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Abstract. The class of ads modules with the SIP (briefly, SA-modules)
is studied. Various conditions for a module to be SA-module are given.

It is proved that for a quasi-continuous module M , M is a UC-module if
and only if M is an SA-module. Also, it is proved that the direct sum
of two SA-modules as R-modules is an SA-module when R is the sum of
the annihilators of these modules.
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1. Introduction

The purpose of this paper is to study the class of ads-modules with the SIP.
Fuchs [7] calls a module M to have the absolute direct summand property

(ads), if for every decomposition M = A ⊕ B of M and every complement C
of A in M we have M = A⊕ C. We note that every quasi-continuous module
is an ads-module, but not conversely. However, an ads-module which is also
extending is quasi-continuous.

Wilson [15] calls a module M to have the summand intersection property
(SIP), if the intersection of every pair of direct summands of M is a direct
summand of M .

The motivation of the current study comes from the following question: “Do
the absolute direct summand property and the summand intersection property
necessitate the other?”

Example 2.3 and Example 2.4 show that the class of ads-modules and the
class of modules with the SIP are different. Therefore, we say a right R-
module M is an SA-module if M is an ads-module with the SIP. It is clear
that indecomposable modules and semisimple modules are SA-modules. In this
paper, we provide various conditions for a module to be an SA-module. We
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prove that for a quasi-continuous module M , M is a UC-module if and only
if M is an SA-module. We also provide a condition for the direct sum of two
SA-modules to be an SA-module.

Throughout the paper all rings are associative with unity and R always
denotes such a ring. All modules are unital right R-modules unless indicated
otherwise. N ≤ M will mean N is a submodule of M .

A module M is called extending (or CS ) if every submodule of M is essential
in a direct summand of M . A module M is called quasi-continuous if it satisfies
extending and (C3) condition: the sum of two direct summands of M with zero
intersection is again a direct summand of M .

For two modules A and B, we say that A is B − injective if any homomor-
phism from a submodule X of B to A can be extended to a homomorphism
from B to A.

For any module M , E(MR), End(MR) and r(X) (resp. r(x)) will denote the
injective hull of M , the ring of endomorphisms of M and the right annihilator
of a subset X (resp. an element x) in M , respectively. The notions which are
not explained here can be found in [16].

2. SA-Modules

We begin with two lemmas which are useful in determining the ads property
and the SIP property of a module. The first lemma appears in [5] and the
second lemma appears in [8].

Lemma 2.1. A module M is an ads-module if and only if for any decomposi-
tion M = A⊕B, B is A− injective.

Lemma 2.2. A module M has the SIP if and only if for every decomposition
M = A ⊕ B and every homomorphism f from A to B, the kernel of f is a
direct summand.

The following examples show that the class of ads-modules and the class of
modules with the SIP are different.

Example 2.3. Let K be a field, R = [K K
0 K ]. Then N = [ 0 K

0 K ] and L = [K K
0 0 ]

are right R-modules. Let M = R/L and U = M ⊕ N . By ( [8], Remark on
page 81), U does not have the SIP. However, since R/L ∼= [ 0 0

0 K ] ∼= K, R/L is
injective by the Baer criteria. Then M = R/L is N − injective. On the other
hand, since M = R/L is field, its submodules are only the trivial ones. So, N
is M − injective. Thus U is an ads-module.

Example 2.4. Let p be a prime integer and M = Z/Zp ⊕ Q. Since all
direct summands of M are (Z/Zp⊕ 0), 0 ⊕ Q, 0 ⊕ 0 and M , clearly M has
the SIP. Now, we show that M is not an ads-module. Since Q is injective, Q
is Z/Zp − injective. Now suppose that Z/Zp is Q − injective. Let π : Z −→
Z/Zp denote the canonical epimorphism, defined by π(n) = n + Zp (n ∈ Z).
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Then there exists a homomorphism α : Q −→ Z/Zp which extends π. Now
α(1/p) = x + Zp for some x ∈ Z. Thus pα(1/p) = α(1) = π(1) = 1 + Zp. It
follows that px+Zp = 1+Zp and hence 1 ≡ 0 (mod p), a contradiction. Thus
Z/Zp is not Q− injective. Hence M is not an ads-module by Lemma 2.1.

Definition 2.5. We say that a module M is an SA-module if M is an ads-
module with the SIP.

The next proposition gives a characterization of SA-modules. We remark
that, the second part of this proposition also appears in [1] as Proposition 3.2.
as one of the equivalent conditions for a module to be an ads-module.

Proposition 2.6. A module M is an SA-module if and only if the following
statements are satisfied:
for any decomposition M = A⊕B,

i) for every homomorphism f from A to B, the kernel of f is a direct
summand.

ii) for any complement C of A in M and the projection map π : M −→ B,
the restricted map π|C : C −→ B is an isomorphism.

Proof. Suppose M is an SA-module. The first part is Lemma 2.2. We show
the second part. Let C be a complement of A. Take x ∈ Ker

(
π|C

)
. Then

x ∈ C ∩ A = 0, so Ker
(
π|C

)
= 0. Since A ⊕ C = (A ⊕ C) ∩M = (A ⊕ C) ∩

(A⊕B) = ((A⊕ C) ∩B) +A, we have

π(C) = π(A⊕ C) = π((A⊕ C) ∩B) = (A⊕ C) ∩B.

Since M is an ads-module , A ⊕ C = M and π(C) = B. Therefore, π|C is an
isomorphism from C to B.

Conversely, let M = A⊕B and C be a complement of A in M . Since the first
part is satisfied, M has the SIP. Since the second part is satisfied, π|C(C) = B
and M = A⊕B = A⊕ C. So M is an ads-module. □
Lemma 2.7. Every direct summand of an SA-module is an SA-module.

Proof. LetM be an SA-module andN be a direct summand ofM . LetK and L
be direct summands of N . Since every direct summand of N is direct summand
of M and M has the SIP , K ∩L is a direct summand of M . Then there exists
a submodule F of M such that M = (K∩L)⊕F . Hence N = (K∩L)⊕(N∩F )
by modular law. Thus N has the SIP. Now we show that N is an ads-module.
Let N = N1 ⊕ N2, U ⊆ N2 and ϕ : U −→ N1 be a homomorphism. Then
there exists a submodule S of M such that M = N ⊕ S = N1 ⊕ N2 ⊕ S. Set
X = {u−ϕ(u)|u ∈ U}. Now X∩N1 = 0 and so X lies in a complement, say C,
of N1 in M . Hence X +S lies in the complement C +S, of N1 in M . Since M
is an ads-module, M = N1 ⊕ (C +S). Then each n2 ∈ N2 has the form b−n1,
b ∈ (C+S) and n1 ∈ N1, so that b = n1+n2. The composition of the projection
πC+S : M −→ C + S along N1 followed by the projection πN1 : M −→ N1
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along N2 and restricting to N2 gives a homomorphism from N2 to N1 which
extends ϕ. Hence N1 is N2 − injective. Thus N is an ads-module. □

The direct sum of two SA-modules may not be an SA-module.

Example 2.8. There are SA-modules such that their direct sum need not be
an SA-module.

(i) Consider Z as a right Z-module. It is clear that Z is indecomposable
and hence it is an SA-module. Since Z is not Z-injective, Z⊕Z is not
an ads-module by Lemma 2.1 and hence it is not an SA-module.

(ii) Consider the Prüfer p-group Zp∞ as a right Z-module. It is clear that
Zp∞ is indecomposable and hence, it is an SA-module. Now define a
homomorphism f from Zp∞ to Zp∞ as follows

f

(
n

pt
+ Z

)
=

n

pt−1
+ Z with n ∈ Z and t ∈ N.

It is clear that Kerf =
(

1
p + Z

)
. But Zp∞ is indecomposable and hence

Kerf is not a direct summand of Zp∞ . By Proposition 2.6, Zp∞ ⊕Zp∞

is not an SA-module.

Lemma 2.9. ( [10], Proposition 3.9) Let M = M1 ⊕M2 be an R-module. If
r(M1) + r(M2) = R, then every submodule N of M can be written as N =
N1 ⊕N2, where N1 ≤ M1 and N2 ≤ M2.

We now state a condition for which the direct sum of SA-modules is an
SA-module.

Theorem 2.10. Let M and N be two SA-modules, such that r(M)+r(N) = R.
Then, M ⊕N is an SA-module.

Proof. M ⊕ N has the SIP by Theorem 3.10 in [10]. We show that M ⊕ N
is an ads-module. Let A be a direct summand of M ⊕ N . Then there exists
a submodule B such that M ⊕ N = A ⊕ B. By Lemma 2.9, A = M1 ⊕ N1

and B = M2 ⊕ N2, where M1 and M2 are submodules of M , N1 and N2 are
submodules of N . It is easy to show that M1 and M2 are direct summands of
M , and N1 and N2 are direct summands of N . Let C be a complement of A.
Then C = M

′

1 ⊕N
′

1 for some submodules M
′

1 ⊆ M and N
′

1 ⊆ N . Then

M
′

1 ∩M1 = (M
′

1 ⊕N
′

1) ∩M1 ≤ (M
′

1 ⊕N
′

1) ∩ (M1 ⊕N1) = C ∩A = 0,

N
′

1 ∩N1 = (M
′

1 ⊕N
′

1) ∩N1 ≤ (M
′

1 ⊕N
′

1) ∩ (M1 ⊕N1) = C ∩A = 0,

and hence we haveM
′

1∩M1 = 0 and N
′

1∩N1 = 0. SoM
′

1 is a complement ofM1

and N
′

1 is a complement of N1. Since M and N are ads-modules, M = M1⊕M
′

1

and N = N1 ⊕N
′

1. Hence

M ⊕N = (M1 ⊕M
′

1)⊕ (N1 ⊕N
′

1) = A⊕ C.

Thus M ⊕N is an ads-module and hence an SA-module. □
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Theorem 2.11. If R is an injective right Ore domain, then (R ⊕ R)R is an
SA-module.

Proof. Since RR is injective, R⊕R is injective and hence it is an ads-module.
However, R⊕R has the SIP by Proposition 4 in [3]. □
Theorem 2.12. Let R be a noetherian domain and M an injective R-module.
The following conditions are equivalent:

(1) M ⊕M is an SA-module.
(2) M is torsion free.
(3) ⊕

Λ
M is an SA-module for any index set Λ.

Proof. The proof follows from Theorem 3.8 in [10]. □
Proposition 2.13. Let M and N be indecomposable modules such that M is
injective, and Hom(M,N) ̸= 0. Let C be a complement of M in M ⊕ N . If
M ⊕N is an SA-module, then N ∼= M ∼= C.

Proof. Let 0 ̸= f ∈ Hom(M,N). Since M ⊕N has the SIP, M is isomorphic
to a submodule N1 of N by Lemma 2.2. Since M is injective, N1 is injective
submodule of N . By the injectivity of N1, N1 is a direct summand of N . By
hypothesis, N1 = N . Thus M is isomorphic to N . Since M ⊕ N is an SA-
module, for the projection map π : M ⊕ N −→ N , the restricted map π|C is
an isomorphism by Proposition 2.6. Hence M ∼= N ∼= C. □

The classes of SA-modules and extending modules are different and demon-
strated by the following example.

Example 2.14. (i) Let F be a field, V a vector space over F such that

dimVF ≥ 2. Let R =
[
F V

⧹
0 F

]
=

{[
f v

0 f

]
|f ∈ F, v ∈ V

}
a trivial extension

of V by F . Since R is indecomposable as an R-module, RR is an SA-module.
RR is extending when dimVF = 1 but not in other cases. For example, if
dimVF = 2, i.e., V = v1F ⊕ v2F, v1, v2 ∈ V , then I =

{[
0 v1f
0 0

]
| f ∈ F

}
is a

complement of J =
{[

0 v2f
0 0

]
| f ∈ F

}
. But I is not a direct summand of RR.

(ii) This example is taken from [4]. Let F be a field and

T =

{[
a x 0 0
0 b 0 0
0 0 b y
0 0 0 a

]
| a, b, x, y ∈ F

}
.

By [11], T as a T -module does not have the SIP. Hence T is not an SA-module.
But T is extending by [4].

A module M is said to be principally quasi-injective (PQ-injective) if for
every element m ∈ M and S = End(MR), every homomorphism from mR to
M can be extended to an endomorphism in S (see, [13]). A module M is said
to be duo module if every submodule of M is fully invariant. A module M is
said to satisfy the (C2) condition if every submodule of M that is isomorphic
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to a direct summand of M is itself a direct summand of M . This condition is
related to the PQ-injectivity as follows.

Proposition 2.15. Let M be an extending, duo, PQ-injective module. Then
M is an SA-module.

Proof. Since M is duo and PQ-injective, M has the SIP by Proposition 3.3
in [13]. But M has the (C2) condition by Proposition 2.3 in [13] and hence has
the (C3) condition, and so M is an ads-module. Thus M is an SA-module. □

Recall that an R-module M is called a prime module if r(x) = r(y) for
every non-zero elements x and y in M . The following proposition gives another
condition under which an R-module is an SA-module.

Proposition 2.16. ( [10], Proposition 2.1) Let M be an injective and a prime
module. Then M is an SA-module.

The converse of the Proposition 2.16 is not always true.

Example 2.17. There exist SA-modules that are neither injective nor prime.
Consider M = Z/6Z as a Z-module. Then M is semisimple and hence M

has the SIP. Since Z/6Z = Z/2Z ⊕ Z/3Z and Z/2Z and Z/3Z are mutually
injective, Z/6Z is an ads-module. Thus M is an SA-module. But, since M is
not a divisible abelian group, M is not injective. Let 2, 3 ∈ M . Then r(2) = 3Z
and r(3) = 2Z. Hence M is not prime.

Let N ≤ M . Whenever N ≤e K ≤ M implies N = K, N is called (essen-
tially) closed in M and we denote by N ≤c M . A module M is said to be a
polyform module if for every K ≤ M and f ∈ Hom(K,M), Kerf is closed in
K (see, [6]). By Example 2.8 (ii), Zp∞ ⊕ Zp∞ as a Z-module is not an SA-
module. But it is injective and hence a quasi-continuous module. Therefore, a
quasi-continuous module need not be an SA-module. Now we give the following
lemmas which indicate when a quasi-continuous module is an SA-module.

Lemma 2.18. Let M be a quasi-continuous polyform module. Then M is an
SA-module.

Proof. Let M = A ⊕ B and f ∈ Hom(A,B). Since M is polyform, Kerf
is closed in A. Since M is quasi-continuous, M is an extending ads-module.
Hence Kerf is a direct summand of M . So, M has the SIP by Lemma 2.2.
Thus M is an SA-module. □
Corollary 2.19. Every quasi-continuous nonsingular module is an SA-module.

Proof. Immediate from Lemma 2.18. □
Let M be a module. It is well known that for any submodule N of M there

exists a closed submodule K such that N ≤e K and K is called a closure of
N in M . A module M is called a UC-module if every submodule has a unique
closure in M (see, [14]).
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Theorem 2.20. Let M be a quasi-continuous module. Then M is a UC-
module if and only if M is an SA-module.

Proof. Let M be a UC-module, N and L direct summands of M . Then N ∩L
is closed in M by Lemma 6 in [14]. Since M is quasi-continuous, M is an ads-
module and by hypothesis, N ∩ L is a direct summand of M . Hence M is an
SA-module. For the converse, let N ≤ M . Suppose that there are K ≤ M and
L ≤ M such that N ≤e K ≤c M and N ≤e L ≤c M . By quasi-continuity of
M , K and L are direct summands of M and by assumption, (K ∩L)⊕D = M
for some D ≤ M . Hence K = (K ∩ L) ⊕ (K ∩ D). Since N ≤e K and
N ∩ (K ∩D) = 0, K ∩D = 0. Then K = K ∩ L. Similarly, it is shown that
L = K ∩ L. Therefore K = K ∩ L = L. Thus M is a UC-module. □

The injective hull of an SA-module may not be an SA-module.

Example 2.21. Let p be a prime integer and let M1 denote the Z-module
Z/Zp and M2 be the injective hull E(M1) of M1. From ( [12], Example 3.36),
every submodule of M2 is cyclic and generated by 1/pn for some positive integer
n. Therefore, it satisfies descending chain condition on submodules, M1 and
M2 are uniform Z-modules, and they are indecomposable Z-modules. Then
M = M1⊕M2 is an ads-module. Let f be a nonzero homomorphism from M1 to
M2. Since Kerf is a submodule of M1 and M1 is simple, Kerf = 0, i.e, Kerf
is a direct summand of M . On the other hand, let α be a homomorphism from
M2 to M1. Since M2 is divisible and M1 is not divisible, Hom(M2,M1) = 0.
Then α must be a zero homomorphism. So Kerα = M2 is a direct summand
of M . Thus M has the SIP by Lemma 2.2 and so M is an SA-module. But
E(M) = Zp∞ ⊕ Zp∞ is not an SA-module by Example 2.8 (ii).

Now we give the following proposition showing that the injective hull of an
SA-module M is again an SA-module when M is extending.

Proposition 2.22. Let M be an extending SA-module. Then E(M) is an
SA-module.

Proof. Since M is an extending ads-module, M is quasi-continuous. Then
E(M) has the SIP by Proposition 18 in [2]. Since E(M) is injective, E(M) is
an ads-module and hence an SA-module. □
Corollary 2.23. Let M be a quasi-continuous module. Then M is an SA-
module if and only if E(M) is an SA-module.

Proof. Assume that E(M) is an SA-module. Then M has the SIP by Proposi-
tion 18 in [2]. Hence M is an SA-module. The converse is clear by Proposition
2.22. □
Proposition 2.24. Let M = A ⊕ B be an R-module, f a homomorphism
from A to B, E(M) = E1 ⊕E2, where E1 is injective hull of Kerf , and π the
projection of E(M) onto E1 along E2. If M is an SA-module, then π(M) ⊆ M .
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Proof. Suppose M is an SA-module. Let f be an homomorphism from A to
B. Since M has the SIP, Ker f is a direct summand of M . The submodule
K = E2 ∩ M is a complement of Kerf in M . Indeed, if C is a complement
containing K in M and c ∈ C, we can write c = e1+e2, ei ∈ Ei. If e1 = 0, then
c = e2 ∈ E2 ∩M = K. If e1 ̸= 0, then there is r ∈ R with 0 ̸= re1 ∈ Ker f .
Then rc = re1 + re2 and re1 ∈ Ker f ∩ C = 0, a contradiction. Now since M
is an SA-module, M = Ker f ⊕K and π(M) = Ker f . □

Note that the converse of Proposition 2.24 is not always true.

Example 2.25. Consider M = Z⊕ Z as a Z-module and the homomorphism
f : Z −→ Z, defined by f(n) = 2n, n ∈ Z. Then Ker f = 0 and the injective
hull of Kerf is E1 = 0. Hence E(M) = E1 ⊕ E2 = E2 = Q ⊕ Q. Consider
the projection map π of E(M) onto E1 along E2. Then π(M) = 0 ⊆ M . But
Z⊕ Z is not an SA-module since Z is not Z-injective by Lemma 2.1.

It is known that the sum of two closed submodules of a quasi-continuous
module is closed (see, [9]). We prove that the sum of two closed submodules of
an SA-module is again closed when both of them are direct summands.

Proposition 2.26. Let A and B be two closed submodules of an SA-module
M such that A and B are direct summands of M . Then A + B is a closed
submodule of M .

Proof. Since M has the SIP, A ∩ B is a direct summand of M . Let K be a
complement of A ∩ B. Since M is an ads-module, M = (A ∩ B) ⊕K. Hence,
by modular law,

A+B = (A+B) ∩ [(A ∩B)⊕K] = A+ [(A ∩B)⊕ (B ∩K)] = A⊕ (B ∩K)

Now let C be a complement of A containing B ∩ K in M . Since M is an
ads-module, M = A⊕ C. Let x = a+ c be in the closure of A+ B, say E, in
M , where a ∈ A and c ∈ C. Since a ∈ A ⊆ E, we have a ∈ E. Hence there
exists an essential right ideal I of R such that

cI ⊆ (A+B) ∩ C = [A⊕ (B ∩K)] ∩ C = B ∩K ⊆ B.

The fact that B is closed implies c ∈ B. Hence x ∈ A+B, as desired. □
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