ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 6, pp. 1355-1363

Title:

On Ads-modules with the SIP

Author(s):

F. Takıl Mutlu

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 41 (2015), No. 6, pp. 1355–1363 Online ISSN: 1735-8515

ON ADS-MODULES WITH THE SIP

F. TAKIL MUTLU

(Communicated by Omid Ali S. Karamzadeh)

ABSTRACT. The class of ads modules with the SIP (briefly, SA-modules) is studied. Various conditions for a module to be SA-module are given. It is proved that for a quasi-continuous module M, M is a UC-module if and only if M is an SA-module. Also, it is proved that the direct sum of two SA-modules as R-modules is an SA-module when R is the sum of the annihilators of these modules.

Keywords: Ads-modules, summand intersection property, extending modules.

MSC(2010): Primary: 16D70; Secondary: 16D50, 16D60.

1. Introduction

The purpose of this paper is to study the class of *ads*-modules with the SIP.

Fuchs [7] calls a module M to have the *absolute direct summand property* (ads), if for every decomposition $M = A \oplus B$ of M and every complement C of A in M we have $M = A \oplus C$. We note that every quasi-continuous module is an ads-module, but not conversely. However, an ads-module which is also extending is quasi-continuous.

Wilson [15] calls a module M to have the summand intersection property (SIP), if the intersection of every pair of direct summands of M is a direct summand of M.

The motivation of the current study comes from the following question: "Do the absolute direct summand property and the summand intersection property necessitate the other?"

Example 2.3 and Example 2.4 show that the class of ads-modules and the class of modules with the SIP are different. Therefore, we say a right R-module M is an SA-module if M is an ads-module with the SIP. It is clear that indecomposable modules and semisimple modules are SA-modules. In this paper, we provide various conditions for a module to be an SA-module. We

1355

 $\bigodot 2015$ Iranian Mathematical Society

Article electronically published on December 15, 2015.

Received: 3 June 2014, Accepted: 12 August 2014.

prove that for a quasi-continuous module M, M is a UC-module if and only if M is an SA-module. We also provide a condition for the direct sum of two SA-modules to be an SA-module.

Throughout the paper all rings are associative with unity and R always denotes such a ring. All modules are unital right R-modules unless indicated otherwise. $N \leq M$ will mean N is a submodule of M.

A module M is called *extending* (or CS) if every submodule of M is essential in a direct summand of M. A module M is called *quasi-continuous* if it satisfies extending and (C_3) condition: the sum of two direct summands of M with zero intersection is again a direct summand of M.

For two modules A and B, we say that A is B – *injective* if any homomorphism from a submodule X of B to A can be extended to a homomorphism from B to A.

For any module M, $E(M_R)$, $End(M_R)$ and r(X) (resp. r(x)) will denote the injective hull of M, the ring of endomorphisms of M and the right annihilator of a subset X (resp. an element x) in M, respectively. The notions which are not explained here can be found in [16].

2. SA-Modules

We begin with two lemmas which are useful in determining the ads property and the SIP property of a module. The first lemma appears in [5] and the second lemma appears in [8].

Lemma 2.1. A module M is an ads-module if and only if for any decomposition $M = A \oplus B$, B is A - injective.

Lemma 2.2. A module M has the SIP if and only if for every decomposition $M = A \oplus B$ and every homomorphism f from A to B, the kernel of f is a direct summand.

The following examples show that the class of ads-modules and the class of modules with the SIP are different.

Example 2.3. Let K be a field, $R = \begin{bmatrix} K & K \\ 0 & K \end{bmatrix}$. Then $N = \begin{bmatrix} 0 & K \\ 0 & K \end{bmatrix}$ and $L = \begin{bmatrix} K & K \\ 0 & 0 \end{bmatrix}$ are right R-modules. Let M = R/L and $U = M \oplus N$. By ([8], Remark on page 81), U does not have the SIP. However, since $R/L \cong \begin{bmatrix} 0 & 0 \\ 0 & K \end{bmatrix} \cong K$, R/L is injective by the Baer criteria. Then M = R/L is N - injective. On the other hand, since M = R/L is field, its submodules are only the trivial ones. So, N is M - injective. Thus U is an ads-module.

Example 2.4. Let p be a prime integer and $M = \mathbb{Z}/\mathbb{Z}p \oplus \mathbb{Q}$. Since all direct summands of M are $(\mathbb{Z}/\mathbb{Z}p \oplus 0)$, $0 \oplus \mathbb{Q}$, $0 \oplus 0$ and M, clearly M has the SIP. Now, we show that M is not an ads-module. Since \mathbb{Q} is injective, \mathbb{Q} is $\mathbb{Z}/\mathbb{Z}p$ - injective. Now suppose that $\mathbb{Z}/\mathbb{Z}p$ is \mathbb{Q} - injective. Let $\pi : \mathbb{Z} \longrightarrow \mathbb{Z}/\mathbb{Z}p$ denote the canonical epimorphism, defined by $\pi(n) = n + \mathbb{Z}p$ $(n \in \mathbb{Z})$.

Takıl Mutlu

Then there exists a homomorphism $\alpha : \mathbb{Q} \longrightarrow \mathbb{Z}/\mathbb{Z}p$ which extends π . Now $\alpha(1/p) = x + \mathbb{Z}p$ for some $x \in \mathbb{Z}$. Thus $p\alpha(1/p) = \alpha(1) = \pi(1) = 1 + \mathbb{Z}p$. It follows that $px + \mathbb{Z}p = 1 + \mathbb{Z}p$ and hence $1 \equiv 0 \pmod{p}$, a contradiction. Thus $\mathbb{Z}/\mathbb{Z}p$ is not \mathbb{Q} - injective. Hence M is not an ads-module by Lemma 2.1.

Definition 2.5. We say that a module M is an SA-module if M is an adsmodule with the SIP.

The next proposition gives a characterization of SA-modules. We remark that, the second part of this proposition also appears in [1] as Proposition 3.2. as one of the equivalent conditions for a module to be an ads-module.

Proposition 2.6. A module M is an SA-module if and only if the following statements are satisfied:

for any decomposition $M = A \oplus B$,

- i) for every homomorphism f from A to B, the kernel of f is a direct summand.
- ii) for any complement C of A in M and the projection map $\pi : M \longrightarrow B$, the restricted map $\pi_{|C} : C \longrightarrow B$ is an isomorphism.

Proof. Suppose M is an SA-module. The first part is Lemma 2.2. We show the second part. Let C be a complement of A. Take $x \in Ker(\pi_{|C})$. Then $x \in C \cap A = 0$, so $Ker(\pi_{|C}) = 0$. Since $A \oplus C = (A \oplus C) \cap M = (A \oplus C) \cap$ $(A \oplus B) = ((A \oplus C) \cap B) + A$, we have

$$\pi(C) = \pi(A \oplus C) = \pi((A \oplus C) \cap B) = (A \oplus C) \cap B.$$

Since M is an ads-module, $A \oplus C = M$ and $\pi(C) = B$. Therefore, $\pi_{|C|}$ is an isomorphism from C to B.

Conversely, let $M = A \oplus B$ and C be a complement of A in M. Since the first part is satisfied, M has the SIP. Since the second part is satisfied, $\pi_{|C}(C) = B$ and $M = A \oplus B = A \oplus C$. So M is an ads-module. \Box

Lemma 2.7. Every direct summand of an SA-module is an SA-module.

Proof. Let M be an SA-module and N be a direct summand of M. Let K and L be direct summands of N. Since every direct summand of N is direct summand of M and M has the $SIP, K \cap L$ is a direct summand of M. Then there exists a submodule F of M such that $M = (K \cap L) \oplus F$. Hence $N = (K \cap L) \oplus (N \cap F)$ by modular law. Thus N has the SIP. Now we show that N is an ads-module. Let $N = N_1 \oplus N_2, U \subseteq N_2$ and $\phi : U \longrightarrow N_1$ be a homomorphism. Then there exists a submodule S of M such that $M = N \oplus S = N_1 \oplus N_2 \oplus S$. Set $X = \{u - \phi(u) | u \in U\}$. Now $X \cap N_1 = 0$ and so X lies in a complement, say C, of N_1 in M. Hence X + S lies in the complement C + S, of N_1 in M. Since M is an ads-module, $M = N_1 \oplus (C + S)$. Then each $n_2 \in N_2$ has the form $b - n_1$, $b \in (C+S)$ and $n_1 \in N_1$, so that $b = n_1 + n_2$. The composition of the projection $\pi_{C+S} : M \longrightarrow C + S$ along N_1 followed by the projection $\pi_{N_1} : M \longrightarrow N_1$

along N_2 and restricting to N_2 gives a homomorphism from N_2 to N_1 which extends ϕ . Hence N_1 is $N_2 - injective$. Thus N is an ads-module.

The direct sum of two SA-modules may not be an SA-module.

Example 2.8. There are SA-modules such that their direct sum need not be an SA-module.

- (i) Consider Z as a right Z-module. It is clear that Z is indecomposable and hence it is an SA-module. Since Z is not Z-injective, Z⊕Z is not an ads-module by Lemma 2.1 and hence it is not an SA-module.
- (ii) Consider the Prüfer p-group Z_{p∞} as a right Z-module. It is clear that Z_{p∞} is indecomposable and hence, it is an SA-module. Now define a homomorphism f from Z_{p∞} to Z_{p∞} as follows

$$f\left(\frac{n}{p^t} + \mathbb{Z}\right) = \frac{n}{p^{t-1}} + \mathbb{Z} \text{ with } n \in \mathbb{Z} \text{ and } t \in \mathbb{N}.$$

It is clear that $Kerf = \left(\frac{1}{p} + \mathbb{Z}\right)$. But $\mathbb{Z}_{p^{\infty}}$ is indecomposable and hence Kerf is not a direct summand of $\mathbb{Z}_{p^{\infty}}$. By Proposition 2.6, $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p^{\infty}}$ is not an SA-module.

Lemma 2.9. ([10], Proposition 3.9) Let $M = M_1 \oplus M_2$ be an *R*-module. If $r(M_1) + r(M_2) = R$, then every submodule N of M can be written as $N = N_1 \oplus N_2$, where $N_1 \leq M_1$ and $N_2 \leq M_2$.

We now state a condition for which the direct sum of SA-modules is an SA-module.

Theorem 2.10. Let M and N be two SA-modules, such that r(M)+r(N) = R. Then, $M \oplus N$ is an SA-module.

Proof. $M \oplus N$ has the SIP by Theorem 3.10 in [10]. We show that $M \oplus N$ is an ads-module. Let A be a direct summand of $M \oplus N$. Then there exists a submodule B such that $M \oplus N = A \oplus B$. By Lemma 2.9, $A = M_1 \oplus N_1$ and $B = M_2 \oplus N_2$, where M_1 and M_2 are submodules of M, N_1 and N_2 are submodules of N. It is easy to show that M_1 and M_2 are direct summands of M, and N_1 and N_2 are direct summands of N. Let C be a complement of A. Then $C = M'_1 \oplus N'_1$ for some submodules $M'_1 \subseteq M$ and $N'_1 \subseteq N$. Then

$$\begin{array}{rcl} M_{1}^{'}\cap M_{1} & = & (M_{1}^{'}\oplus N_{1}^{'})\cap M_{1} \leq (M_{1}^{'}\oplus N_{1}^{'})\cap (M_{1}\oplus N_{1}) = & C\cap A = 0, \\ N_{1}^{'}\cap N_{1} & = & (M_{1}^{'}\oplus N_{1}^{'})\cap N_{1} \leq (M_{1}^{'}\oplus N_{1}^{'})\cap (M_{1}\oplus N_{1}) = & C\cap A = 0, \end{array}$$

and hence we have $M'_1 \cap M_1 = 0$ and $N'_1 \cap N_1 = 0$. So M'_1 is a complement of M_1 and N'_1 is a complement of N_1 . Since M and N are ads-modules, $M = M_1 \oplus M'_1$ and $N = N_1 \oplus N'_1$. Hence

$$M \oplus N = (M_1 \oplus M_1') \oplus (N_1 \oplus N_1') = A \oplus C.$$

Thus $M \oplus N$ is an ads-module and hence an *SA*-module.

Theorem 2.11. If R is an injective right Ore domain, then $(R \oplus R)_R$ is an SA-module.

Proof. Since R_R is injective, $R \oplus R$ is injective and hence it is an ads-module. However, $R \oplus R$ has the SIP by Proposition 4 in [3].

Theorem 2.12. Let R be a noetherian domain and M an injective R-module. The following conditions are equivalent:

- (1) $M \oplus M$ is an SA-module.
- (2) M is torsion free.
- (3) $\oplus M$ is an SA-module for any index set Λ .

Proof. The proof follows from Theorem 3.8 in [10].

Proposition 2.13. Let M and N be indecomposable modules such that M is injective, and $Hom(M, N) \neq 0$. Let C be a complement of M in $M \oplus N$. If $M \oplus N$ is an SA-module, then $N \cong M \cong C$.

Proof. Let $0 \neq f \in Hom(M, N)$. Since $M \oplus N$ has the SIP, M is isomorphic to a submodule N_1 of N by Lemma 2.2. Since M is injective, N_1 is injective submodule of N. By the injectivity of N_1 , N_1 is a direct summand of N. By hypothesis, $N_1 = N$. Thus M is isomorphic to N. Since $M \oplus N$ is an SAmodule, for the projection map $\pi : M \oplus N \longrightarrow N$, the restricted map $\pi_{|C}$ is an isomorphism by Proposition 2.6. Hence $M \cong N \cong C$.

The classes of SA-modules and extending modules are different and demonstrated by the following example.

Example 2.14. (i) Let F be a field, V a vector space over F such that $\dim V_F \geq 2$. Let $R = \begin{bmatrix} F \\ 0 \\ F \end{bmatrix} = \left\{ \begin{bmatrix} f & v \\ 0 & f \end{bmatrix} | f \in F, v \in V \right\}$ a trivial extension of V by F. Since R is indecomposable as an R-module, R_R is an SA-module. R_R is extending when $\dim V_F = 1$ but not in other cases. For example, if $\dim V_F = 2$, i.e., $V = v_1 F \oplus v_2 F$, $v_1, v_2 \in V$, then $I = \left\{ \begin{bmatrix} 0 & v_1 f \\ 0 & 0 \end{bmatrix} \mid f \in F \right\}$ is a complement of $J = \left\{ \begin{bmatrix} 0 & v_2 f \\ 0 & 0 \end{bmatrix} \mid f \in F \right\}$. But I is not a direct summand of R_R . (ii) This example is taken from [4]. Let F be a field and

$$T = \left\{ \begin{bmatrix} a & x & 0 & 0 \\ 0 & b & b & 0 \\ 0 & 0 & b & y \\ 0 & 0 & 0 & a \end{bmatrix} \mid a, \ b, \ x, \ y \in F \right\}.$$

By [11], T as a T-module does not have the SIP. Hence T is not an SA-module. But T is extending by [4].

A module M is said to be principally quasi-injective (PQ-injective) if for every element $m \in M$ and $S = End(M_R)$, every homomorphism from mR to M can be extended to an endomorphism in S (see, [13]). A module M is said to be *duo module* if every submodule of M is fully invariant. A module M is said to satisfy the (C_2) condition if every submodule of M that is isomorphic

1359

to a direct summand of M is itself a direct summand of M. This condition is related to the PQ-injectivity as follows.

Proposition 2.15. Let M be an extending, duo, PQ-injective module. Then M is an SA-module.

Proof. Since M is due and PQ-injective, M has the SIP by Proposition 3.3 in [13]. But M has the (C_2) condition by Proposition 2.3 in [13] and hence has the (C_3) condition, and so M is an ads-module. Thus M is an SA-module. \Box

Recall that an *R*-module *M* is called a *prime* module if r(x) = r(y) for every non-zero elements *x* and *y* in *M*. The following proposition gives another condition under which an *R*-module is an *SA*-module.

Proposition 2.16. ([10], Proposition 2.1) Let M be an injective and a prime module. Then M is an SA-module.

The converse of the Proposition 2.16 is not always true.

Example 2.17. There exist SA-modules that are neither injective nor prime. Consider $M = \mathbb{Z}/6\mathbb{Z}$ as a Z-module. Then M is semisimple and hence M has the SIP. Since $\mathbb{Z}/6\mathbb{Z} = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/3\mathbb{Z}$ are mutually injective, $\mathbb{Z}/6\mathbb{Z}$ is an ads-module. Thus M is an SA-module. But, since M is not a divisible abelian group, M is not injective. Let $\overline{2}, \overline{3} \in M$. Then $r(\overline{2}) = 3\mathbb{Z}$ and $r(\overline{3}) = 2\mathbb{Z}$. Hence M is not prime.

Let $N \leq M$. Whenever $N \leq_e K \leq M$ implies N = K, N is called (essentially) closed in M and we denote by $N \leq_c M$. A module M is said to be a polyform module if for every $K \leq M$ and $f \in Hom(K, M)$, Kerf is closed in K (see, [6]). By Example 2.8 (ii), $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p^{\infty}}$ as a \mathbb{Z} -module is not an SA-module. But it is injective and hence a quasi-continuous module. Therefore, a quasi-continuous module need not be an SA-module. Now we give the following lemmas which indicate when a quasi-continuous module is an SA-module.

Lemma 2.18. Let M be a quasi-continuous polyform module. Then M is an SA-module.

Proof. Let $M = A \oplus B$ and $f \in Hom(A, B)$. Since M is polyform, Kerf is closed in A. Since M is quasi-continuous, M is an extending ads-module. Hence Kerf is a direct summand of M. So, M has the SIP by Lemma 2.2. Thus M is an SA-module.

Corollary 2.19. Every quasi-continuous nonsingular module is an SA-module.

Proof. Immediate from Lemma 2.18.

Let M be a module. It is well known that for any submodule N of M there exists a closed submodule K such that $N \leq_e K$ and K is called a *closure* of N in M. A module M is called a *UC*-module if every submodule has a unique closure in M (see, [14]).

Theorem 2.20. Let M be a quasi-continuous module. Then M is a UC-module if and only if M is an SA-module.

Proof. Let *M* be a *UC*-module, *N* and *L* direct summands of *M*. Then *N*∩*L* is closed in *M* by Lemma 6 in [14]. Since *M* is quasi-continuous, *M* is an ads-module and by hypothesis, *N*∩*L* is a direct summand of *M*. Hence *M* is an *SA*-module. For the converse, let $N \leq M$. Suppose that there are $K \leq M$ and $L \leq M$ such that $N \leq_e K \leq_c M$ and $N \leq_e L \leq_c M$. By quasi-continuity of *M*, *K* and *L* are direct summands of *M* and by assumption, $(K \cap L) \oplus D = M$ for some $D \leq M$. Hence $K = (K \cap L) \oplus (K \cap D)$. Since $N \leq_e K$ and $N \cap (K \cap D) = 0$, $K \cap D = 0$. Then $K = K \cap L$. Similarly, it is shown that $L = K \cap L$. Therefore $K = K \cap L = L$. Thus *M* is a *UC*-module.

The injective hull of an SA-module may not be an SA-module.

Example 2.21. Let p be a prime integer and let M_1 denote the Z-module $\mathbb{Z}/\mathbb{Z}p$ and M_2 be the injective hull $E(M_1)$ of M_1 . From ([12], Example 3.36), every submodule of M_2 is cyclic and generated by $1/p^n$ for some positive integer n. Therefore, it satisfies descending chain condition on submodules, M_1 and M_2 are uniform Z-modules, and they are indecomposable Z-modules. Then $M = M_1 \oplus M_2$ is an ads-module. Let f be a nonzero homomorphism from M_1 to M_2 . Since Kerf is a submodule of M_1 and M_1 is simple, Kerf = 0, i.e, Kerf is a direct summand of M. On the other hand, let α be a homomorphism from M_2 to M_1 . Since M_2 is divisible and M_1 is not divisible, $Hom(M_2, M_1) = 0$. Then α must be a zero homomorphism. So $Ker\alpha = M_2$ is a direct summand of M. Thus M has the SIP by Lemma 2.2 and so M is an SA-module. But $E(M) = \mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p^{\infty}}$ is not an SA-module by Example 2.8 (ii).

Now we give the following proposition showing that the injective hull of an SA-module M is again an SA-module when M is extending.

Proposition 2.22. Let M be an extending SA-module. Then E(M) is an SA-module.

Proof. Since M is an extending ads-module, M is quasi-continuous. Then E(M) has the SIP by Proposition 18 in [2]. Since E(M) is injective, E(M) is an ads-module and hence an SA-module.

Corollary 2.23. Let M be a quasi-continuous module. Then M is an SA-module if and only if E(M) is an SA-module.

Proof. Assume that E(M) is an SA-module. Then M has the SIP by Proposition 18 in [2]. Hence M is an SA-module. The converse is clear by Proposition 2.22.

Proposition 2.24. Let $M = A \oplus B$ be an *R*-module, f a homomorphism from A to B, $E(M) = E_1 \oplus E_2$, where E_1 is injective hull of Ker f, and π the projection of E(M) onto E_1 along E_2 . If M is an SA-module, then $\pi(M) \subseteq M$. SA-modules

Proof. Suppose M is an SA-module. Let f be an homomorphism from A to B. Since M has the SIP, Ker f is a direct summand of M. The submodule $K = E_2 \cap M$ is a complement of Kerf in M. Indeed, if C is a complement containing K in M and $c \in C$, we can write $c = e_1 + e_2$, $e_i \in E_i$. If $e_1 = 0$, then $c = e_2 \in E_2 \cap M = K$. If $e_1 \neq 0$, then there is $r \in R$ with $0 \neq re_1 \in Ker f$. Then $rc = re_1 + re_2$ and $re_1 \in Ker f \cap C = 0$, a contradiction. Now since M is an SA-module, $M = Ker f \oplus K$ and $\pi(M) = Ker f$. \Box

Note that the converse of Proposition 2.24 is not always true.

Example 2.25. Consider $M = \mathbb{Z} \oplus \mathbb{Z}$ as a \mathbb{Z} -module and the homomorphism $f : \mathbb{Z} \longrightarrow \mathbb{Z}$, defined by f(n) = 2n, $n \in \mathbb{Z}$. Then Ker f = 0 and the injective hull of Kerf is $E_1 = 0$. Hence $E(M) = E_1 \oplus E_2 = E_2 = \mathbb{Q} \oplus \mathbb{Q}$. Consider the projection map π of E(M) onto E_1 along E_2 . Then $\pi(M) = 0 \subseteq M$. But $\mathbb{Z} \oplus \mathbb{Z}$ is not an SA-module since \mathbb{Z} is not \mathbb{Z} -injective by Lemma 2.1.

It is known that the sum of two closed submodules of a quasi-continuous module is closed (see, [9]). We prove that the sum of two closed submodules of an SA-module is again closed when both of them are direct summands.

Proposition 2.26. Let A and B be two closed submodules of an SA-module M such that A and B are direct summands of M. Then A + B is a closed submodule of M.

Proof. Since M has the SIP, $A \cap B$ is a direct summand of M. Let K be a complement of $A \cap B$. Since M is an ads-module, $M = (A \cap B) \oplus K$. Hence, by modular law,

$$A + B = (A + B) \cap [(A \cap B) \oplus K] = A + [(A \cap B) \oplus (B \cap K)] = A \oplus (B \cap K)$$

Now let C be a complement of A containing $B \cap K$ in M. Since M is an ads-module, $M = A \oplus C$. Let x = a + c be in the closure of A + B, say E, in M, where $a \in A$ and $c \in C$. Since $a \in A \subseteq E$, we have $a \in E$. Hence there exists an essential right ideal I of R such that

$$cI \subseteq (A+B) \cap C = [A \oplus (B \cap K)] \cap C = B \cap K \subseteq B.$$

The fact that B is closed implies $c \in B$. Hence $x \in A + B$, as desired. \Box

Acknowledgments

The author is grateful for the thorough reading and useful suggestions by the referee.

References

- [1] A. Alahmadi, S. K. Jain and A. Leroy, ADS modules, J. Algebra 352 (2012) 215–222.
- [2] M. Alkan and A. Harmancı, On summand sum and summand intersection property of modules, *Turk J. Math.* 26 (2002), no. 2, 131–147.
- [3] G. F. Birkenmeier, F. Karabacak and A. Tercan, When is the SIP(SSP) Property inherited by Free Modules, Acta Math. Hungar. 112 (2006), no. 1-2, 103–106.

Takıl Mutlu

- [4] G. F. Birkenmeier, J. Y. Kim and J. K. Park, When is the CS Condition Hereditary, Comm. Algebra 27 (1999), no. 8, 3875–3885.
- [5] W. D. Burgess and R. Raphael, On Modules with The Absolute Direct Summand Property, *Ring Theory*, 137–148, Granville, OH, 1992, World Sci. Publ., River Edge, 1993.
- [6] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Pitman RN Mathematics 313, Harlow, Longman, 1994.
- [7] L. Fuchs, Infinite Abelian Groups, I, Pure and Applied Mathematics, Academic Press, New York-London 1970.
- [8] J. L. Garcia, Properties of direct summands of modules, Comm. Algebra 17 (1989), no. 1, 73–92.
- [9] V. K. Goel and S. K. Jain, π-injective modules and rings whose cyclics are π-injective, Comm. Algebra 6 (1978), no. 1, 59–73.
- [10] A. Hamdouni, A. Ç. Özcan and A. Harmancı, Characterization of modules and rings by the summand intersection property and the summand sum property, JP J. Algebra Number Theory Appl. 5 (2005), no. 3, 469–490.
- [11] F. Karabacak and A. Tercan, Matrix rings with summand intersection property, *Czechoslovak Mathematical Journal* 53(128) (2003), no. 3, 621–626.
- [12] T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
- [13] W. K. Nicholson, J. K. Park and M. F. Yousif, Principally quasi-injective modules, *Comm. Algebra* 27 (1999), no. 4, 1683–1693.
- [14] P. F. Smith, Modules for which Every Submodule has a Unique Closure, Ring Theory, 302–313, World Sci. Publ., River Edge, 1993.
- [15] G. V. Wilson, Modules with the summand intersection property, Comm. Algebra 14 (1986), no. 1, 21–38.
- [16] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.

(Figen Takıl Mutlu) Department of Mathematics, Anadolu University, 26470, Eskişehir, Turkey

E-mail address: figent@anadolu.edu.tr