special situation when
the computation is more simple and we obtain a case when the Golab curvature
coincides with the Levi-Civita curvature.

A last notion introduced in this paper is that of generalized dual connections
as a generalization of Norden duality of linear connections. So, the last Section
is devoted to the study of the generalized dual of the Golab connection. An
important tensor field of (1, 1)-type studied for various connections is the pro-
jector corresponding to the characteristic vector field (also called the structural
vector field); a natural connection makes parallel this vector field.

2. Almost paracontact metric geometry and some adapted
connections

Let M be a (2n+1)-dimensional smooth manifold, φ a tensor field of (1, 1)-
type called the structural endomorphism, ξ a vector field called the charac-
teristic vector field, η a 1-form called the paracontact form and g a pseudo-
Riemannian metric onM of signature (n+1, n). We say that (φ, ξ, η, g) defines
an almost paracontact metric structure on M if [11, p. 38], [3]:
1. φ(ξ) = 0, η ◦ φ = 0, 2. η(ξ) = 1, φ2 = I − η ⊗ ξ,
3. φ induces on the 2n-dimensional distribution D := ker η an almost paracom-
plex structure P i.e. P 2 = 1 and the eigensubbundles T+, T−, corresponding
to the eigenvalues 1, −1 of P respectively, have equal dimensions n; hence
D = T+ ⊕ T−,
4. g(φ·, φ·) = −g + η ⊗ η.

For a list of examples of almost paracontact metric structures see [8, p 84].
From the definition it follows that η is the g-dual of ξ i.e. η(X) = g(X, ξ), ξ
is an unitary vector field, g(ξ, ξ) = 1, and φ is a g-skew-symmetric operator,
g(φX, Y ) = −g(X,φY ). The tensor field

ω(X,Y ) := g(X,φY )(2.1)

is skew-symmetric and

ω(φX, Y ) = −ω(X,φY ), ω(φX,φY ) = −ω(X,Y ).(2.2)

Then ω is called the fundamental form. Remark that the canonical distribution
D is φ-invariant sinceD = Imφ: ifX ∈ D has the decompositionX = X++X−

with X∗ ∈ T ∗ then φX = X+ − X−. Moreover, ξ is orthogonal to D and
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therefore the tangent bundle splits orthogonally, as

TM = TF ⊕ ⟨ξ⟩.(2.3)

We are interested now in linear connections compatible with the almost
paracontact structure. To this aim we introduce:

Definition 2.1. A linear connection ∇ is a natural connection on the almost
paracontact metric manifold (M,φ, ξ, η, g) if it satisfies

∇η = ∇g = 0.(2.4)

So, a natural connection is a g-metric connection making η a parallel 1-form.
A direct consequence of the definition is:

Proposition 2.2. If ∇ is a natural connection on the almost paracontact met-
ric manifold (M,φ, ξ, η, g) then ξ is a ∇-parallel vector field: ∇ξ = 0. Hence,
the integral curves of ξ are autoparallel curves for ∇.

Proof. From the conditions (2.4) we obtain

g(∇XY, ξ) + g(Y,∇Xξ) = X(g(Y, ξ)) = X(η(Y )) = η(∇XY ) = g(∇XY, ξ)

and whence ∇ξ = 0. □

The next important problem is if φ is ∇-parallel, and then, with respect to
a general linear connection ∇, we introduce a new tensor field of (0, 3)-type
given by

F∇(X,Y, Z) := g((∇Xφ)Y,Z).(2.5)

F∇ satisfies:
(2.6) F∇(X,Y, Z) + F∇(X,Z, Y ) = −(∇g)(X,φY,Z)− (∇g)(X,Y, φZ)

F∇(X,φY,Z)− F∇(X,Y, φZ) = −η(Z)(∇Xη)Y − η(Y )g(∇Xξ, Z)
F∇(X,Y, Z)− F∇(X,φY, φZ) = η(Z)η((∇Xφ)Y ) + η(Y )g(∇Xξ, φZ)

which yields:

Proposition 2.3. If ∇ is a natural connection on the almost paracontact met-
ric manifold (M,φ, ξ, η, g) then for any X, Y , Z ∈ X(M) its tensor field F∇
satisfies

(2.7)

 F∇(X,Y, Z) = −F∇(X,Z, Y )
F∇(X,φY,Z) = F∇(X,Y, φZ)
F∇(X,φY, φZ) = F∇(X,Y, Z)− η(Z)η((∇Xφ)Y ).

The relations (2.7) say that Ω∇
X := F∇(X, ·, ·) is a 2-form on M with

(2.8)
Ω∇

X(φY,Z) = Ω∇
X(Y, φZ), Ω∇

X(φY, φZ) = Ω∇
X(Y, Z)− η(Z)η((∇Xφ)Y ).

These relations are a counter-part of equations (2.2).
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Proposition 2.4. If ∇φ = 0 then

(∇Xg)(ξ, Y ) = 2(∇Xη)Y.(2.9)

Proof. From hypothesis it follows F∇ = 0 and then from (2.6) we get

η(Z)(∇Xη)Y = −η(Y )g(∇Xξ, Z)

and with Z = ξ it results

(∇Xη)Y = −η(Y )η(∇Xξ).(2.10)

From (2.6) we obtain

g(∇Xξ, φZ) = 0

which with Z → φY yields

g(∇Xξ, Y ) = η(Y )η(∇Xξ).(2.11)

Adding (2.10) and (2.11) it results:

(∇Xη)Y = −g(∇Xξ, Y )(2.12)

which is equivalent with (2.9). □

The next step is to unify all these conditions in:

Definition 2.5. ∇ is called almost paracontact metric connection if it satisfies

∇φ = ∇η = ∇g = 0.(2.13)

Therefore,∇ is an almost paracontact metric connection if it is a natural con-
nection with ∇φ = 0. The characteristic vector field ξ is parallel with respect
to such a linear connection. From Proposition 2.4 a metric linear connection
with ∇φ = 0 is an almost paracontact metric connection.

S. Zamkovoy [11, p. 49] defined on an almost paracontact metric manifold

a connection ∇̃, using the Levi-Civita connection ∇g, as

∇̃XY := ∇g
XY + η(X)φY − η(Y )∇g

Xξ + (∇g
Xη)Y · ξ(2.14)

and called it canonical paracontact connection. This linear connection is a
natural one according to Proposition 4.2 of [11, p. 49] and it is an almost
paracontact metric connection if and only if

(∇g
Xφ)Y = η(Y )(X − hX)− g(X − hX, Y )ξ(2.15)

where

h =
1

2
Lξφ(2.16)

with L the Lie derivative. The tensor field h vanishes if and only if M is
K-paracontact i.e. ξ is a Killing vector field with respect to g. If M is K-
paracontact then the condition ∇gφ = 0 in (2.15) yields η(Y )X = g(X,Y )ξ
and the g-product with ξ in this last relation gives g = η ⊗ η an impossible
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relation since it implies g|D = 0. So, in the K-paracontact case ∇g and ∇̃ can
not be both almost paracontact metric connections.

By using the conventions of [11], for example, the exterior differential of η
is given by:

2dη(X,Y ) = X(η(Y ))− Y (η(X))− η([X,Y ])(2.17)

respectively [11, p. 39]:

Definition 2.6. (M,φ, ξ, η, g) is called paracontact metric manifold if dη = ω.

On a paracontact metric manifold we have [11, p. 41]: ∇g
ξφ = 0 and ξ is

a geodesic vector field i.e. ∇g
ξξ = 0. For the following notion we consider the

product manifold M × R with the tensor field as

J

(
X, f

d

dt

)
=

(
φX + fξ, η(X)

d

dt

)
.(2.18)

Definition 2.7. ( [11, p. 39], [3]) The paracontact structure (φ, η, ξ) is called
normal if J is integrable. Moreover, a normal paracontact metric manifold is
called paraSasakian manifold.

An important feature of a paraSasakian manifold is that it isK-paracontact.
Let us end this section with the following remark for a linear connection ∇:

-if ∇ is g-metric then (Lξg)(Y, Z) = (∇Xη)Y + (∇Y η)X,
-if ∇ is symmetric then 2dη(X,Y ) = (∇Xη)Y − (∇Y η)X.
It results that if∇g is a natural connection thenM is aK-paracontact manifold
and η is closed (dη = 0) which means that M is not a paracontact metric
manifold.

3. The Golab connection

In this section we search for a weak version of ∇g and ∇̃. Since the metrical
condition is a common property of these two connections we look for a weak
condition in terms of torsion.

Definition 3.1. The Golab connection [7] associated to the structure (φ, η, g)
is the linear connection ∇G satisfying

∇Gg = 0, TG = φ⊗ η − η ⊗ φ.(3.1)

It is known that the unique connection with these properties is given by

∇G = ∇g − η ⊗ φ.(3.2)

We can express the Golab connection, by using the canonical connection
(2.14).

∇G
XY = ∇̃XY − 2η(X)φY + η(Y )∇g

Xξ + (∇g
Xη)Y · ξ(3.3)
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and then it results that if ∇g is a natural connection then

∇G
XY = ∇̃XY − 2η(X)φY.(3.4)

The Golab connection is different from the Levi-Civita connection; but from
(3.3) it coincides with the canonical connection if and only if

2η(X)φY = η(Y )∇g
Xξ + (∇g

Xη)Y · ξ.(3.5)

With Y = ξ it results ∇g
Xξ = −(∇g

Xη)ξ · ξ and since ∇g
Xξ is g-orthogonal on ξ

we get ∇gξ = 0. Returning to (3.5) it results:

2η(X)φY = (∇g
Xη)Y · ξ(3.6)

and with X = ξ we get

2φY = (∇g
ξη)Y · ξ.(3.7)

Then we have ∇g
ξη ̸= 0, in particular ∇g must not be a natural connection.

Returning to the general case and computing TG(φ·, φ·) = 0 we get that
∇G is symmetrical on Imφ = D and therefore it coincides with ∇g on D. The
main properties of the Golab connection are stated in the next proposition.

Proposition 3.2. The Golab connection of an almost paracontact metric man-
ifold satisfies

∇Gφ = ∇gφ, ∇Gη = ∇gη, ∇Gξ = ∇gξ.(3.8)

Proof. By a direct computation we get ∇G
XφY = ∇g

XφY − η(X)φ2Y and

φ(∇G
XY ) = φ(∇g

XY )− η(X)φ2Y

respectively

(∇G
Xη)Y = ∇G

Xη(Y )−η(∇G
XY ) = X(η(Y ))−η(∇g

XY )+η(X)η◦φY = (∇g
Xη)Y.

□
A natural problem is to determine the necessary and sufficient condition for

the Golab connection of an almost paracontact metric manifold to be a natural
connection. We obtain:

Theorem 3.3. Let (M,φ, ξ, η, g) be an almost paracontact metric manifold.
Then its Golab connection ∇G is a natural connection if and only if the Levi-
Civita connection ∇g is a natural connection. This last condition reduces to
∇gη = 0. Moreover, ∇G is an almost paracontact metric connection if and
only if ∇g is an almost paracontact metric connection.

A long but straightforward computation gives also:

Theorem 3.4. The curvature of the Golab connection is

(3.9) RG
XY Z = Rg

XY Z − 2dη(X,Y )φZ + η(X)(∇g
Y φ)Z − η(Y )(∇g

Xφ)Z.

So, if ∇g is almost paracontact metric connection then RG = Rg.
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If the 1-form η and the 2-form ω are closed we say that (M,φ, ξ, η, g) is an
almost para-cosymplectic manifold after [5, p. 562].

Proposition 3.5. Let (M,φ, ξ, η, g) be an almost para-cosymplectic manifold.
Then its curvature satisfies

RG
XY Z = Rg

XY Z + η(X)(∇g
Y φ)Z − η(Y )(∇g

Xφ)Z.(3.10)

Let us point out an application of the formulae (3.8). Let P0 be the projector
corresponding to ⟨ξ⟩ in the decomposition (2.3); namely, if
X ∈ X(M) has the decomposition

X = X+ +X− + η(X)ξ(3.11)

then P0(X) = η(X)ξ. For a general linear connection ∇ we have

(3.12) (∇XP0)Y = ∇X(η(Y )ξ)− η(∇XY )ξ = (∇Xη)(Y ) · ξ + η(Y )∇Xξ

and then (3.8) yields

∇GP0 = ∇gP0.(3.13)

If ∇g is a natural connection we get that P0 is covariant constant with respect
to both ∇g and ∇G. Since the canonical connection ∇̃ is natural we already
have that P0 is covariant constant with respect to ∇̃. Another interesting fact
is that the P0-Golab connection i.e. with φ of (3.1) replaced by P0, it is in fact
∇g since P0 ⊗ η − η ⊗ P0 = 0.

The projector P0 ca be used to obtain a more simple formula for the cano-
nical connection ∇̃. Plugging (3.12) in (2.14) gives

∇̃XY = ∇g
XY + η(X)φY − 2η(Y )∇g

Xξ + (∇g
XP0)Y(3.14)

and then, for ∇g a natural connection we get

∇̃ = ∇g + η ⊗ φ(3.15)

yielding a (convex) relationship between all the linear connections studied until
now:

∇̃+∇G = 2∇g.(3.16)

4. Generalized duality for linear connections

Let now ∇ and ∇′ be two linear connections on M . We adopt the following
notion of generalized conjugation of linear connections from [2, p. 28]

Definition 4.1. We say that ∇ and ∇′ are generalized dual connections with
respect to the pair (g, η) if, for any X, Y , Z ∈ X(M)

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇′
XZ)− η(X)g(Y, Z)(4.1)

or equivalently

g(∇′
XZ −∇XZ − η(X)Z, Y ) = ∇g(X,Y, ξ).(4.2)



Special connections in almost paracontact metric geometry 1352

Without the last term, the relation (4.1) reduces to the usual Norden duality
of linear connections from [10].

We shall discuss the behavior of the generalized dual connection ∇′ of ∇ if
we impose certain conditions on ∇. Let us remark the following relations: η(∇′

XY ) = η(∇XY ) + η(X)η(Y ) +∇g(X,Y, ξ)
(∇′

Xη)Y = (∇Xη)Y − η(X)η(Y )−∇g(X,Y, ξ)
g((∇′

Xφ)Y,Z) = −g((∇Xφ)Z, Y ).
(4.3)

Now, if we require the following conditions:
conditions on ∇φ:
1) ∇φ = 0 implies ∇′φ = 0; 2) ∇φ = ±η ⊗ φ implies ∇′φ = ±η ⊗ φ;
conditions on ∇η:
3) ∇η = 0 implies ∇′η = −η ⊗ η −∇g(·, ·, ξ);
4) ∇η = η ⊗ η implies ∇′η = −∇g(·, ·, ξ);
conditions on ∇g:
5) ∇g = 0 implies ∇′ = ∇+ η ⊗ I; 6) ∇g = η ⊗ g implies ∇′ = ∇+ 2η ⊗ I;
7) ∇g = −η ⊗ g implies ∇′ = ∇.

Remark 4.2. If ∇ satisfies 5) and 6) then its generalized dual connection is
equal to ∇ on D. Also remark that if ∇ is g-metric then ∇ξξ ∈ Γ(D) while
g(∇′

ξξ, ξ) = 1 and ∇′
ξX −∇ξX = X for any X ∈ X(M).

The generalized dual connection of the Golab connection has the following
properties:

Proposition 4.3. On the almost paracontact metric manifold (M,φ, ξ, η, g)
the generalized dual connection (∇G)′ of the Golab connection ∇G is a quarter-
symmetric connection which satisfies:

g(X, (∇G)′Y ξ) = g((∇G)′Xξ, Y ).(4.4)

In the almost para-cosymplectic case (∇G)′ has the same curvature as ∇G.

Proof. Fix X, Y , Z ∈ X(M); the equality (4.4) is a direct consequence of (4.1)
and:
-the torsion of (∇G)′ is TG′

= ψ ⊗ η − η ⊗ ψ with ψ := φ− I.

-the curvature of (∇G)′ is RG′
(X,Y, Z) = RG(X,Y, Z) + dη(X,Y )Z. □

A straightforward computation similar to that of the end of previous Section
gives: ∇G′P0 = ∇GP0(= ∇gP0) and then a natural ∇g yields the parallelism
of P0 with respect to all three linear connections ∇g, ∇G and ∇G′.

Definition 4.4. The linear connection ∇ is called ξ-metric if: ∇g(·, ·, ξ) = 0.

Of course, a metric linear connection is ξ-metric. Similar to the calculus
of Section 3 we get that for a ξ-metric connection ∇ the curvature of the
generalized dual connection ∇′ is:

R′(X,Y, Z) = R(X,Y, Z) + 2dη(X,Y )Z.(4.5)
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So, in the para-cosymplectic case a ξ-metric connection has the same curvature
as its generalized dual connection.
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