Title:

On Ads-modules with the SIP

Author(s):

F. Takil Mutlu
ON ADS-MODULES WITH THE SIP

F. TAKIL MUTLU

(Communicated by Omid Ali S. Karamzadeh)

Abstract. The class of ads modules with the SIP (briefly, SA-modules) is studied. Various conditions for a module to be SA-module are given. It is proved that for a quasi-continuous module M, M is a UC-module if and only if M is an SA-module. Also, it is proved that the direct sum of two SA-modules as R-modules is an SA-module when R is the sum of the annihilators of these modules.

Keywords: Ads-modules, summand intersection property, extending modules.

MSC(2010): Primary: 16D70; Secondary: 16D50, 16D60.

1. Introduction

The purpose of this paper is to study the class of ads-modules with the SIP. Fuchs [7] calls a module M to have the absolute direct summand property (ads), if for every decomposition $M = A \oplus B$ of M and every complement C of A in M we have $M = A \oplus C$. We note that every quasi-continuous module is an ads-module, but not conversely. However, an ads-module which is also extending is quasi-continuous.

Wilson [15] calls a module M to have the summand intersection property (SIP), if the intersection of every pair of direct summands of M is a direct summand of M.

The motivation of the current study comes from the following question: “Do the absolute direct summand property and the summand intersection property necessitate the other?”

Example 2.3 and Example 2.4 show that the class of ads-modules and the class of modules with the SIP are different. Therefore, we say a right R-module M is an SA-module if M is an ads-module with the SIP. It is clear that indecomposable modules and semisimple modules are SA-modules. In this paper, we provide various conditions for a module to be an SA-module. We...
prove that for a quasi-continuous module M, M is a UC-module if and only if M is an SA-module. We also provide a condition for the direct sum of two SA-modules to be an SA-module.

Throughout the paper all rings are associative with unity and R always denotes such a ring. All modules are unital right R-modules unless indicated otherwise. $N \leq M$ will mean N is a submodule of M.

A module M is called extending (or CS) if every submodule of M is essential in a direct summand of M. A module M is called quasi-continuous if it satisfies extending and (C_3) condition: the sum of two direct summands of M with zero intersection is again a direct summand of M.

For two modules A and B, we say that A is B-injective if any homomorphism from a submodule X of B to A can be extended to a homomorphism from B to A.

For any module M, $E(M_R)$, $End(M_R)$ and $r(X)$ (resp. $r(x)$) will denote the injective hull of M, the ring of endomorphisms of M and the right annihilator of a subset X (resp. an element x) in M, respectively. The notions which are not explained here can be found in [16].

2. SA-Modules

We begin with two lemmas which are useful in determining the ads property and the SIP property of a module. The first lemma appears in [5] and the second lemma appears in [8].

Lemma 2.1. A module M is an ads-module if and only if for any decomposition $M = A \oplus B$, B is A-injective.

Lemma 2.2. A module M has the SIP if and only if for every decomposition $M = A \oplus B$ and every homomorphism f from A to B, the kernel of f is a direct summand.

The following examples show that the class of ads-modules and the class of modules with the SIP are different.

Example 2.3. Let K be a field, $R = [K 0]$. Then $N = [0 K]$ and $L = [K 0]$ are right R-modules. Let $M = R/L$ and $U = M \oplus N$. By ([8], Remark on page 81), U does not have the SIP. However, since $R/L \cong [0 K] \cong K$, R/L is injective by the Baer criteria. Then $M = R/L$ is N-injective. On the other hand, since $M = R/L$ is field, its submodules are only the trivial ones. So, N is M-injective. Thus U is an ads-module.

Example 2.4. Let p be a prime integer and $M = \mathbb{Z}/Zp \oplus \mathbb{Q}$. Since all direct summands of M are $\mathbb{Z}/Zp \oplus 0$, $0 \oplus \mathbb{Q}$, $0 \oplus 0$ and M, clearly M has the SIP. Now, we show that M is not an ads-module. Since \mathbb{Q} is injective, \mathbb{Q} is \mathbb{Z}/Zp-injective. Now suppose that \mathbb{Z}/Zp is \mathbb{Q}-injective. Let $\pi : \mathbb{Z} \rightarrow \mathbb{Z}/Zp$ denote the canonical epimorphism, defined by $\pi(n) = n + Zp$ ($n \in \mathbb{Z}$).
Then there exists a homomorphism \(\alpha : \mathbb{Q} \rightarrow \mathbb{Z}/p \mathbb{Z} \) which extends \(\pi \). Now \(\alpha(1/p) = x + \mathbb{Z}p \) for some \(x \in \mathbb{Z} \). Thus \(p\alpha(1/p) = \alpha(1) = \pi(1) = 1 + \mathbb{Z}p \). It follows that \(px + \mathbb{Z}p = 1 + \mathbb{Z}p \) and hence \(1 \equiv 0 \pmod{p} \), a contradiction. Thus \(\mathbb{Z}/p \mathbb{Z} \) is not \(\mathbb{Q} \)– injective. Hence \(M \) is not an \(\text{ads-module} \) by Lemma 2.1.

Definition 2.5. We say that a module \(M \) is an \(\text{SA-set} \) if \(M \) is an \(\text{ads-module} \) with the SIP.

The next proposition gives a characterization of \(\text{SA-modules} \). We remark that, the second part of this proposition also appears in [1] as Proposition 3.2. as one of the equivalent conditions for a module to be an \(\text{ads-module} \).

Proposition 2.6. A module \(M \) is an \(\text{SA-set} \) if and only if the following statements are satisfied:

for any decomposition \(M = A \oplus B \),

i) for every homomorphism \(f \) from \(A \to B \), the kernel of \(f \) is a direct summand.

ii) for any complement \(C \) of \(A \) in \(M \) and the projection map \(\pi : M \to B \), the restricted map \(\pi|_C : C \to B \) is an isomorphism.

Proof. Suppose \(M \) is an \(\text{SA-set} \). The first part is Lemma 2.2. We show the second part. Let \(C \) be a complement of \(A \). Take \(x \in \text{Ker}(\pi|_C) \). Then \(x \in C \cap A = 0 \), so \(\text{Ker}(\pi|_C) = 0 \). Since \(A \oplus C = (A \oplus C) \cap M = (A \oplus C) \cap (A \oplus B) = ((A \oplus C) \cap B) + A \), we have

\[
\pi(C) = \pi(A \oplus C) = \pi((A \oplus C) \cap B) = (A \oplus C) \cap B.
\]

Since \(M \) is an \(\text{ads-module} \), \(A \oplus C = M \) and \(\pi(C) = B \). Therefore, \(\pi|_C \) is an isomorphism from \(C \) to \(B \).

Conversely, let \(M = A \oplus B \) and \(C \) be a complement of \(A \) in \(M \). Since the first part is satisfied, \(M \) has the SIP. Since the second part is satisfied, \(\pi|_C(C) = B \) and \(M = A \oplus B = A \oplus C \). So \(M \) is an \(\text{ads-module} \). \(\square \)

Lemma 2.7. Every direct summand of an \(\text{SA-module} \) is an \(\text{SA-set} \).

Proof. Let \(M \) be an \(\text{SA-module} \) and \(N \) be a direct summand of \(M \). Let \(K \) and \(L \) be direct summands of \(N \). Since every direct summand of \(N \) is direct summand of \(M \) and \(M \) has the SIP, \(K \cap L \) is a direct summand of \(M \). Then there exists a submodule \(F \) of \(M \) such that \(M = (K \cap L) \oplus F \). Hence \(N = (K \cap L) \oplus (N \cap F) \) by modular law. Thus \(N \) has the SIP. Now we show that \(N \) is an \(\text{ads-module} \). Let \(N = N_1 \oplus N_2 \), \(U \subseteq N_2 \) and \(\phi : U \to N_1 \) be a homomorphism. Then there exists a submodule \(S \) of \(M \) such that \(M = N \oplus S = N_1 \oplus N_2 \oplus S \). Set \(\phi = \{ u - \phi(u) | u \in U \} \). Now \(X \cap N_1 = 0 \) and so \(X \) lies in a complement, say \(C \), of \(N_1 \) in \(M \). Hence \(X + S \) lies in the complement \(C + S \), of \(N_1 \) in \(M \). Since \(M \) is an \(\text{ads-module} \), \(M = N_1 \oplus (C + S) \). Then each \(n_2 \in N_2 \) has the form \(b - n_1 \), \(b \in (C + S) \) and \(n_1 \in N_1 \), so that \(b = n_1 + n_2 \). The composition of the projection \(\pi_{C+S} : M \to C + S \) along \(N_1 \) followed by the projection \(\pi_{N_1} : M \to N_1 \)
along \(N_2 \) and restricting to \(N_2 \) gives a homomorphism from \(N_2 \) to \(N_1 \) which extends \(\phi \). Hence \(N_1 \) is \(N_2 - \text{injective} \). Thus \(N \) is an \(\text{ads-module} \). \(\square \)

The direct sum of two \(\text{SA-modules} \) may not be an \(\text{SA-module} \).

Example 2.8. There are \(\text{SA-modules} \) such that their direct sum need not be an \(\text{SA-module} \).

(i) Consider \(Z \) as a right \(\mathbb{Z} \)-module. It is clear that \(Z \) is indecomposable and hence it is an \(\text{SA-module} \). Since \(Z \) is not \(\mathbb{Z} \)-injective, \(Z \oplus \mathbb{Z} \) is not an \(\text{ads-module} \) by Lemma 2.1 and hence it is not an \(\text{SA-module} \).

(ii) Consider the Prüfer \(p \)-group \(\mathbb{Z}_{p^\infty} \) as a right \(\mathbb{Z} \)-module. It is clear that \(\mathbb{Z}_{p^\infty} \) is indecomposable and hence, it is an \(\text{SA-module} \). Now define a homomorphism \(f \) from \(\mathbb{Z}_{p^\infty} \) to \(\mathbb{Z}_{p^\infty} \) as follows

\[
f \left(\frac{n}{p^t} + \mathbb{Z} \right) = \frac{n}{p^t-1} + \mathbb{Z} \quad \text{with} \quad n \in \mathbb{Z} \quad \text{and} \quad t \in \mathbb{N}.
\]

It is clear that \(\text{Ker} \ f = \left(\frac{1}{p} + \mathbb{Z} \right) \). But \(\mathbb{Z}_{p^\infty} \) is indecomposable and hence \(\text{Ker} \ f \) is not a direct summand of \(\mathbb{Z}_{p^\infty} \). By Proposition 2.6, \(\mathbb{Z}_{p^\infty} \oplus \mathbb{Z}_{p^\infty} \) is not an \(\text{SA-module} \).

Lemma 2.9. ([10], Proposition 3.9) Let \(M = M_1 \oplus M_2 \) be an \(R \)-module. If \(r(M_1) + r(M_2) = R \), then every submodule \(N \) of \(M \) can be written as \(N = N_1 \oplus N_2 \), where \(N_1 \leq M_1 \) and \(N_2 \leq M_2 \).

We now state a condition for which the direct sum of \(\text{SA-modules} \) is an \(\text{SA-module} \).

Theorem 2.10. Let \(M \) and \(N \) be two \(\text{SA-modules} \), such that \(r(M)+r(N) = R \). Then, \(M \oplus N \) is an \(\text{SA-module} \).

Proof. \(M \oplus N \) has the SIP by Theorem 3.10 in [10]. We show that \(M \oplus N \) is an \(\text{ads-module} \). Let \(A \) be a direct summand of \(M \oplus N \). Then there exists a submodule \(B \) such that \(M \oplus N = A \oplus B \). By Lemma 2.9, \(A = M_1 \oplus N_1 \) and \(B = M_2 \oplus N_2 \), where \(M_1 \) and \(M_2 \) are submodules of \(M \), \(N_1 \) and \(N_2 \) are submodules of \(N \). It is easy to show that \(M_1 \) and \(M_2 \) are direct summands of \(M \), and \(N_1 \) and \(N_2 \) are direct summands of \(N \). Let \(C \) be a complement of \(A \). Then \(C = M'_1 \oplus N'_1 \) for some submodules \(M'_1 \subseteq M \) and \(N'_1 \subseteq N \). Then

\[
M'_1 \cap M_1 \quad \text{and} \quad N'_1 \cap N_1
\]

Thus \(M \oplus N = (M_1 \oplus M'_1) \oplus (N_1 \oplus N'_1) = A \oplus C \).

Thus \(M \oplus N \) is an \(\text{ads-module} \) and hence an \(\text{SA-module} \). \(\square \)
Theorem 2.11. If R is an injective right Ore domain, then $(R \oplus R)_R$ is an SA-module.

Proof. Since R_R is injective, $R \oplus R$ is injective and hence it is an ads-module. However, $R \oplus R$ has the SIP by Proposition 4 in [3]. □

Theorem 2.12. Let R be a noetherian domain and M an injective R-module. The following conditions are equivalent:

(1) $M \oplus M$ is an SA-module.
(2) M is torsion free.
(3) $\oplus M$ is an SA-module for any index set Λ.

Proof. The proof follows from Theorem 3.8 in [10]. □

Proposition 2.13. Let M and N be indecomposable modules such that M is injective, and $\text{Hom}(M, N) \neq 0$. Let C be a complement of M in $M \oplus N$. If $M \oplus N$ is an SA-module, then $N \cong M \cong C$.

Proof. Let $0 \neq f \in \text{Hom}(M, N)$. Since $M \oplus N$ has the SIP, M is isomorphic to a submodule N_1 of N by Lemma 2.2. Since M is injective, N_1 is injective submodule of N. By the injectivity of N_1, N_1 is a direct summand of N. By hypothesis, $N_1 = N$. Thus M is isomorphic to N. Since $M \oplus N$ is an SA-module, for the projection map $\pi : M \oplus N \to N$, the restricted map $\pi|_C$ is an isomorphism by Proposition 2.6. Hence $M \cong N \cong C$. □

The classes of SA-modules and extending modules are different and demonstrated by the following example.

Example 2.14. (i) Let F be a field, V a vector space over F such that $\dim V_F \geq 2$. Let $R = \left[\begin{array}{c} F \ \ V \\ 0 \ \ F \end{array} \right] = \left\{ \left[\begin{array}{c} f \\ v \\ \end{array} \right] : f \in F, \ v \in V \right\}$ a trivial extension of V by F. Since R is indecomposable as an R-module, R_R is an SA-module. R_R is extending when $\dim V_F = 1$ but not in other cases. For example, if $\dim V_F = 2$, i.e., $V = v_1 F \oplus v_2 F$, $v_1, v_2 \in V$, then $I = \left\{ \left[\begin{array}{c} 0 \\ v_1 \end{array} \right] : f \in F \right\}$ is a complement of $J = \left\{ \left[\begin{array}{c} f \\ 0 \end{array} \right] : f \in F \right\}$. But I is not a direct summand of R_R.

(ii) This example is taken from [4]. Let F be a field and

$$T = \left\{ \left[\begin{array}{ccc} a & b & 0 \\ 0 & b & a \\ 0 & 0 & a \end{array} \right] : a, b, x, y \in F \right\}.$$

By [11], T as a T-module does not have the SIP. Hence T is not an SA-module. But T is extending by [4].

A module M is said to be principally quasi-injective (PQ-injective) if for every element $m \in M$ and $S = \text{End}(M_R)$, every homomorphism from mR to M can be extended to an endomorphism in S (see, [13]). A module M is said to be duo module if every submodule of M is fully invariant. A module M is said to satisfy the (C_2) condition if every submodule of M that is isomorphic
to a direct summand of M is itself a direct summand of M. This condition is related to the PQ-injectivity as follows.

Proposition 2.15. Let M be an extending, duo, PQ-injective module. Then M is an SA-module.

Proof. Since M is duo and PQ-injective, M has the SIP by Proposition 3.3 in [13]. But M has the (C_2) condition by Proposition 2.3 in [13] and hence has the (C_3) condition, and so M is an ads-module. Thus M is an SA-module. □

Recall that an R-module M is called a prime module if $r(x) = r(y)$ for every non-zero elements x and y in M. The following proposition gives another condition under which an R-module is an SA-module.

Proposition 2.16. ([10], Proposition 2.1) Let M be an injective and a prime module. Then M is an SA-module.

The converse of the Proposition 2.16 is not always true.

Example 2.17. There exist SA-modules that are neither injective nor prime.

Consider $M = \mathbb{Z}/6\mathbb{Z}$ as a \mathbb{Z}-module. Then M is semisimple and hence M has the SIP. Since $\mathbb{Z}/6\mathbb{Z} = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/3\mathbb{Z}$ are mutually injective, $\mathbb{Z}/6\mathbb{Z}$ is an ads-module. Thus M is an SA-module. But, since M is not a divisible abelian group, M is not injective. Let $2, 3 \in M$. Then $r(2) = 3\mathbb{Z}$ and $r(3) = 2\mathbb{Z}$. Hence M is not prime.

Let $N \leq M$. Whenever $N \leq K \leq M$ implies $N = K$, N is called (essentially) closed in M and we denote by $N \leq_c M$. A module M is said to be a polyform module if for every $K \leq M$ and $f \in Hom(K, M)$, $Ker f$ is closed in K (see, [6]). By Example 2.8 (ii), $\mathbb{Z}_p^\infty \oplus \mathbb{Z}_p^\infty$ as a \mathbb{Z}-module is not an SA-module. But it is injective and hence a quasi-continuous module. Therefore, a quasi-continuous module need not be an SA-module. Now we give the following lemmas which indicate when a quasi-continuous module is an SA-module.

Lemma 2.18. Let M be a quasi-continuous polyform module. Then M is an SA-module.

Proof. Let $M = A \oplus B$ and $f \in Hom(A, B)$. Since M is polyform, $Ker f$ is closed in A. Since M is quasi-continuous, M is an extending ads-module. Hence $Ker f$ is a direct summand of M. So, M has the SIP by Lemma 2.2. Thus M is an SA-module. □

Corollary 2.19. Every quasi-continuous nonsingular module is an SA-module.

Proof. Immediate from Lemma 2.18. □

Let M be a module. It is well known that for any submodule N of M there exists a closed submodule K such that $N \leq_c K$ and K is called a closure of N in M. A module M is called a UC-module if every submodule has a unique closure in M (see, [14]).
Theorem 2.20. Let M be a quasi-continuous module. Then M is a UC-module if and only if M is an SA-module.

Proof. Let M be a UC-module, N and L direct summands of M. Then $N \cap L$ is closed in M by Lemma 6 in [14]. Since M is quasi-continuous, M is an ads-module and by hypothesis, $N \cap L$ is a direct summand of M. Hence M is an SA-module. For the converse, let $N \leq M$. Suppose that there are $K \leq M$ and $L \leq M$ such that $N \leq e K \leq e M$ and $N \leq e L \leq e M$. By quasi-continuity of M, K and L are direct summands of M and by assumption, $(K \cap L) \oplus D = M$ for some $D \leq M$. Hence $K = (K \cap L) \oplus (K \cap D)$. Since $N \leq e K$ and $N \cap (K \cap D) = 0$, $K \cap D = 0$. Then $K = K \cap L$. Similarly, it is shown that $L = K \cap L$. Therefore $K = K \cap L = L$. Thus M is a UC-module. □

The injective hull of an SA-module may not be an SA-module.

Example 2.21. Let p be a prime integer and let M_1 denote the Z-module $\mathbb{Z}/\mathbb{Z}p$ and M_2 be the injective hull $E(M_1)$ of M_1. From ([12], Example 3.36), every submodule of M_2 is cyclic and generated by $1/p^n$ for some positive integer n. Therefore, it satisfies descending chain condition on submodules, M_1 and M_2 are uniform Z-modules, and they are indecomposable Z-modules. Then $M = M_1 \oplus M_2$ is an ads-module. Let f be a nonzero homomorphism from M_1 to M_2. Since $Ker f$ is a submodule of M_1 and M_1 is simple, $Ker f = 0$, i.e., $Ker f$ is a direct summand of M. On the other hand, let α be a homomorphism from M_2 to M_1. Since M_2 is divisible and M_1 is not divisible, $\text{Hom}(M_2, M_1) = 0$. Then α must be a zero homomorphism. So $Ker \alpha = M_2$ is a direct summand of M. Thus M has the SIP by Lemma 2.2 and so M is an SA-module. But $E(M) = \mathbb{Z}/\mathbb{Z}p \oplus \mathbb{Z}/\mathbb{Z}p$, is not an SA-module by Example 2.8 (ii).

Now we give the following proposition showing that the injective hull of an SA-module M is again an SA-module when M is extending.

Proposition 2.22. Let M be an extending SA-module. Then $E(M)$ is an SA-module.

Proof. Since M is an extending ads-module, M is quasi-continuous. Then $E(M)$ has the SIP by Proposition 18 in [2]. Since $E(M)$ is injective, $E(M)$ is an ads-module and hence an SA-module. □

Corollary 2.23. Let M be a quasi-continuous module. Then M is an SA-module if and only if $E(M)$ is an SA-module.

Proof. Assume that $E(M)$ is an SA-module. Then M has the SIP by Proposition 18 in [2]. Hence M is an SA-module. The converse is clear by Proposition 2.22. □

Proposition 2.24. Let $M = A \oplus B$ be an R-module, f a homomorphism from A to B, $E(M) = E_1 \oplus E_2$, where E_1 is injective hull of $Ker f$, and π the projection of $E(M)$ onto E_1 along E_2. If M is an SA-module, then $\pi(M) \subseteq M$.
Suppose M is an SA-module. Let f be an homomorphism from A to B. Since M has the SIP, $\ker f$ is a direct summand of M. The submodule $K = E_2 \cap M$ is a complement of $\ker f$ in M. Indeed, if C is a complement containing K in M and $c \in C$, we can write $c = e_1 + e_2$, $e_i \in E_i$. If $e_1 = 0$, then $c = e_2 \in E_2 \cap M = K$. If $e_1 \neq 0$, then there is $r \in R$ with $0 \neq re_1 \in \ker f$. Then $rc = re_1 + re_2$ and $re_1 \in \ker f \cap C = 0$, a contradiction. Now since M is an SA-module, $M = \ker f \oplus K$ and $\pi(M) = \ker f$.

Note that the converse of Proposition 2.24 is not always true.

Example 2.25. Consider $M = \mathbb{Z} \oplus \mathbb{Z}$ as a \mathbb{Z}-module and the homomorphism $f : \mathbb{Z} \rightarrow \mathbb{Z}$, defined by $f(n) = 2n$, $n \in \mathbb{Z}$. Then $\ker f = 0$ and the injective hull of $\ker f$ is $E_1 = 0$. Hence $E(M) = E_1 \oplus E_2 = E_2 = \mathbb{Q} \oplus \mathbb{Q}$. Consider the projection map π of $E(M)$ onto E_1 along E_2. Then $\pi(M) = 0 \subseteq M$. But $\mathbb{Z} \oplus \mathbb{Z}$ is not an SA-module since \mathbb{Z} is not \mathbb{Z}-injective by Lemma 2.1.

It is known that the sum of two closed submodules of a quasi-continuous module is closed (see, [9]). We prove that the sum of two closed submodules of an SA-module is again closed when both of them are direct summands.

Proposition 2.26. Let A and B be two closed submodules of an SA-module M such that A and B are direct summands of M. Then $A + B$ is a closed submodule of M.

Proof. Since M has the SIP, $A \cap B$ is a direct summand of M. Let K be a complement of $A \cap B$. Since M is an ads-module, $M = (A \cap B) \oplus K$. Hence, by modular law,

$$A + B = (A + B) \cap [(A \cap B) \oplus K] = A + [(A \cap B) \oplus (B \cap K)] = A \oplus (B \cap K)$$

Now let C be a complement of A containing $B \cap K$ in M. Since M is an ads-module, $M = A \oplus C$. Let $x = a + c$ be in the closure of $A + B$, say E, in M, where $a \in A$ and $c \in C$. Since $a \in A \subseteq E$, we have $a \in E$. Hence there exists an essential right ideal I of R such that $cI \subseteq (A + B) \cap C = [A \oplus (B \cap K)] \cap C = B \cap K \subseteq B$.

The fact that B is closed implies $c \in B$. Hence $x \in A + B$, as desired. □

Acknowledgments

The author is grateful for the thorough reading and useful suggestions by the referee.

References

(Figen Takl Mutlu) DEPARTMENT OF MATHEMATICS, ANADOLU UNIVERSITY, 26470, ESKIŞEHİR, TURKEY

E-mail address: figent@anadolu.edu.tr